
Concurrency theory

Equivalences

Francesco Zappa Nardelli

INRIA Rocquencourt, MOSCOVA research team

francesco.zappa nardelli@inria.fr

together with

Frank Valencia (INRIA Futurs) Catuscia Palamidessi (INRIA Futurs) Roberto Amadio (PPS)

MPRI - Concurrency September 24, 2007

How can we tell the difference?

Which of the (one-shot) vending machines do you want in your office?

V1 = coin.coffe + coin.tea

V2 = coin.(coffe + tea)

V3 = coin + coin.(coffe + tea)

V4 = coin.coffe + coin.(coffe + tea)

V5 = coin.(coffe + tea) + coin.(coffe + tea)

Chosing requires a deeper understanding of nondeterminism.

1

Answer 1: any will do

Intuition: all the automatas accepts a coin and give back a tea or a coffe.

Definition σ ∈ Act∗ is a trace of a process P , denoted P
σ−−→, if

• σ = ε, or

• σ = µ.σ′ and there exists Q such that P
µ−−→ Q and σ′ is a trace for Q.

Definition Let T (P) be the set of all the traces of P . Two processes P and Q
are trace equivalent, denoted P =T Q, if T (P) = T (Q).

Example: the processes V1 . . . V5 are all trace equivalent.

2

Answer 2: any will do, except V3

Intuition: V3 might ”eat” a coin.

Definition σ ∈ Act∗ is a completed trace of a process P if P
σ−−→ 0.

Definition Let CT (P) be the set of all the completed traces of P . Two processes
P and Q are completed trace equivalent, denoted P =CT Q, if CT (P) = CT (Q).

Example: the processes V1, V2, V4, V5 are completed trace equivalent. They are
not completed trace equivalent to V3.

3

Answer 3: in V1 something looks fishy

Intuition: V1 does not let me the choice after accepting a coin.

Definition (σ,X) ∈ Act∗ × P(Act) is a failure pair of a process P if there is a

process Q such that P
σ−−→ Q and forall µ ∈ X, Q 6 µ−−→.

Definition Let F(P) be the set of all the failure pairs of P . Two processes P
and Q are failures equivalent, denoted P =F Q, if F(P) = F(Q).

Exercise: which of V1, . . . , V5 are failures equivalent?

4

Answer 4: let’s play a game

1. We choose two automatas (I play with P = Vi, you with Q = Vj).

2. If I cannot play a transition P
µ−−→ P ′ you win.

Otherwise I play a transition P
µ−−→ P ′.

(a) If you cannot reply with a transition Q
µ−−→ Q′ for some Q′ I win,

(b) Otherwise you play Q
µ−−→ Q′, and we go back to 2. with P = P ′ and

Q = Q′.

If you can reliably win, then we say that Vj simulates Vi.

5

Simulation, formally

Definition: a simulation is a binary relation R on the set of processes such that
for all P,Q, if P R Q then

∀µ, P ′, P
µ−−→ P ′ ⇒ ∃Q′, Q

µ−−→ Q′ and P ′ R Q′ .

We say that Q simulates P if there exists a simulation R such that P R Q.

Exercise: are there simulations among V1, . . . , V5?

Question: why did we introduce this notion?

6

Answer 5: let’s play another game

1. We choose two automatas P = Vi and Q = Vj.

2. I choose either P or Q.
(in what follows suppose I chosed P – similarly for Q).

3. If I cannot play a transition P
µ−−→ P ′ you win.

Otherwise I play a transition P
µ−−→ P ′.

(a) If you cannot reply with a transition Q
µ−−→ Q′ for some Q′ I win,

(b) Otherwise you play Q
µ−−→ Q′, and we go back to 2. with P = P ′ and

Q = Q′.

If you can reliably win, then we say that Vi and Vj are bisimilar.

