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How can we tell the difference?

Which of the (one-shot) vending machines do you want in your office?

V1 = coin.coffe + coin.tea

V2 = coin.(coffe + tea)

V3 = coin + coin.(coffe + tea)

V4 = coin.coffe + coin.(coffe + tea)

V5 = coin.(coffe + tea) + coin.(coffe + tea)

Chosing requires a deeper understanding of nondeterminism.
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Answer 1: any will do

Intuition: all the automatas accepts a coin and give back a tea or a coffe.

Definition σ ∈ Act∗ is a trace of a process P , denoted P
σ−−→, if

• σ = ε, or

• σ = µ.σ′ and there exists Q such that P
µ−−→ Q and σ′ is a trace for Q.

Definition Let T (P ) be the set of all the traces of P . Two processes P and Q
are trace equivalent, denoted P =T Q, if T (P ) = T (Q).

Example: the processes V1 . . . V5 are all trace equivalent.
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Answer 2: any will do, except V3

Intuition: V3 might ”eat” a coin.

Definition σ ∈ Act∗ is a completed trace of a process P if P
σ−−→ 0.

Definition Let CT (P ) be the set of all the completed traces of P . Two processes
P and Q are completed trace equivalent, denoted P =CT Q, if CT (P ) = CT (Q).

Example: the processes V1, V2, V4, V5 are completed trace equivalent. They are
not completed trace equivalent to V3.
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Answer 3: in V1 something looks fishy

Intuition: V1 does not let me the choice after accepting a coin.

Definition (σ,X) ∈ Act∗ × P(Act) is a failure pair of a process P if there is a

process Q such that P
σ−−→ Q and forall µ ∈ X, Q 6 µ−−→.

Definition Let F(P ) be the set of all the failure pairs of P . Two processes P
and Q are failures equivalent, denoted P =F Q, if F(P ) = F(Q).

Exercise: which of V1, . . . , V5 are failures equivalent?
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Answer 4: let’s play a game

1. We choose two automatas (I play with P = Vi, you with Q = Vj).

2. If I cannot play a transition P
µ−−→ P ′ you win.

Otherwise I play a transition P
µ−−→ P ′.

(a) If you cannot reply with a transition Q
µ−−→ Q′ for some Q′ I win,

(b) Otherwise you play Q
µ−−→ Q′, and we go back to 2. with P = P ′ and

Q = Q′.

If you can reliably win, then we say that Vj simulates Vi.
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Simulation, formally

Definition: a simulation is a binary relation R on the set of processes such that
for all P,Q, if P R Q then

∀µ, P ′, P
µ−−→ P ′ ⇒ ∃Q′, Q

µ−−→ Q′ and P ′ R Q′ .

We say that Q simulates P if there exists a simulation R such that P R Q.

Exercise: are there simulations among V1, . . . , V5?

Question: why did we introduce this notion?
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Answer 5: let’s play another game

1. We choose two automatas P = Vi and Q = Vj.

2. I choose either P or Q.
(in what follows suppose I chosed P – similarly for Q).

3. If I cannot play a transition P
µ−−→ P ′ you win.

Otherwise I play a transition P
µ−−→ P ′.

(a) If you cannot reply with a transition Q
µ−−→ Q′ for some Q′ I win,

(b) Otherwise you play Q
µ−−→ Q′, and we go back to 2. with P = P ′ and

Q = Q′.

If you can reliably win, then we say that Vi and Vj are bisimilar.
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Bisimulation, formally

Definition: a bisimulation is a binary relation R on the set of processes such
that for all P,Q, if P R Q then

− ∀µ, P ′, P
µ−−→ P ′ ⇒ ∃Q′, Q

µ−−→ Q′ and P ′ R Q′ ;

− ∀µ,Q′, Q
µ−−→ Q′ ⇒ ∃P ′, P

µ−−→ P ′ and P ′ R Q′ .

