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Plan (first part of the lecture)

Objective:

reason about concurrent systems using types.

Plan:

1. Types to prevent run-tme errors:

simply-typed pi-calculus, soundness, subtyping;

2. Types to reason about processes:

typed equivalences, a labelled characterisation.
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Types and sequential languages

In sequential languages, types are “widely” used:

• to detect simple programming errors at compilation time;

• to perform optimisations in compilers;

• to aid the structure and design of systems;

• to compile modules separately;

• to reason about programs;

• ahem, etc...
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Data types and pi-calculus

In pi-calculus, the only values are names. We now extend pi-calculus with base
values of type int and bool, and with tuples.

Unfortunately (?!) this allows writing terms which make no sense, as

x〈true〉.P
n

x(y).z〈y + 1〉

or (even worse)

x〈true〉.P
n

x(y).y〈4〉 .

These terms raise runtime errors, a concept you should be familiar with.
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Preventing runtime errors

We know that 3 : int and true : bool.

Names are values (they denote channels). Question: in the term

P ≡ x〈3〉.P ′

which type can we assign to x?

Idea: state that x is a channel that can transport values of type int. Formally

x : ch(int) .

A complete type system can be developed along these lines...
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Simply-typed pi-calculus: syntax and reduction semantics

Types:
T ::= ch(T )

∣∣ T × T
∣∣ unit

∣∣ int
∣∣ bool

Terms (messages and processes):

M ::= x
∣∣ (M,M)

∣∣ ()
∣∣ 1, 2, ...

∣∣ true
∣∣ false

P ::= 0
∣∣ x(y : T ).P

∣∣ x〈M〉.P
∣∣ P

f
P

∣∣ (νx : T )P∣∣ match z with (x : T1, y : T2) in P
∣∣ !P

Notation: we write w(x, y).P for w(z : T1 × T2).match z with (x : T1, y : T2) in P .
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Simply-typed pi-calculus: the type system

Type environment: Γ ::= ∅
∣∣ Γ, x:T .

Type judgements:

• Γ ` M : T value M has type T under the type assignement for names Γ;

• Γ ` P process P respects the type assignement for names Γ.
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Simply-typed pi-calculus: the type rules (excerpt)

Messages:

3 : int
Γ(x) = T

Γ ` x : T

Γ ` M1 : T1 Γ ` M2 : T2

Γ ` (M1,M2) : T1 × T2

Processes:

Γ ` 0
Γ ` P1 Γ ` P2

Γ ` P1

f
P2

Γ, x:T ` P

Γ ` (νx : T )P

Γ ` x : ch(T ) Γ, y:T ` P

Γ ` x(y : T ).P

Γ ` x : ch(T ) Γ ` M : T Γ ` P

Γ ` x〈M〉.P
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Soundness

The soundness of the type system can be proved along the lines of Wright and
Felleisen’s syntactic approach to type soundness.

• extend the syntax with the wrong process, and add reduction rules to capture
runtime errors:

where x is not a name

x〈M〉.P τ−−→ wrong

where x is not a name

x(y:T ).P τ−−→ wrong

• prove that if Γ ` P , with Γ closed, and P _∗ P ′, then P ′ does not have
wrong as a subterm.
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Soundness, ctd.

Lemma Suppose that Γ ` P , Γ(x) = T , Γ ` v : T . Then Γ ` P{v/x}.

Proof. Induction on the derivation of Γ ` P .

Theorem Suppose Γ ` P , and P
α−−→ P ′.

1. If α = τ then Γ ` P ′.

2. If α = a(v) then there is T such that Γ ` a : ch(T ) and if Γ ` v : T then
Γ ` P ′.

3. If α = (νx̃ : S̃)a〈v〉 then there is T such that Γ ` a : ch(T ), Γ, x̃ : S̃ ` v : T ,
Γ, x̃ : S̃ ` P ′, and each component of S̃ is a link type.

Proof. At the blackboard.
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Subtyping

Idea: refine the type of channels ch(T ) into

i(T ) input (read) capability
o(T ) output (write) capability

This form a basis for subtyping.