7

Bisimulation, formally

Definition: a bisimulation is a binary relation R on the set of processes such
that for all P,Q, if P R Q then

− ∀µ, P ′, P
µ−−→ P ′ ⇒ ∃Q′, Q

µ−−→ Q′ and P ′ R Q′ ;

− ∀µ,Q′, Q
µ−−→ Q′ ⇒ ∃P ′, P

µ−−→ P ′ and P ′ R Q′ .

We say that P and Q are bisimilar, denoted P ∼ Q, if there exists a bisimulation
R such that P R Q.

The relation ∼, defined as the union of all the bisimulations, is the largest
bisimulation and (more on this later).

8

Bisimulation, ctd.

Exercise: are there bisimulations among V1, . . . , V5?

Notation: R−1 = {(Q,P) : P R Q}.

Alternative definition for bisimulation: a bisimulation is a binary relation R on
the set of processes such that R and R−1 are simulations.

Remark: P simulates Q and Q simulates P does not imply that P and Q are
bisimilar!

Exercise: find an example to validate the remark above.

9

Properties of bisimilarity

Theorem: Bisimilarity ∼ is an equivalence relation.

Exercise: Prove the theorem above.

Question: does bisimilarity exists?

To answer to this question, we need some mathematics...

10

Monotonous functions

A function f : D 7→ E, where D, E are partial orders, is monotonous if

∀ x, y x ≤ y ⇒ f(x) ≤ f(y)

Given a monotonous f : D 7→ D:

• a prefixpoint of f is a point x such that f(x) ≤ x;

• a postfixpoint of f is a point x such that x ≤ f(x);

• a fixpoint of f is a point x such that x = f(x);

11

Monotonous functions, ctd.

Any monotonous function G : P(A) 7→ P(A) has

• a least prefixpoint, which is moreover a fixpoint, and

• a greatest postfixpoint, which is moreover a fixpoint.

They are respectively (Knaster-Tarsky):

lfp(G) =
⋂
{R : G(R) ⊆ R}

gfp(G) =
⋃
{R : R ⊆ G(R)}

12

Inductively defined sets via rules

A rule instance comprises its premises and a conclusion:

x1, x2, . . .

y
also written (X, y)

Intuition: if the premises x1, x2, . . . are in the set being defined, then so is the
conclusion y. We look for the least set with this property.

13

Inductively defined sets

Given a set A, let K be a set of rules each of the form (X, y) for X ⊆ A and x ∈ A.

Definition: We say a set Q is K-closed iff

∀(X, y) ∈ K, (X ⊆ Q ⇒ y ∈ Q) .

Now K defines a monotonous operator G : P(A) → P(A):

GK(R) = {y ∈ A : ∃(X, y) ∈ K and X ⊆ R} .

Remark: the prefixpoints of GK are exactly the K-closed sets.

The inductively defined set of K is the least K-closed set, or:

lfp(G) =
⋂
{Q : Q is K-closed } =

⋂
{Q : GK(Q) ⊆ Q} .

14

Coinductively defined sets

Given a set A, let K be a set of rules each of the form (X, y) for X ⊆ A and x ∈ A.

Definition: We say a set Q is K-closed backward iff

∀x ∈ Q, ∃(Y, x) ∈ K Y ⊆ R

Remark: the postfixpoints of GK are exactly the K-closed backward sets.

The coinductively defined set of K is the greatest K-closed backward set, or:

gfp(G) =
⋃
{Q : Q is K-closed backward} =

⋃
{Q : Q ⊆ GK(Q)} .

15

Bisimilarity as coinductively defined set

Bisimulation is defined by a set of rules: take K to be the set of all

{(P ′, f(µ, P ′)) : P
µ−−→ P ′} ∪ {(g(µ,Q′), Q′) : Q

µ−−→ Q′}
(P,Q)

where

• f is any function mapping each pair (µ, P ′) such that P
µ−−→ P ′ to a process

f(µ, P ′) such that Q
µ−−→ f(µ, P ′);

• g is any function mapping each pair (µ,Q′) such that Q
µ−−→ Q′ to a process

g(µ,Q′) such that P
µ−−→ g(µ,Q′).

