Proofs about programs

Yves Bertot

Proofs about computation

- Reason about functional correctness
- State properties about computation results
- Show consistency between several computations
- Use the same tactics as for usual logical connectives
- Add tactics to control computations and observation of data
- Follow the structure of functions
- Proving is akin to symbolic debugging
- A proof is a guarantee that all cases have been covered

Controlling execution

- Replace formulas containing function with other formulas
- Manually with direct Coq control:
- change f_{1} with f_{2}
- Really checks that f_{1} and f_{2} are the same modulo computation
- Manually with indirect control
- replace f_{1} with f_{2}
- Produces a side goal with the equality $f_{1}=f_{2}$
- Unfold recursive functions, keeping readable output
- simpl, simpl f
- Sometimes computes too much (so the output is not so readable!)
- Simply expand definitions
- unfold f, unfold f at 2

Reason on other functions

- Each function comes with theorems about it
- In this course, sometimes called companion theorems
- Usable directly through apply when the goal's conclusion fits
- Otherwise, can be brought in the context using assert assert (H : th a b c H').
- Can be moved from the context to the goal using revert.

Example reasoning on functions

```
Parameters (f g : nat -> nat) (P Q R : nat -> nat -> Prop).
Axiom Pf : forall x, P x (f x).
Axiom Qg : forall y, Q y (g y).
Axiom PQR : forall x y z, P x y -> Q y z -> R x z.
Definition h (x:nat) := g (f x).
Lemma exfgh: forall x, R x (h x).
intros x; apply PQR with (y:= f x).
    x : nat
    ============================
    P x (f x)
apply Pf.
```


Example (continued)

```
    x : nat
    ============================
    Q (f x) (h x)
change (h x) with (g (f x)).
    x : nat
    ============================
    Q (f x) (g (f x))
apply Qg.
Proof completed.
Qed.
```


Reasoning about pattern-matching constructs

- Pattern-matching typically describes alternative behaviors
- Reason by covering all cases
- case is the basic constructs
- generates one goal per constructor
- the expression is replaced by constructor-values, in the conclusion
- the argument to S becomes a universally quantified variable
- destruct is more advanced and covers the context
- like case, but nesting is authorized
- the context is also modified
- case_eq remembers in which case we are
- the context is not modified (as in case)
- remembering can be crucial

Example on cases

Definition pred (x:nat) := match x with $0=>x \mid S p$ pend.

Lemma S_pred : forall x, x <> 0 -> S (pred x) = x. intros x; unfold pred.

```
x : nat
```

============================
x <> 0 ->
S match x with | 0 => $\mathrm{x} \mid \mathrm{S} \mathrm{p} \mathrm{=>} \mathrm{p} \mathrm{end}=\mathrm{x}$

Example on cases (continued)

case x .
2 subgoals
x : nat
============================
$0<>0->1=0$
subgoal 2 is:
forall n : nat, $S n<>0->S n=S n$

Example on cases (continued)

case x.
2 subgoals

```
x : nat
```

============================ $0<>0->1=0$
subgoal 2 is:
forall n : nat, $S n<>0 \rightarrow n=S n$
intros n 0 ; case n 0 .
===========================
$0=0$
reflexivity.
intros; reflexivity.
Qed.

Example using companion theorems

Require Import Arith.
Check beq_nat_true.
beq_nat_true:
forall $\mathrm{x} y$: nat, beq_nat $\mathrm{x} \mathrm{y}=$ true $->\mathrm{x}=\mathrm{y}$
Definition pre2 (x : nat) :=
if beq_nat x 0 then 1 else pred x.

Lemma pre2pred : forall x , x <> 0 -> pre2 $\mathrm{x}=$ pred x . intros x; unfold pre2.
x : nat
============================
x <> 0 ->
(if beq_nat x 0 then 1 else pred x) $=$ pred x

Companion theorems (continued)

```
case_eq (beq_nat x 0).
2 subgoals
    x : nat
    ===========================
        beq_nat \(\mathrm{x} 0=\) true \(->\mathrm{x}<>0\)-> \(1=\) pred x
subgoal 2 is:
    beq_nat \(x 0=\) false \(->x<>0->\) pred \(x=\) pred \(x\)
intros test; assert (x0 := beq_nat_true _ _ test).
    test : beq_nat x \(0=\) true
    \(\mathrm{x} 0: \mathrm{x}=0\)
    ============================
    x <> 0 -> \(1=\) pred \(x\)
intros \(x n 0\); case \(x n 0\); exact \(x 0\).
intros; reflexivity.
Qed.
```


How to find Companion theorems

- SearchAbout is your friend
- In general Search commands are your friends
- Search: use a predicate name Search le.
- SearchRewrite: use patterns of expressions searchRewrite (_ + 0).
- SearchPattern: use a pattern of a theorem's conclusion (type Prop, usually)
SearchPattern (_ * _ <= _ * _).

