
Pi-calculus

types, bestiary

Francesco Zappa Nardelli

INRIA Rocquencourt, MOSCOVA research team

francesco.zappa nardelli@inria.fr

MPRI Concurrency course with:

Pierre-Louis Curien (PPS), Roberto Amadio (PPS), Catuscia Palamidessi (INRIA Futurs)

MPRI - Concurrency November 10, 2006



Plan (first part of the lecture)

Objective:

reason about concurrent systems using types.

Plan:

1. Types to prevent run-tme errors:

simply-typed pi-calculus, soundness, subtyping;

2. Types to reason about processes:

typed equivalences, a labelled characterisation.

1



Types and sequential languages

In sequential languages, types are “widely” used:

• to detect simple programming errors at compilation time;

• to perform optimisations in compilers;

• to aid the structure and design of systems;

• to compile modules separately;

• to reason about programs;

• ahem, etc...

2



Data types and pi-calculus

In pi-calculus, the only values are names. We now extend pi-calculus with base
values of type int and bool, and with tuples.

Unfortunately (?!) this allows writing terms which make no sense, as

x〈true〉.P
n

x(y).z〈y + 1〉

or (even worse)

x〈true〉.P
n

x(y).y〈4〉 .

These terms raise runtime errors, a concept you should be familiar with.

3



Preventing runtime errors

We know that 3 : int and true : bool.

Names are values (they denote channels). Question: in the term

P ≡ x〈3〉.P ′

which type can we assign to x?

Idea: state that x is a channel that can transport values of type int. Formally

x : ch(int) .

A complete type system can be developed along these lines...

4



Simply-typed pi-calculus: syntax and reduction semantics

Types:
T ::= ch(T )

∣∣ T × T
∣∣ unit

∣∣ int
∣∣ bool

Terms (messages and processes):

M ::= x
∣∣ (M,M)

∣∣ ()
∣∣ 1, 2, ...

∣∣ true
∣∣ false

P ::= 0
∣∣ x(y : T ).P

∣∣ x〈M〉.P
∣∣ P

f
P

∣∣ (νx : T )P∣∣ match z with (x : T1, y : T2) in P
∣∣ !P

Notation: we write w(x, y).P for w(z : T1 × T2).match z with (x : T1, y : T2) in P .

5



Simply-typed pi-calculus: the type system

Type environment: Γ ::= ∅
∣∣ Γ, x:T .

Type judgements:

• Γ ` M : T value M has type T under the type assignement for names Γ;

• Γ ` P process P respects the type assignement for names Γ.

6



Simply-typed pi-calculus: the type rules (excerpt)

Messages:

3 : int
Γ(x) = T

Γ ` x : T

Γ ` M1 : T1 Γ ` M2 : T2

Γ ` (M1,M2) : T1 × T2

Processes:

Γ ` 0
Γ ` P1 Γ ` P2

Γ ` P1

f
P2

Γ, x:T ` P

Γ ` (νx : T )P

Γ ` x : ch(T ) Γ, y:T ` P

Γ ` x(y : T ).P

Γ ` x : ch(T ) Γ ` M : T Γ ` P

Γ ` x〈M〉.P

7



Soundness

The soundness of the type system can be proved along the lines of Wright and
Felleisen’s syntactic approach to type soundness.

• extend the syntax with the wrong process, and add reduction rules to capture
runtime errors:

where x is not a name

x〈M〉.P τ−−→ wrong

where x is not a name

x(y:T ).P τ−−→ wrong

• prove that if Γ ` P , with Γ closed, and P _∗ P ′, then P ′ does not have
wrong as a subterm.

8



Soundness, ctd.

Lemma Suppose that Γ ` P , Γ(x) = T , Γ ` v : T . Then Γ ` P{v/x}.

Proof. Induction on the derivation of Γ ` P .

Theorem Suppose Γ ` P , and P
α−−→ P ′.

1. If α = τ then Γ ` P ′.

2. If α = a(v) then there is T such that Γ ` a : ch(T ) and if Γ ` v : T then
Γ ` P ′.

3. If α = (νx̃ : S̃)a〈v〉 then there is T such that Γ ` a : ch(T ), Γ, x̃ : S̃ ` v : T ,
Γ, x̃ : S̃ ` P ′, and each component of S̃ is a link type.

Proof. At the blackboard.