Example: the term

x : o(o(T )) ` (νy : ch(T )) x〈y〉.!y(z : T )

is well-typed because ch(T ) <: o(T ). Effect: well-typed contexts cannot interfere
with the existing input, because they can only write at channel y.
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The subtyping relation, formally

– is a preorder

T <: T
T1 <: T2 T2 <: T3

T1 <: T3

– capabilities can be forgotten

ch(T ) <: i(T ) ch(T ) <: o(T )

– i is a covariant type constructor, o is contravariant, ch is invariant

T1 <: T2

i(T1) <: i(T2)

T2 <: T1

o(T1) <: o(T2)

T2 <: T1 T1 <: T2

ch(T1) <: ch(T2)
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Subtyping, ctd.

Intuition: if x : o(T ) then it is safe to send along x values of of a subtype of T .
Dually, if x : i(T ) then it is safe to assume to assume that values received along
x belong to a supertype of T .

Type rules must be updated as follows:

Γ ` x : i(T ) Γ, y:T ` P

Γ ` x(y : T ).P

Γ ` x : o(T ) Γ ` M : T Γ ` P

Γ ` x〈M〉.P

Γ ` M : T1 T1 <: T2

Γ ` M : T2
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Exercises

Show that:

1. a : ch(int), b : ch(real) ` a〈5〉
f

a(x).b〈x〉, assuming int <: real;

2. x : o(o(T )) ` (νy : ch(T ))(x〈y〉.!y(z))

3. x : o(o(T )), z : o(i(T )) ` (νy : ch(T ))(x〈y〉
f

z〈y〉)

4. b : ch(S), x : ch(i(S)), a : ch(o(i(S))) ` a〈x〉
f

x(y).y(z)
f

a(x).x〈b〉
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Remarks on i/o types

– different processes may have different visibility of a name:

(νx : ch(T )) y〈x〉.z〈x〉.P
f

y(a : i(T )).Q
f

z(b : o(T )).R _ _

(νx : ch(T )) (P
f

Q{x/a}
f

R{x/b})

Q can only read from x, R can only write to x.

– acquiring the o and i capabilities on a name is different from acquiring ch:
the term

(νx : ch(unit)) y〈x〉.z〈x〉
n

y(a : i(unit)).z(b : o(unit)).a〈〉

is not well-typed.
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Types for reasoning

Types can be seen as contracts between a process and its environment: the
environment must respect the constraints imposed by the typing discipline.

In turn, types reduce the number of legal contexts (and give us more process
equalities).

Example: an observer whose typing is

Γ = a : o(T ), b : T, c : T ′ T and T ′ unrelated

• can offer an output a〈b〉;

• cannot offer an output a〈c〉, or an input at a.
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A “natural” contextual equivalence, informally

Definition (informal): The processes P and Q are equivalent in Γ, denoted

P ∼=Γ Q

iff Γ ` P,Q and they are equivalent in all the testing contexts that respect the
types in Γ.

To formalize this equivalence we need to type contexts, at the blackboard...
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Semantic consequences of i/o types

Example: the processes

P = (νx)a〈x〉.x〈〉
Q = (νx)a〈x〉.0

and different in the untyped or simply-typed pi-calculus.

With i/o types, it holds that

P ∼=Γ Q for Γ = a : ch(o(unit))

because the residual x〈〉 of P is deadlocked (the context cannot read from x).
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Semantic consequences of i/o types, ctd.

Specification and an implementation of the factorial function:

Spec = !f(x, r).r〈fact(x)〉
Imp = !f(x, r).if x = 0 then r〈1〉 else (νr′)f〈x− 1, r′〉.r′(m).r〈x ∗m〉

In general, Spec 6∼= Imp. (Why?)

With i/o types, we can protect the input end of the function, obtaining

(νf)a〈f〉.Spec ∼=Γ (νf)a〈f〉.Imp

for Γ = a : ch(o(int× o(int))).
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Semantic consequences of i/o types, ctd.