Recursive functions and induction

- When a function is recursive, calls are usually made on direct subterms
- Companion theorems do not already exist
- Induction hypotheses make up for the missing theorems
- The structure of the proof is imposed by the data-type

A trick to control recursion

- Add one-step unfolding theorems to recursive functions
- Associate any definition

Fixpoint f x1 ...xn := body
with a theorem
forall x1 ...xn, f x1 ...xn := body

- Use rewrite instead of change, replace, or simpl
- More concise than replace or change
- Better control than simpl
- unfold is not well-suited for recursive functions

Example proof on a recursive function

Fixpoint add n m := match n with $0 \Rightarrow m \mid S p$ add $p(S m)$ end.

Lemma addnS : forall $\mathrm{n} m$, add $\mathrm{n}(\mathrm{S} \mathrm{m})=\mathrm{S}($ add n m$)$. induction n .
2 subgoals
============================ forall m : nat, add $0(S \mathrm{~m})=\mathrm{S}($ add 0 m$)$
subgoal 2 is:
forall m : nat, add (S n) (S m) = S (add (S n) m)

Example proof on a recursive function

Fixpoint add n m := match n with $0 \Rightarrow m \mid S p$ add $p(S m)$ end.

Lemma addnS : forall $\mathrm{n} m$, add $\mathrm{n}(\mathrm{Sm})=\mathrm{S}$ (add n m). induction n .
2 subgoals
============================ forall m : nat, add $0(S \mathrm{~m})=\mathrm{S}($ add 0 m$)$
subgoal 2 is:
forall m : nat, add (S n) (S m) = S (add (S n) m)
intros m; simpl.
============================= S m = S m
reflexivity.

Recursive function (continued)

```
n : nat
IHn : forall m : nat, add n (S m) = S (add n m)
============================
    forall m : nat, add (S n) (S m) = S (add (S n) m)
```

intros m; simpl.
============================
add $n(S(S m))=S(\operatorname{add} n(S m))$
apply IHn.
Proof completed.
Qed.

Functional schemes

- The tactic induction assumes a simple form of recursion
- direct pattern-matching on the main variable
- recursive calls on direct subterms
- Coq recursion allows deeper recursive calls
- Need for specialized induction principles
- Provided by Functional Scheme.
- Exhibits the true pattern-matching structure from the function
- Provides induction hypotheses suited for recursive calls.

Example functional scheme

```
Fixpoint div2 (x : nat) : nat :=
    match x with S (S p) => S (div2 p) | _ => O end.
Functional Scheme div2_ind :=
Induction for div2 Sort Prop.
Lemma div2_le : forall x, div2 x <= x.
intros x; induction x using div2_ind.
3 subgoals
0<= 0
0 <= 1
S (div2 p) <= S (S p)
```


Functional scheme (continued)

```
        e : \(x=S n\)
p : nat
e0 : \(n=S p\)
IHn : div2 \(p<=p\)
============================
    S (div2 p) <= S (S p)
info auto with arith.
    == simple apply le_S; simple apply gt_le_S;
        change (div2 \(p<S \mathrm{p}\) );
    simple apply le_lt_n_Sm; exact IHn.
```

Proof completed. Qed.

Proofs on functions on lists

- Tactics case, destruct, case_eq also work
- values a and tl in a: :tl are universally quantified in case and case_eq, added to the context in destruct
- Induction on lists works like induction on natural numbers
- nil plays the same role as 0 : base case of proofs by induction
- a: :tl plays the same role as S
- Induction hypothesis on tl
- Fits with recursive calls on tl

Example proof on lists

Require Import List.

Print rev.
fun A : Type => fix rev (l : list A) : list A := match l with
| nil => nil
| x :: l' => rev l' ++ x :: nil
end : forall A : Type, list A -> list A

Fixpoint rev_app (A : Type) (11 12 : list A) : list A := match 11 with

$$
\text { nil => } 12
$$

| a::tl => rev_app A tl (a::12)
end.

Implicit Arguments rev_app.

Example proof on lists (continued)

Lemma rev_appP : forall A (l1 : list A), rev_app 11 nil = rev 11.
intros A 11.
A : Type
11 : list A
===========================
rev_app 11 nil := rev l1
assert (tmp: forall l2, rev_app $1112=r e v 11++12$);
[| rewrite tmp, <- app_nil_end; reflexivity].

Example proof on lists (continued)

forall 12 : list A, rev_app 1112 = rev 11 ++ 12 induction l1; intros 12.
2 subgoals

```
A : Type
12 : list A
============================
    rev_app nil 12 = rev nil ++ l2
```

subgoal 2 is: rev_app (a :: l1) 12 = rev (a :: l1) ++ 12 simpl; reflexivity.

proof on lists (continued)

IHl1 : forall 12 : list A, rev_app 1112 = rev l1 ++ 12
12 : list A
============================
rev_app (a :: l1) $12=\operatorname{rev}(\mathrm{a}:: 11)++12$
simpl.

$$
\text { rev_app } 11 \text { (a :: l2) = (rev } 11 \text { ++ a :: nil) ++ } 12
$$

SearchRewrite ((_ ++ _) ++ _). app_ass:
forall A (l m n:list A), (l ++ m) ++ $n=1++m++n$ rewrite app_ass; apply IHl1. Proof completed. Qed.