9



Subtyping

Idea: refine the type of channels ch(T ) into

i(T ) input (read) capability
o(T ) output (write) capability

This form a basis for subtyping.

Example: the term

x : o(o(T )) ` (νy : ch(T )) x〈y〉.!y(z : T )

is well-typed because ch(T ) <: o(T ). Effect: well-typed contexts cannot interfere
with the existing input, because they can only write at channel y.

10



The subtyping relation, formally

– is a preorder

T <: T
T1 <: T2 T2 <: T3

T1 <: T3

– capabilities can be forgotten

ch(T ) <: i(T ) ch(T ) <: o(T )

– i is a covariant type constructor, o is contravariant, ch is invariant

T1 <: T2

i(T1) <: i(T2)

T2 <: T1

o(T1) <: o(T2)

T2 <: T1 T1 <: T2

ch(T1) <: ch(T2)

11



Subtyping, ctd.

Intuition: if x : o(T ) then it is safe to send along x values of of a subtype of T .
Dually, if x : i(T ) then it is safe to assume to assume that values received along
x belong to a supertype of T .

Type rules must be updated as follows:

Γ ` x : i(T ) Γ, y:T ` P

Γ ` x(y : T ).P

Γ ` x : o(T ) Γ ` M : T Γ ` P

Γ ` x〈M〉.P

Γ ` M : T1 T1 <: T2

Γ ` M : T2

12



Exercises

Show that:

1. a : ch(int), b : ch(real) ` a〈5〉
f

a(x).b〈x〉, assuming int <: real;

2. x : o(o(T )) ` (νy : ch(T ))(x〈y〉.!y(z))

3. x : o(o(T )), z : o(i(T )) ` (νy : ch(T ))(x〈y〉
f

z〈y〉)

4. b : ch(S), x : ch(i(S)), a : ch(o(i(S))) ` a〈x〉
f

x(y).y(z)
f

a(x).x〈b〉

13



Remarks on i/o types

– different processes may have different visibility of a name:

(νx : ch(T )) y〈x〉.z〈x〉.P
f

y(a : i(T )).Q
f

z(b : o(T )).R _ _

(νx : ch(T )) (P
f

Q{x/a}
f

R{x/b})

Q can only read from x, R can only write to x.

– acquiring the o and i capabilities on a name is different from acquiring ch:
the term

(νx : ch(unit)) y〈x〉.z〈x〉
n

y(a : i(unit)).z(b : o(unit)).a〈〉

is not well-typed.

14



Types for reasoning

Types can be seen as contracts between a process and its environment: the
environment must respect the constraints imposed by the typing discipline.

In turn, types reduce the number of legal contexts (and give us more process
equalities).

Example: an observer whose typing is

Γ = a : o(T ), b : T, c : T ′ T and T ′ unrelated

• can offer an output a〈b〉;

• cannot offer an output a〈c〉, or an input at a.

15



A “natural” contextual equivalence, informally

Definition (informal): The processes P and Q are equivalent in Γ, denoted

P ∼=Γ Q

iff Γ ` P,Q and they are equivalent in all the testing contexts that respect the
types in Γ.

To formalize this equivalence we need to type contexts, at the blackboard...

16



Semantic consequences of i/o types

Example: the processes

P = (νx)a〈x〉.x〈〉
Q = (νx)a〈x〉.0

and different in the untyped or simply-typed pi-calculus.

With i/o types, it holds that

P ∼=Γ Q for Γ = a : ch(o(unit))

because the residual x〈〉 of P is deadlocked (the context cannot read from x).

17



Semantic consequences of i/o types, ctd.

Specification and an implementation of the factorial function:

Spec = !f(x, r).r〈fact(x)〉
Imp = !f(x, r).if x = 0 then r〈1〉 else (νr′)f〈x− 1, r′〉.r′(m).r〈x ∗m〉

In general, Spec 6∼= Imp. (Why?)

With i/o types, we can protect the input end of the function, obtaining

(νf)a〈f〉.Spec ∼=Γ (νf)a〈f〉.Imp

for Γ = a : ch(o(int× o(int))).

18



Semantic consequences of i/o types, ctd.

P = (νx, y)(a〈x〉
n

a〈y〉
n

!x().R
n

!y().R)

Q = (νx)(a〈x〉
n

a〈x〉
n

!x().R)

In the untyped calculus P 6∼= Q: a context that tells them apart is

−
n

a(z1).a(z2).(z1().c〈〉
n

z2〈〉) .