We say that P and Q are bisimilar, denoted P ∼ Q, if there exists a bisimulation
R such that P R Q.

The relation ∼, defined as the union of all the bisimulations, is the largest
bisimulation and (more on this later).
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Bisimulation, ctd.

Exercise: are there bisimulations among V1, . . . , V5?

Notation: R−1 = {(Q,P ) : P R Q}.

Alternative definition for bisimulation: a bisimulation is a binary relation R on
the set of processes such that R and R−1 are simulations.

Remark: P simulates Q and Q simulates P does not imply that P and Q are
bisimilar!

Exercise: find an example to validate the remark above.
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Properties of bisimilarity

Theorem: Bisimilarity ∼ is an equivalence relation.

Exercise: Prove the theorem above.

Question: does bisimilarity exists?

To answer to this question, we need some mathematics...
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Monotonous functions

A function f : D 7→ E, where D, E are partial orders, is monotonous if

∀ x, y x ≤ y ⇒ f(x) ≤ f(y)

Given a monotonous f : D 7→ D:

• a prefixpoint of f is a point x such that f(x) ≤ x;

• a postfixpoint of f is a point x such that x ≤ f(x);

• a fixpoint of f is a point x such that x = f(x);
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Monotonous functions, ctd.

Any monotonous function G : P(A) 7→ P(A) has

• a least prefixpoint, which is moreover a fixpoint, and

• a greatest postfixpoint, which is moreover a fixpoint.

They are respectively (Knaster-Tarsky):

lfp(G) =
⋂
{R : G(R) ⊆ R}

gfp(G) =
⋃
{R : R ⊆ G(R)}
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Inductively defined sets via rules

A rule instance comprises its premises and a conclusion:

x1, x2, . . .

y
also written (X, y)

Intuition: if the premises x1, x2, . . . are in the set being defined, then so is the
conclusion y. We look for the least set with this property.

13



Inductively defined sets

Given a set A, let K be a set of rules each of the form (X, y) for X ⊆ A and x ∈ A.

Definition: We say a set Q is K-closed iff

∀(X, y) ∈ K, (X ⊆ Q ⇒ y ∈ Q) .

Now K defines a monotonous operator G : P(A) → P(A):

GK(R) = {y ∈ A : ∃(X, y) ∈ K and X ⊆ R} .

Remark: the prefixpoints of GK are exactly the K-closed sets.

The inductively defined set of K is the least K-closed set, or:

lfp(G) =
⋂
{Q : Q is K-closed } =

⋂
{Q : GK(Q) ⊆ Q} .
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Coinductively defined sets

Given a set A, let K be a set of rules each of the form (X, y) for X ⊆ A and x ∈ A.

Definition: We say a set Q is K-closed backward iff

∀x ∈ Q, ∃(Y, x) ∈ K Y ⊆ R

Remark: the postfixpoints of GK are exactly the K-closed backward sets.

The coinductively defined set of K is the greatest K-closed backward set, or:

gfp(G) =
⋃
{Q : Q is K-closed backward} =

⋃
{Q : Q ⊆ GK(Q)} .
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Bisimilarity as coinductively defined set

Bisimulation is defined by a set of rules: take K to be the set of all

{(P ′, f(µ, P ′)) : P
µ−−→ P ′} ∪ {(g(µ,Q′), Q′) : Q

µ−−→ Q′}
(P,Q)

where

• f is any function mapping each pair (µ, P ′) such that P
µ−−→ P ′ to a process

f(µ, P ′) such that Q
µ−−→ f(µ, P ′);

• g is any function mapping each pair (µ,Q′) such that Q
µ−−→ Q′ to a process

g(µ,Q′) such that P
µ−−→ g(µ,Q′).
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Bisimilarity is a congruence

Define ∼̂ inductively by the following rules:

