Concurrency theory

Weak equivalences, axiomatizations, Hennessy-Milner logic

James Leifer Francesco Zappa Nardelli

INRIA Rocquencourt, MOSCOVA research team

james.leifer@inria.fr francesco.zappa_nardelli@inria.fr

together with

Frank Valencia (INRIA Futurs) Catuscia Palamidessi (INRIA Futurs) Roberto Amadio (PPS)

MPRI - Concurrency October 1, 2007

Today’s plan

e Weak bisimulation and “up-to” techniques
e Equational axiomatisation

e Hennessy-Milner logic

A couple of useful pointers

o Aceto, Inglfsdttir, Larsen, Srba: Reactive systems: modelling, specification
and verification.

http://www.cs.auc.dk/"luca/SV/intro2ccs.pdf

e Winskel: Chapter 4 of Set theory for computer science.

http://www.cl.cam.ac.uk/“gwl04/DiscMath.pdf

Weak bisimulation

Definition: a weak bisimulation is a binary relation /R on the set of processes
such that for all P,Q, if P 'R (then

VY, P, PP = 3Q, Q2L Q and PPRQ
S Vu QL Q- Q = 3P, P Pland PRQ

T * U T)
S S > otherwise.

[T * .
where =—> is — if 4y = 7 and

We say that P and () are weakly bisimilar, denoted P =~ (), if there exists a
bisimulation R such that P 'R Q.

Exercise: Prove that weak bisimilarity is an equivalence relation.

Some interesting examples

Some inequivalences:

P=a+b Q=a+Tb R=1a+71b

Some equivalences (for P,Q, R arbitrary):

T.0 X a a+ 7.0~ T.0 a.c+a.(b+7.c) = a.(b+ 7.c)

TP+ R~P+717.P+R a.(trP+Q)+ R~a.(rP+Q)+aP+R

Up-to techniques for weak bisimulation

Definition: a weak bisimulation up-to ~ is a binary relation R on the set of
processes such that for all P,Q, if P 'R (Q then

Vu, P!, P25 P = 3Q, Q N Q" and P’ ~R~ @’ and conversely.

Theorem If R is a weak bisimulation up-to ~, then R C =.

Exercise: |s weak bisimulation up-to =~ a sound proof technique? Consider the
processes P = 7.a.0 and () = 7.0.

See Techniques of weak bisimulation up to by Milner and Sangiorgi.

Specification and weak bisimulation

Consider the processes:

Hammer Jobber Strong jobber
H=gH H =pH J=1imS S=qU K=1im.D D=outK
U=pF F =outJ

Exercise: show that (vg,p)(J || J || H) ~ K || K using the up-to = proof
technique.

Weak bisimulation is not a congruence for unguarded sums

Consider CCS with prefix and sums instead of guarded sumes, i.e. replace X;c ;. P;
by Y;crP; and . P, with rules

P, L. p

1

m
SierPs 4 P S

1

Strong bisimilarity is a congruence, and weak bisimilarity is not a congruence.

Exercise: find a counter example to congruence of weak bisimulation in CCS +
sums.

Weak bisimulation is not a congruence for unguarded sums,
ctd.

If you attempt to prove congruence, you will fail when dealing with the sum rule:

Suppose P ~ () and our goal is to show P+ S~ Q+S. f P+S — P’
because P —— P’ then there exists Q’ such that Q T (', which may involve
zero 7 steps! In this case, there is no weak transition of () + .S to reach a state
matching P’.

Strong axiomatization
For finitary CCS (no recursion, finite guarded sums),

Pr~Qiff A FP=Q

where A; is:

L Yierps- Py = Yierpipay-Pr (f permutation)

2. Yierpi- P+ Py = Yicrpi Py for g el (idempotency)

3PN Q=S{n(P 11 Qs P P+ S (P | @):Q @'}
+3{1.(P" || Q) : P == P and Q — Q'} (expansion)

4. (va)(Xierpi-B;) = E{jekﬂj#a,a},uj.(ua)Pj

plus the rules for equational reasoning (reflexivity, symmetry, transitivity) and
congruence wrt sum, parallel and restriction.

Show that

Exercise on axiomatization

ALk (wb)(a.(b || ¢) +7.(b || b.0)) = T.rctac

10

Proof of strong axiomatization

First step: each process is provably equal to a synchronization tree (guarded sums only), using
only

3. Pl Q=2{p.(P' | Q): P — P} +={u(P || Q) : Q — Q'}
—I—EST.(P’ | Q): P = P and Q = Q'} (expansion)

4. (ua)(EieI,ui.PZ = Z{jepuﬁéaﬁ}uj.(ua)Pj
The following weight function on processes decreases with each application of rules (3)-(4).
w(Xierpi-P) =1+ max w(P;)
1€
w(P || Q) =2 (w(P) +w(Q))
w((va)P) =142 - w(P)

11

Strong axiomatization, ctd.