16

Bisimilarity is a congruence

Define ∼̂ inductively by the following rules:

P ∼ Q

P ∼̂ Q

P ∼̂ Q

Q ∼̂ P

P ∼̂ Q Q ∼̂ R

P ∼̂ R

∀i ∈ I Pi ∼̂ Qi

Σi∈Iµi.Pi ∼̂ Σi∈Iµi.Qi

P1 ∼̂ Q1 P2 ∼̂ Q2

P1

f
P2 ∼̂ Q1

f
Q2

P ∼̂ Q

(νa)P ∼̂ (νa)Q

By construction ∼ ⊆ ∼̂ and ∼̂ is a congruence. It is enough to show that ∼̂ is a
bisimulation (which implies ∼̂ ⊆ ∼).

17

Bisimulation is a congruence, ctd.

Proof by rule induction. We detail the case P1

f
P2 ∼̂ Q1

f
Q2.

• (backward) decomposition phase: if P1

f
P2

µ−−→ P ′, then P ′ = P ′
1

f
P ′

2 and
three cases may occur, corresponding to the three rules for parallel composition
is the labelled operational semantics. We only consider the synchronisation

case. If P1
a−−→ P ′

1 and P2
a−−→ P ′

2, then

• by induction there exists Q′
1 such that Q1

a−−→ Q′
1 and P ′

1 ∼̂ Q′
1, and there

exists Q′
2 such that Q2

a−−→ Q′
2 and P ′

2 ∼̂ Q′
2.

• Hence (forward phase) we have Q1

f
Q2

τ−−→ Q′
1

f
Q′

2 and P ′
1

f
P ′

2 ∼̂
Q′

1

f
Q′

2.

18

Bisimulation is a congruence, ctd. (recursion)

Proposition: for any process S with free variables in ~K :

∀ ~Q, ~Q′ (~Q ∼ ~Q′ ⇒ S[~K → ~Q] ∼ S[~K → ~Q])

Exercise: prove it. Hint: the proof is by induction on the size of S. The non-recursion cases

follow by congruence. For the recursive definition case S = let ~L = ~P in Lj, the trick is to

unfold...

19

Exercises

1. Show that structural congruence ≡ implies bisimilarity ∼.

2. Consider the processes H(a) and K(a) defined by H(x) = x.H(x) and
K(x) = x.K(x)

f
x.K(x). Are they bisimilar?

3. Prove that P + P ∼ P but (in general) P
f

P 6∼ P .

4. Which is the smallest bisimulation?

20

Proof techniques for bisimulation

A bisimulation up-to ∼ is a relation R such that for all P,Q:

P R Q ⇒ ∀µ, P ′ (P
µ−−→ P ′ ⇒ ∃Q′ Q

µ−−→ Q′ and P ′ ∼R∼ Q′)

and conversely.

Exercise: prove that if R is a strong bisimulation up-to ∼, then R ⊆ ∼.

Hence to show P ∼ Q it is enough to find a bisimulation up-to ∼ such that
P R Q.

21

Semaphores, again

Sem = P.Sem′ Sem0 = P.Sem1

Sem′ = V.Sem Sem1 = P.Sem2 + V.Sem0

Sem2 = P.Sem3 + V.Sem1

Sem3 = V.Sem2

Using the up to ∼ proof technique, we can show that

Sem
n

Sem
n

Sem ∼ Sem0

by exhibiting the simple relation:

{ (Sem
f
Sem

f
Sem , Sem0) ; (Sem′

f
Sem

f
Sem , Sem1) ;

(Sem′
f
Sem′

f
Sem , Sem2) ; (Sem′

f
Sem′

f
Sem′ , Sem3) }

22

The big plan

From ”The linear time–branching time spectrum”, Glaabbek

23

Think about which semantics you are interested in!

Suppose that an high-level language L is compiled into a target language T using
cryptographic logs to ensure some security property in presence of attackers.