P ∼ Q

P ∼̂ Q

P ∼̂ Q

Q ∼̂ P

P ∼̂ Q Q ∼̂ R

P ∼̂ R

∀i ∈ I Pi ∼̂ Qi

Σi∈Iµi.Pi ∼̂ Σi∈Iµi.Qi

P1 ∼̂ Q1 P2 ∼̂ Q2

P1

f
P2 ∼̂ Q1

f
Q2

P ∼̂ Q

(νa)P ∼̂ (νa)Q

By construction ∼ ⊆ ∼̂ and ∼̂ is a congruence. It is enough to show that ∼̂ is a
bisimulation (which implies ∼̂ ⊆ ∼).
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Bisimulation is a congruence, ctd.

Proof by rule induction. We detail the case P1

f
P2 ∼̂ Q1

f
Q2.

• (backward) decomposition phase: if P1

f
P2

µ−−→ P ′, then P ′ = P ′
1

f
P ′

2 and
three cases may occur, corresponding to the three rules for parallel composition
is the labelled operational semantics. We only consider the synchronisation

case. If P1
a−−→ P ′

1 and P2
a−−→ P ′

2, then

• by induction there exists Q′
1 such that Q1

a−−→ Q′
1 and P ′

1 ∼̂ Q′
1, and there

exists Q′
2 such that Q2

a−−→ Q′
2 and P ′

2 ∼̂ Q′
2.

• Hence (forward phase) we have Q1

f
Q2

τ−−→ Q′
1

f
Q′

2 and P ′
1

f
P ′

2 ∼̂
Q′

1

f
Q′

2.
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Bisimulation is a congruence, ctd. (recursion)

Proposition: for any process S with free variables in ~K :

∀ ~Q, ~Q′ ( ~Q ∼ ~Q′ ⇒ S[ ~K → ~Q ] ∼ S[ ~K → ~Q ])

Exercise: prove it. Hint: the proof is by induction on the size of S. The non-recursion cases

follow by congruence. For the recursive definition case S = let ~L = ~P in Lj, the trick is to

unfold...
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Exercises

1. Show that structural congruence ≡ implies bisimilarity ∼.

2. Consider the processes H(a) and K(a) defined by H(x) = x.H(x) and
K(x) = x.K(x)

f
x.K(x). Are they bisimilar?

3. Prove that P + P ∼ P but (in general) P
f

P 6∼ P .

4. Which is the smallest bisimulation?
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Proof techniques for bisimulation

A bisimulation up-to ∼ is a relation R such that for all P,Q:

P R Q ⇒ ∀µ, P ′ (P
µ−−→ P ′ ⇒ ∃Q′ Q

µ−−→ Q′ and P ′ ∼R∼ Q′)

and conversely.

Exercise: prove that if R is a strong bisimulation up-to ∼, then R ⊆ ∼.

Hence to show P ∼ Q it is enough to find a bisimulation up-to ∼ such that
P R Q.
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Semaphores, again

Sem = P.Sem′ Sem0 = P.Sem1

Sem′ = V.Sem Sem1 = P.Sem2 + V.Sem0

Sem2 = P.Sem3 + V.Sem1

Sem3 = V.Sem2

Using the up to ∼ proof technique, we can show that

Sem
n

Sem
n

Sem ∼ Sem0

by exhibiting the simple relation:

{ (Sem
f
Sem

f
Sem , Sem0) ; (Sem′

f
Sem

f
Sem , Sem1) ;

(Sem′
f
Sem′

f
Sem , Sem2) ; (Sem′

f
Sem′

f
Sem′ , Sem3) }
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The big plan

From ”The linear time–branching time spectrum”, Glaabbek
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Think about which semantics you are interested in!

Suppose that an high-level language L is compiled into a target language T using
cryptographic logs to ensure some security property in presence of attackers.

Theorem: Given a trace φ in the target language T,

1. there exists a corresponding trace in the source language L, or

2. the trace φ can be extended into a trace that ends with the discovery of the
attacker.

