
Concurrency theory

Weak equivalences, axiomatizations, Hennessy-Milner logic

James Leifer Francesco Zappa Nardelli

INRIA Rocquencourt, MOSCOVA research team

james.leifer@inria.fr francesco.zappa nardelli@inria.fr

together with

Frank Valencia (INRIA Futurs) Catuscia Palamidessi (INRIA Futurs) Roberto Amadio (PPS)

MPRI - Concurrency October 1, 2007

Today’s plan

• Weak bisimulation and “up-to” techniques

• Equational axiomatisation

• Hennessy-Milner logic

1

A couple of useful pointers

• Aceto, Inglfsdttir, Larsen, Srba: Reactive systems: modelling, specification
and verification.

http://www.cs.auc.dk/~luca/SV/intro2ccs.pdf

• Winskel: Chapter 4 of Set theory for computer science.

http://www.cl.cam.ac.uk/~gw104/DiscMath.pdf

2

Weak bisimulation

Definition: a weak bisimulation is a binary relation R on the set of processes
such that for all P,Q, if P R Q then

− ∀µ, P ′, P
µ−−→ P ′ ⇒ ∃Q′, Q

µ̂
=⇒ Q′ and P ′ R Q′ ;

− ∀µ,Q′, Q
µ−−→ Q′ ⇒ ∃P ′, P

µ̂
=⇒ P ′ and P ′ R Q′ ;

where
µ̂

=⇒ is
τ−−→

∗
if µ = τ and

τ−−→
∗ µ−−→ τ−−→

∗
otherwise.

We say that P and Q are weakly bisimilar, denoted P ≈ Q, if there exists a
bisimulation R such that P R Q.

Exercise: Prove that weak bisimilarity is an equivalence relation.

3

Some interesting examples

Some inequivalences:

P = a + b Q = a + τ.b R = τ.a + τ.b

Some equivalences (for P,Q,R arbitrary):

τ.a ≈ a a + τ.a ≈ τ.a a.c + a.(b + τ.c) ≈ a.(b + τ.c)

τ.P + R ≈ P + τ.P + R a.(τ.P + Q) + R ≈ a.(τ.P + Q) + a.P + R

4

Up-to techniques for weak bisimulation

Definition: a weak bisimulation up-to ∼ is a binary relation R on the set of
processes such that for all P,Q, if P R Q then

∀µ, P ′, P
µ−−→ P ′ ⇒ ∃Q′, Q

µ̂
=⇒ Q′ and P ′ ∼R∼ Q′ and conversely.

Theorem If R is a weak bisimulation up-to ∼, then R ⊆ ≈.

Exercise: Is weak bisimulation up-to ≈ a sound proof technique? Consider the
processes P = τ.a.0 and Q = τ.0.

See Techniques of weak bisimulation up to by Milner and Sangiorgi.

5

Specification and weak bisimulation

Consider the processes:

Hammer Jobber Strong jobber
H = g.H ′ H ′ = p.H J = in.S S = g.U K = in.D D = out.K

U = p.F F = out.J

Exercise: show that (νg, p)(J
f

J
f

H) ≈ K
f

K using the up-to ≡ proof
technique.

6

Weak bisimulation is not a congruence for unguarded sums

Consider CCS with prefix and sums instead of guarded sums, i.e. replace Σi∈Iµi.Pi

by Σi∈IPi and µ.P , with rules

Pi
µ−−→ P ′

i

Σi∈IPi
µ−−→ P ′

i

µ.P
µ−−→ P

Strong bisimilarity is a congruence, and weak bisimilarity is not a congruence.

Exercise: find a counter example to congruence of weak bisimulation in CCS +
sums.

7

Weak bisimulation is not a congruence for unguarded sums,
ctd.

If you attempt to prove congruence, you will fail when dealing with the sum rule:

Suppose P ≈ Q and our goal is to show P + S ≈ Q + S. If P + S
τ−−→ P ′

because P
τ−−→ P ′ then there exists Q′ such that Q

τ−−→
∗

Q′, which may involve
zero τ steps! In this case, there is no weak transition of Q + S to reach a state
matching P ′.