Theorem: Given a trace φ in the target language T,

1. there exists a corresponding trace in the source language L, or

2. the trace φ can be extended into a trace that ends with the discovery of the
attacker.

In this case, reasoning with traces captures exactly the security property we are
interested in!

24

Think about which semantics you are interested in! (ctd.)

Consider
P = a.b.c + a.b Q = a.(b.c + b)

These processes are

• equated by the failure semantics,
• but are told apart by bisimilarity.

We might want to consider these processes as equivalent, as in both cases it is
the process that choses if the action c will be available, not the environment.

However, the proof techniques associated with bisimilarity are a big win with
respect to failure semantics, and we are ready to take bisimilarity as our reference
equivalence.

25

In general, we are interested in “weaker” semantics

Consider:
P = a.b.P + b.a.P Q = a.b.τ.Q + b.a.τ.Q

We might want to identify these processes, for instance if the τ reductions of Q
correspond to uninteresting implementation details.

Question: Is it possible to give a semantics to CCS that abstracts from internal
reductions?

26

One step backward: comparing paths

For any LTS, one can change Act to Act∗ (words of actions), setting

P
s−−→ Q if

{
s = µ1, . . . , µn and

∃P1, . . . , Pn (Pn = Q and P
µ1−−−→ P1 . . .

µn−−−→ Pn)

This yields a new LTS, call it LTS∗ (the path LTS).

Then the notions of LTS and of LTS∗ bisimulation coincide.

27

From strong to weak bisimulation

Take the LTS of CCS, with Act = L ∪ L ∪ {τ}, call it strong. The bisimulation
for this system is called strong bisimulation. Take Strong∗ (its path LTS).

Consider the following LTS, call it Weak†, with the same set of actions as
Strong∗:

P
s=⇒ Q if and only if ∃t P

t−−→ Q and ŝ = t̂

where the function s 7→ ŝ is defined as follows:

ε̂ = ε τ̂ = ε α̂ = α ŝµ = ŝµ̂

The idea is that weak bisimulation is bisimulation with possibly τ actions
intersperced.

28

From strong to weak bisimulation, ctd.

Let Weak be the LTS on Act whose transitions are P
µ

=⇒ Q, that is:

P
τ=⇒ Q iff P

τ−−→ ∗Q P
α=⇒ Q iff P

τ−−→ ∗ α−−→ τ−−→ ∗Q

It holds Weak† = Weak?.

Unfortunately, none of the three equivalent definition of weak bisimulation
obtained from the LTS’s (Weak, Weak†, Weak?) is practical.

29

From strong to weak bisimulation, ctd.

A weak bisimulation is a relation R such that

P R Q ⇒ ∀µ, P ′ (P
µ−−→ P ′ ⇒ ∃Q′ Q

µ
=⇒ Q′ and P ′ R Q′)

and conversely.

(Note the dissimetry between the use of
µ−−→ on the left and of

µ
=⇒ on the right.)

Two processes are weakly bisimilar, denoted P ≈ Q if there exists a weak
bisimulation R such that P R Q.

Let weak bisimilarity be the largest weak bisimulation.

30

Weak bisimulation is a congruence

Weak bisimilarity is also a congruence (for our choice of language with guarded
sums).

Same proof technique of the strong case: define ≈̂. For the forward phase, we
use the following properties:

(P
µ

=⇒ P ′) ⇒ ((νa)P
µ

=⇒ ((νa)Q′) for µ 6= a, a

(Q1
µ

=⇒ Q′
1) ⇒ (Q1

f
Q2

µ
=⇒ Q′

1

f
Q′

2)

(Q1
a=⇒ Q′

1 and Q2
α=⇒ Q′

2) ⇒ (Q1

f
Q2

τ=⇒ Q′
1

f
Q′

2)

Exercise: Prove it.

31

Next lecture

I will be away (ICFP), so James Leifer (Moscova research team, INRIA) will talk
about

• much more on weak semantics;

• axiomatizations;

• powerful proof techniques;

• amazing examples.

Do not miss his lecture!

32