With i/o types
P ∼=Γ Q for Γ = a : ch(o(unit)) .

Notation: I will often omit redundant type informations.

19



Exercise

1. Extend the syntax, the reduction semantics, and the type rules of pi-calculus
with i/o types with the nondeterministic sum operator, denoted +;

2. Show that the terms

P = b〈x〉.a(y).(y()
n

x〈〉)

Q = b〈x〉.a(y).(y().x〈〉+ x〈〉.y())

are not equivalent in the untyped calculus. Propose a i/o typing such that
P 'Γ Q.

20



References

Milner: The polyadic pi-calculus - a tutorial, ECS-LFCS-91-180.

Pierce, Sangiorgi: Typing and subtyping for mobile processes, LICS ’93.

Boreale, Sangiorgi: Bisimulation in name-passing calculi without matching, LICS
’98.

Sangiorgi, Walker: The pi-calculus, CUP.

...there is a large literature on the subject. The articles above have been reported because they

are explicitely mentioned in this lecture.

21



Navigating through the literature

Pi-calculus literature describes zillions of slightly different languages, semantics,
equivalencies.

Some slides for not getting lost.

22



Barbed congruence vs. reduction-closed barbed congruence

Let barbed equivalence, denoted ∼=•, be the largest symmetric relation that is
barb preserving and reduction closed. Barbed equivalence is not preserved by
context, so define barbed congruence, denoted ∼=c, as

{(P,Q) : C[P ] ∼=• C[Q] for every context C[-].}

• Barbed congruence is more natural and less discriminating than reduction-
closed barbed congruence (for pi-calculus processes).

• Completeness of bisimulation for image-finite processes holds with respect to
barbed congruence, but its proof requires transifinite induction.

23



Late bisimulation

Change the definition of the LTS:

x(y).P
x(y)−−−−→ P

P
x〈v〉−−−−→ P ′ Q

x(y)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

Q′{v/y}

and extend the definition of bisimulation with the clause: if P ≈l Q and

P
x(y)−−−−→ P ′, then there is Q′ such that Q

x(y)
=⇒ Q′ and for all v it holds

P ′{v/y} ≈l Q′{v/y}.

• Late bisimulation differs (slightly) from (early) bisimulation. More importantly,
the label x(y) does not denote an interacting context.

24



Ground bisimulation

Idea: play a standard bisimulation on the late LTS. Or,

Let ground bisimulation be the largest symmetric relation, ≈g, such that whenever

P ≈g Q, there is z 6∈ fn(P,Q) such that if P
α−−→ P ′ where α is x〈y〉 or x(z) or

(νz)x〈z〉 or τ , then Q
α̂=⇒≈g P ′.

Contrast it with bisimilarity: to establish x(z).P ≈ x(z).Q it is necessary to show
that P{v/z} ≈ Q{v/z} for all v. Ground bisimulation requires to test only a single,
fresh, name.

However, ground bisimilarity is less discriminating than bisimilarity, and it is not
preserved by composition (still, it is a reasonable equivalence for sublanguages of
pi-calculus).

25



Open bisimulation

Full bisimilarity is the closure of bisimilairty under substitutions, and is a
congruence with respect to all contexts. Unfortunately, full bisimilarity is not
defined co-inductively.

Question: can we give a co-inductive definition of a useful congruence?

Yes, with open bisimulation.

Idea: (on the restriction free calculus) let ./ be the largest symmetric relation such

that whenever P ./ Q and σ is a substitution, Pσ
α−−→ P ′ implies Qσ

α̂=⇒./ P ′.

It is possible to avoid the σ quantification by means of an appropriate LTS.

26



Subcalculi

Idea: In pi-calculus contexts have a great discriminating power. It may be useful
to consider other languages in which contexts ”observe less”, so that we have
more equations.

Asynchronous pi-calculus: no continuation after an output prefix.

Localized pi-calculus: given x(y).P , the name y is not used as subject of an
input prefix in P .

Private pi-calculus: only output of new names.

27



Conclusion: back to programming languages

Design choice:

bake into the definition of the language specific communication primitives?

• yes: Pict (Pierce et al.), NomadicPict (Sewell et al.), JoCaml (Moscova), ...

• no: Acute (Sewell et al., Moscova), ...

Some demos

...crossing fingers...

28