P = (νx, y)(a〈x〉
n

a〈y〉
n

!x().R
n

!y().R)

Q = (νx)(a〈x〉
n

a〈x〉
n

!x().R)

In the untyped calculus P 6∼= Q: a context that tells them apart is

−
n

a(z1).a(z2).(z1().c〈〉
n

z2〈〉) .

With i/o types
P ∼=Γ Q for Γ = a : ch(o(unit)) .

Notation: I will often omit redundant type informations.
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Exercise

1. Extend the syntax, the reduction semantics, and the type rules of pi-calculus
with i/o types with the nondeterministic sum operator, denoted +;

2. Show that the terms

P = b〈x〉.a(y).(y()
n

x〈〉)

Q = b〈x〉.a(y).(y().x〈〉+ x〈〉.y())

are not equivalent in the untyped calculus. Propose a i/o typing such that
P 'Γ Q.
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Navigating through the literature

Pi-calculus literature describes zillions of slightly different languages, semantics,
equivalencies.

Some slides for not getting lost.
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Barbed congruence vs. reduction-closed barbed congruence

Let barbed equivalence, denoted ∼=•, be the largest symmetric relation that is
barb preserving and reduction closed. Barbed equivalence is not preserved by
context, so define barbed congruence, denoted ∼=c, as

{(P,Q) : C[P ] ∼=• C[Q] for every context C[-].}

• Barbed congruence is more natural and less discriminating than reduction-
closed barbed congruence (for pi-calculus processes).

• Completeness of bisimulation for image-finite processes holds with respect to
barbed congruence, but its proof requires transifinite induction.
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Late bisimulation

Change the definition of the LTS:

x(y).P
x(y)−−−−→ P

P
x〈v〉−−−−→ P ′ Q

x(y)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

Q′{v/y}

and extend the definition of bisimulation with the clause: if P ≈l Q and

P
x(y)−−−−→ P ′, then there is Q′ such that Q

x(y)
=⇒ Q′ and for all v it holds

P ′{v/y} ≈l Q′{v/y}.

• Late bisimulation differs (slightly) from (early) bisimulation. More importantly,
the label x(y) does not denote an interacting context.
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Ground bisimulation

Idea: play a standard bisimulation on the late LTS. Or,

Let ground bisimulation be the largest symmetric relation, ≈g, such that whenever

P ≈g Q, there is z 6∈ fn(P,Q) such that if P
α−−→ P ′ where α is x〈y〉 or x(z) or

(νz)x〈z〉 or τ , then Q
α̂=⇒≈g P ′.

Contrast it with bisimilarity: to establish x(z).P ≈ x(z).Q it is necessary to show
that P{v/z} ≈ Q{v/z} for all v. Ground bisimulation requires to test only a single,
fresh, name.

However, ground bisimilarity is less discriminating than bisimilarity, and it is not
preserved by composition (still, it is a reasonable equivalence for sublanguages of
pi-calculus).
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Open bisimulation

Full bisimilarity is the closure of bisimilairty under substitutions, and is a
congruence with respect to all contexts. Unfortunately, full bisimilarity is not
defined co-inductively.

Question: can we give a co-inductive definition of a useful congruence?

Yes, with open bisimulation.

Idea: (on the restriction free calculus) let ./ be the largest symmetric relation such

that whenever P ./ Q and σ is a substitution, Pσ
α−−→ P ′ implies Qσ

α̂=⇒./ P ′.

It is possible to avoid the σ quantification by means of an appropriate LTS.
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Subcalculi

Idea: In pi-calculus contexts have a great discriminating power. It may be useful
to consider other languages in which contexts ”observe less”, so that we have
more equations.

Asynchronous pi-calculus: no continuation after an output prefix.

Localized pi-calculus: given x(y).P , the name y is not used as subject of an
input prefix in P .

Private pi-calculus: only output of new names.
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Conclusion: back to programming languages

Design choice:

bake into the definition of the language specific communication primitives?

• yes: Pict (Pierce et al.), NomadicPict (Sewell et al.), JoCaml (Moscova), ...

• no: Acute (Sewell et al., Moscova), ...

Some demos

...crossing fingers...
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