8

Strong axiomatization
For finitary CCS (no recursion, finite guarded sums),

P ∼ Q iff A1 ` P = Q

where A1 is:

1. Σi∈Iµi.Pi = Σi∈Iµf(i).Pf(i) (f permutation)

2. Σi∈Iµi.Pi + µj.Pj = Σi∈Iµi.Pi for j ∈ I (idempotency)

3. P
f

Q = Σ{µ.(P ′ f
Q) : P

µ−−→ P ′}+ Σ{µ.(P
f

Q′) : Q
µ−−→ Q′}

+Σ{τ.(P ′ f
Q′) : P

α−−→ P ′ and Q
α−−→ Q′} (expansion)

4. (νa)(Σi∈Iµi.Pi) = Σ{j∈I:µj 6=a,a}µj.(νa)Pj

plus the rules for equational reasoning (reflexivity, symmetry, transitivity) and
congruence wrt sum, parallel and restriction.

9

Exercise on axiomatization

Show that

A1 ` (νb)(a.(b
n

c) + τ.(b
n

b.c)) = τ.τ.c + a.c

10

Proof of strong axiomatization

First step: each process is provably equal to a synchronization tree (guarded sums only), using

only

3. P
f

Q = Σ{µ.(P ′ f
Q) : P

µ−−→ P ′}+ Σ{µ.(P
f

Q′) : Q
µ−−→ Q′}

+Σ{τ.(P ′ f
Q′) : P

α−−→ P ′ and Q
α−−→ Q′} (expansion)

4. (νa)(Σi∈Iµi.Pi) = Σ{j∈I:µj 6=a,a}µj.(νa)Pj

The following weight function on processes decreases with each application of rules (3)-(4).

w(Σi∈Iµi.Pi) = 1 + max
i∈I

w(Pi)

w(P
n

Q) = 2 · (w(P) + w(Q))

w((νa)P) = 1 + 2 · w(P)

11

Strong axiomatization, ctd.

Second step: if P = Σi∈1..mµi.Pi and Q = Σj∈m+1..nµj.Pj, and if P ∼ Q, then P and Q

are provably equal, using only

1. Σi∈Iµi.Pi = Σi∈Iµf(i).Pf(i) (f permutation)
2. Σi∈Iµi.Pi + µj.Pj = Σi∈Iµi.Pi for j ∈ I (idempotency)

Induct on size(P) + size(Q): let
 be the equivalence relation on {1..n} defined by i
 j

iff µi = µj and Pi ∼ Pj. By induction i
 j implies ` Pi = Pj. By strong bisimilarity

each
 equivalence class contains at least one element of [1, m] and at least one element of

[m + 1, n]. Now for each of the equivalence classes we pick one representative in [1, m] and

one in [m + 1, n]. Call them p1, . . . , pk and q1,qk respectively. Then using (1)-(2) and

congruence we have:

` Σi=1..mµi.Pi = Σl=1..kµpl
.Ppl

= Σl=1..kµql
.Pql

= Σj=m+1..nµj.Pj

12

Weak axiomatization

For finitary CCS,
P ≈ Q iff A1 +A2 ` P = Q

where A2 is:

1. P = τ.P

2. τ.P + R = P + τ.P + R

3. µ.(τ.P + Q) + R = µ.(τ.P + Q) + µ.P + R

(In general, we do not have ` P + Q = τ.P + Q).

(We postpone the proof of the completness of this axiomatization to a later lecture).

13

Image finite LTS

We revert to an arbitrary LTS, with its set of actions A. We make the assumption
that the LTS is image finite:

∀P, µ ({P ′ : P
µ−−→ P ′} is finite)

We write Proc for the set of all states/processes.