In this case, reasoning with traces captures exactly the security property we are
interested in!
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Think about which semantics you are interested in! (ctd.)

Consider
P = a.b.c + a.b Q = a.(b.c + b)

These processes are

• equated by the failure semantics,
• but are told apart by bisimilarity.

We might want to consider these processes as equivalent, as in both cases it is
the process that choses if the action c will be available, not the environment.

However, the proof techniques associated with bisimilarity are a big win with
respect to failure semantics, and we are ready to take bisimilarity as our reference
equivalence.
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In general, we are interested in “weaker” semantics

Consider:
P = a.b.P + b.a.P Q = a.b.τ.Q + b.a.τ.Q

We might want to identify these processes, for instance if the τ reductions of Q
correspond to uninteresting implementation details.

Question: Is it possible to give a semantics to CCS that abstracts from internal
reductions?
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One step backward: comparing paths

For any LTS, one can change Act to Act∗ (words of actions), setting

P
s−−→ Q if

{
s = µ1, . . . , µn and

∃P1, . . . , Pn (Pn = Q and P
µ1−−−→ P1 . . .

µn−−−→ Pn)

This yields a new LTS, call it LTS∗ (the path LTS).

Then the notions of LTS and of LTS∗ bisimulation coincide.
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From strong to weak bisimulation

Take the LTS of CCS, with Act = L ∪ L ∪ {τ}, call it strong. The bisimulation
for this system is called strong bisimulation. Take Strong∗ (its path LTS).

Consider the following LTS, call it Weak†, with the same set of actions as
Strong∗:

P
s=⇒ Q if and only if ∃t P

t−−→ Q and ŝ = t̂

where the function s 7→ ŝ is defined as follows:

ε̂ = ε τ̂ = ε α̂ = α ŝµ = ŝµ̂

The idea is that weak bisimulation is bisimulation with possibly τ actions
intersperced.
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From strong to weak bisimulation, ctd.

Let Weak be the LTS on Act whose transitions are P
µ

=⇒ Q, that is:

P
τ=⇒ Q iff P

τ−−→ ∗Q P
α=⇒ Q iff P

τ−−→ ∗ α−−→ τ−−→ ∗Q

It holds Weak† = Weak?.

Unfortunately, none of the three equivalent definition of weak bisimulation
obtained from the LTS’s (Weak, Weak†, Weak?) is practical.
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From strong to weak bisimulation, ctd.

A weak bisimulation is a relation R such that

P R Q ⇒ ∀µ, P ′ (P
µ−−→ P ′ ⇒ ∃Q′ Q

µ
=⇒ Q′ and P ′ R Q′)

and conversely.

(Note the dissimetry between the use of
µ−−→ on the left and of

µ
=⇒ on the right.)

Two processes are weakly bisimilar, denoted P ≈ Q if there exists a weak
bisimulation R such that P R Q.

Let weak bisimilarity be the largest weak bisimulation.
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Weak bisimulation is a congruence

Weak bisimilarity is also a congruence (for our choice of language with guarded
sums).

Same proof technique of the strong case: define ≈̂. For the forward phase, we
use the following properties:

(P
µ

=⇒ P ′) ⇒ ((νa)P
µ

=⇒ ((νa)Q′) for µ 6= a, a

(Q1
µ

=⇒ Q′
1) ⇒ (Q1

f
Q2

µ
=⇒ Q′

1

f
Q′

2)

(Q1
a=⇒ Q′

1 and Q2
α=⇒ Q′

2) ⇒ (Q1

f
Q2

τ=⇒ Q′
1

f
Q′

2)

Exercise: Prove it.
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Next lecture

I will be away (ICFP), so James Leifer (Moscova research team, INRIA) will talk
about

• much more on weak semantics;

• axiomatizations;

• powerful proof techniques;

• amazing examples.

Do not miss his lecture!
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