Second step: if P = Ezelm,u,Pz and Q = Ej€m+1__nuj.Pj, and if P ~ Q, then P and Q
are provably equal, using only

L. Sierpi- Py = Zicrpsy-Prey (f permutation)
2. Yierpi-Pi 4+ pi . P; = Eierpi. Py forj el (idempotency)

Induct on size(P) + size(Q): let = be the equivalence relation on {1..n} defined by i = j
iff u; = p; and P; ~ P;. By induction ¢ = j implies = P; = P;. By strong bisimilarity
each = equivalence class contains at least one element of [1, m] and at least one element of
[m 4+ 1,n]. Now for each of the equivalence classes we pick one representative in [1,m] and
one in [m + 1, n]. Call them py,...,pr and qi,qx respectively. Then using (1)-(2) and
congruence we have:

= Y=t mpti- P = El:1..k:,upl-Ppl — El:l..k,uql.qu = Yj=m+1.ntj. P

12

Weak axiomatization

For finitary CCS,
P~Qiff i+ A FP=0Q

where A, is:

1. P=71.P

2. TP+ R=P+717.P+ R

3. u(trP+Q)+R=p.(r.P+Q)+uP+R

(In general, we do not have - P+ @ = 7.P + Q).

(We postpone the proof of the completness of this axiomatization to a later lecture).

13

Image finite LTS

We revert to an arbitrary LTS, with its set of actions A. We make the assumption
that the LTS is image finite:

VP, i ({P': P t= P’} is finite)

We write Proc for the set of all states/processes.

14

Hennessy-Milner logic

The set of formulas of Hennessy-Milner logic is defined by:
A =T | ANA | -4 | (WA

A formula A is interpreted by the set of processes that satisfy it, whence two
notations: [A] ={P: PIF A}.

[T] = Proc
[AnB] =[A]n[B]
[~A] = Proc\ [4]
[(WA] = {P:3P' P X5 P’ and P’ IF A}

Derived operators: AV B = —~(=A A -B), |[ulA = -({(u)(—A)).

15

Hennessy-Milner logic, ctd.

Theorem: Under the image finitness assumption,

P~Q iff {A:PIFA}={A:QIFQ}

The theorem can be applied to finitary CCS (both strong and weak bisimulation).
When weak bisimulation is meant, we write ((u))A and [[u]] A.

It works also for the larger fragment of CCS with finite sums and recursive

definitions where each recursively defined K is guarded and sequential in its
definition.

More generally it works for all pair of P, () that are both hereditarily image finite,
i.e. say, whenever P £ Q (fi € A*), then Q is image finite.

16

Hennessy-Milner logic, ctd.

Let L, be the subset of formulas with depth of at most n, where depth is defined
by

depth(7T') =0 depth(A A B) = max(depth(A), depth(B))
depth(—A) = depth(A) depth({u)A) = depth(A4) + 1

Remember that ~ is the greatest fixed point of some operator Gx. Since we
suppose image finiteness, G is anti-continuous and

~ = ﬂ ~o where ~p = Proc X Proc and ~Mn4+1 — GK(Nn)

new

17

Hennessy-Milner logic, ctd.

Remark: unfolding the definition of G, we have:

P ropyq Qiff Yy, PP (P25 P = 3Q (Q £ Q' and P’ ~, Q")) and conversely

We set L,(P) ={A € L, : PI- A}. We prove by induction on n:

P~,Q<« L,(P)=L,Q)

Case n = 0. Notice that for every A € Lg we have either [A] = 0 or [A] = Proc.
It follows that P € [A] iff Q € [A] for arbitrary P, Q.

18

Hennessy-Milner logic, ctd.

P ont1 Q = Lpy1(P) # Lny1(Q).

Since P 4,11 @ there exists u, P’ such that P ——— P’ and for all Q/,...,Q,
4 1 k

(we are using image-finiteness) such that Q@ —— @’ we have P’ £, Q' for all
i < k.

Now L, (P’") # L,(Q}) by induction. Hence there exists A; € L, (P)\L,(Q))
or there exists B; € L,(Q,)\L,(P’). But in the latter case we can take
A; = —B;, hence we may assume that there exists A; € L,(P')\L,(Q)). Let
A=A N N Ag.

Then P’ I A, and since Q) I A; we have Q) I A for all i. It follows that
PIF () A and Q Iff (u)A.

19

Hennessy-Milner logic, ctd.

P ~n+1 Q - Ln—l—l(P) — Ln—i—l(Q)

Let A € L, 11(P). We proceed by structural induction on A. The only non trivial
case is A = (u)B.

Since P I A there exists u, P’ such that P -~ P’ and P’ IF B. By the
hypothesis that P ~,,11 Q, there exists Q' such that Q -~ @’ and P’ ~,, Q’.

By induction, since B € L,, we get Q' I+ B and hence A € L, 1(Q).

20