14

Hennessy-Milner logic

The set of formulas of Hennessy-Milner logic is defined by:

A ::= T
∣∣ A ∧A

∣∣ ¬A
∣∣ 〈µ〉A

A formula A is interpreted by the set of processes that satisfy it, whence two
notations: JAK = {P : P
 A}.

JT K = Proc

JA ∧BK = JAK ∩ JBK
J¬AK = Proc \ JAK

J〈µ〉AK = {P : ∃P ′ P
µ−−→ P ′ and P ′
 A}

Derived operators: A ∨B = ¬(¬A ∧ ¬B), [µ]A = ¬(〈µ〉(¬A)).

15

Hennessy-Milner logic, ctd.

Theorem: Under the image finitness assumption,

P ∼ Q iff {A : P
 A} = {A : Q
 Q}

The theorem can be applied to finitary CCS (both strong and weak bisimulation).
When weak bisimulation is meant, we write 〈〈µ〉〉A and [[µ]]A.

It works also for the larger fragment of CCS with finite sums and recursive
definitions where each recursively defined K is guarded and sequential in its
definition.

More generally it works for all pair of P,Q that are both hereditarily image finite,

i.e. say, whenever P
µ̃−−→ Q (µ̃ ∈ A∗), then Q is image finite.

16

Hennessy-Milner logic, ctd.

Let Ln be the subset of formulas with depth of at most n, where depth is defined
by

depth(T) = 0 depth(A ∧B) = max(depth(A),depth(B))

depth(¬A) = depth(A) depth(〈µ〉A) = depth(A) + 1

Remember that ∼ is the greatest fixed point of some operator GK. Since we
suppose image finiteness, GK is anti-continuous and

∼ =
⋂
n∈ω

∼n where ∼0 = Proc× Proc and ∼n+1 = GK(∼n)

17

Hennessy-Milner logic, ctd.

Remark: unfolding the definition of GK, we have:

P ∼n+1 Q iff ∀µ, P ′ (P
µ−−→ P ′ ⇒ ∃Q′ (Q

µ−−→ Q′ and P ′ ∼n Q′)) and conversely

We set Ln(P) = {A ∈ Ln : P
 A}. We prove by induction on n:

P ∼n Q ⇔ Ln(P) = Ln(Q)

Case n = 0. Notice that for every A ∈ L0 we have either JAK = ∅ or JAK = Proc.
It follows that P ∈ JAK iff Q ∈ JAK for arbitrary P,Q.

18

Hennessy-Milner logic, ctd.

P 6∼n+1 Q ⇒ Ln+1(P) 6= Ln+1(Q).

Since P 6∼n+1 Q there exists µ, P ′ such that P
µ−−→ P ′ and for all Q′

1, . . . , Q
′
k

(we are using image-finiteness) such that Q
µ−−→ Q′

i we have P ′ 6∼n Q′
i for all

i ≤ k.

Now Ln(P ′) 6= Ln(Q′
i) by induction. Hence there exists Ai ∈ Ln(P ′)\Ln(Q′

i)
or there exists Bi ∈ Ln(Q′

i)\Ln(P ′). But in the latter case we can take
Ai = ¬Bi, hence we may assume that there exists Ai ∈ Ln(P ′)\Ln(Q′

i). Let
A = A1 ∧ · · · ∧Ak.

Then P ′
 A, and since Q′
i 6
 Ai we have Q′

i 6
 A for all i. It follows that
P
 〈µ〉A and Q 6
 〈µ〉A.

19

Hennessy-Milner logic, ctd.

P ∼n+1 Q ⇒ Ln+1(P) = Ln+1(Q).

Let A ∈ Ln+1(P). We proceed by structural induction on A. The only non trivial
case is A = 〈µ〉B.

Since P
 A there exists µ, P ′ such that P
µ−−→ P ′ and P ′
 B. By the

hypothesis that P ∼n+1 Q, there exists Q′ such that Q
µ−−→ Q′ and P ′ ∼n Q′.

By induction, since B ∈ Ln we get Q′
 B and hence A ∈ Ln+1(Q).

20

