
Making proofs in Coq

Yves Bertot

Goal directed proof

I In theory, proving is the same as programming

I In practice, intermediate statements are more relevant than

proof constructs

I Procedural approach

1. State an initial statement

2. Apply a command that decomposes a statement into easier

ones

3. repeat step 2

I Sometimes step 2 does not produce new statements

I When no more subgoals, the proof must be saved using Qed.

I Proof scripts record only the commands that have been applied

I Di�cult reading, script management is needed

Start a proof

I Lemma name : formula.

======

formula

I The name must be new

I The formula must be well-formed

I Other keywords can be used
I Theorem, Fact, Example

Decomposing a logical formula

I Example: A /\ B

I We want to prove A and B as one formula

I But logically, it is enough to prove A and B separately

I To go from A /\ B to A and B requires a logical step

I This example was about a conclusion, we can have similar

problems when A /\ B appears as an hypothesis

Hypotheses and conclusion

I During a proof, Coq displays goals

I Each goal contains a conclusion: the formula to prove

I Each goal also contains a context made of hypotheses
I Each hypothesis has a name and a statement

I Example

H1 : x <= y

H2 : y <= z

====================

x <= z

Using the context

I Hypotheses are meant to be used to prove the current goal

I When an hypothesis H matches the goal exactly, use exact H.

I You can also use assumption.

I H : A

=============

A

exact H.

the goal is solved!

I Exact matching may involve computation

I H : P 3

=============

P (2 + 1)

assumption.

the goal is solved!

Tactics for universal quanti�cation (in conclusion)

I How do we prove forall x:T, A x ?
I Reason on an arbitrary member of type T
I Arbitrary: we don't know anything about it, its new

I Tactic : intros

I ===============

forall x : T, A x

intros y.

y : T

===============

A y

I y must not be in the context (it must be fresh)

I usually, we use directly the name x

Implication (in conclusion)

I How do we prove that A -> B holds?
I We assume we know A, and the we look at just B

I Add A to the known facts (the context)

I intro H (the name H must be fresh)

Universal quanti�cation (in hypotheses)

I How to use forall x : T, A x -> B x?

I In particular if we have to prove B e

I H : forall x : T, A x -> B x

===============

B e

apply H.

H : forall x : T, A x -> B x

===============

A e

I Coq guesses that H is used on e

I Beware! apply handles all universal quanti�cations and
implications in one round

I Guess values of universally quanti�ed variables
I Create a new goal for every premise of an implication

Missing universally quanti�ed variables

I The guess work is done by matching the theorem's conclusion

with the goal's conclusion

I Hopefully, all universally quanti�ed variable can be determined

I missing variables can be given by the user

I Example

Require Import ZArith. Open Scope Z_scope.

Check Zle_trans.

Zle_trans :

forall x y z : Z, x <= y -> y <= z -> x <= z.

I This theorem can be used in apply (like any hypothesis)

I The variable y does not occur in the theorem's conclusion.

Giving missing variables

I Zle_trans :

forall x y z : Z, x <= y -> y <= z -> x <= z.

I First syntax: by name

apply Zle_trans with (y:= formula)

I Second syntax: by hypothesis

H : x <= 3

===============

x <= 10

apply Zle_trans with (1:=H).

H : x <= 3

===============

3 <= 10

I Third syntax: by application

apply (Zle_trans x 3) or apply (Zle_trans _ 3)

I Universally quanti�ed theorems can be used like functions!

Implications (in hypotheses)

I A particular case of apply

I No variable needs guessing

I has many new goals as there are premises

I A particular case: when no implication (no premise), apply

works, but exact is more explicit

using implications and quanti�cations without the conclusion

I Add explicitely consequences using assert

I H : A -> B

Ha : A

===============

C

assert (H': B).

=================

B

apply H.

=================

A

I A second goal has an hypothesis H' stating B

I Implication and quanti�cation theorems may be used as

functions

assert (H' := H Ha).

Conjunction

I Prove A /\ B

split

I Use H : A /\ B
destruct H as [H1 H2] or case H

I creates two hypotheses H1 : A and H2 : B
I the names H1 and H2 have to be fresh

I Behavior intuitive: replace connectives by their meaning

I Name of tactics needs to be remembered...

disjunction

I Prove A \/ B

I Choose to prove A or to prove B

left or right

I Use H : A \/ B
destruct H as [H1 | H2] or case H

I Two goals generated, one where A is
I Need to cover all possibilities

I Same tactic names as for conjunction

Short cut for destruct

I In presence of nested logical connectives

I frequent situation destruct H as [H1 H2] followed by

destruct H1 as [H3 | H4]

I Abbreviated as destruct H as [[H3 | H4] H2]
I Two goals, one with H3 and H2, the other with H4 and H2

I Second frequent situation intros H followed by

destruct H as [H1 H2]

I abbreviated as intros [H1 H2].

Combining tactics

I Use several tactics in one command

I tac1; tac2,

tac2 is used on all goals generated by tac1

I tac;[tac1| ...| tacn],

taci is applied on the i th generated goal

demonstration

Lemma example : forall A B P Q, (A \/ B) /\

(forall x:nat, P x \/ Q x) ->

forall x, (A /\ P x) \/ (A /\ Q x) \/

(B /\ P x) \/ (B /\ Q x).

intros A B P Q H y.

...

H : (A \/ B) /\ (forall x : nat, P x \/ Q x)

y : nat

===============

A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y

destruct H as [H1 H2].

...

H1 : A \/ B

H2 : forall x : nat, P x \/ Q x

y : nat

...

demonstration (continued)

...

Q : nat -> Prop

H1 : A \/ B

H2 : forall x : nat, P x \/ Q x

destruct H1 as [Ha | Hb].

2 subgoals ...

Q : nat -> Prop

Ha : A

H2 : forall x : nat, P x \/ Q x

y : nat

=============

A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y

demonstration (continued)

destruct (H2 y) as [Hp | Hq].

3 subgoals

...

Ha : A

Hp : P y

=============

A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y

left.

...

=============

A /\ P y

split.

4 subgoals

...

=============

A

Demonstration (continued)

...

Ha : A

...

y : nat

Hp : P y

=============

A

exact Ha.

...

=============

P y

assumption.

2 subgoals

Demonstration (continued)

...

Ha : A

...

Hq : Q y

===============

A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y

right; left; split.

...

A /\ Q y

Existential quanti�cation

I Prove exists x : T, A x
I You have to �nd an expression e of the right type and prove

A e

exists e

I Use H : exists x : T, A x

destruct H as [y Hy] or case H.

I moving from the connective �there exists� to the situation

where �there exists� a guy with the right properties

Falsehood and Negation

I False cannot be proved in the empty context

I Use H : False
destruct H or case H

I Anything can be deduced from False
I No new goals

I Prove �A
I assume A and show there is a contradiction

intros Ha

I Use H : �A
I Do this when you know you can prove A

destruct H or case H

Negation demonstration

Lemma example_neg : forall A B : Prop, A -> �A -> B.

intros A B Ha Hn.

Ha : A

Hn : �A

=============

B

case Hn.

Ha : A

Hn : �A

=============

A

Equality

I Prove x = x

reflexivity

I Use H : forall x y, f x y = g x y
rewrite H, rewrite <- H, rewrite H in H', etc.

I �nd occurrences of f ? ? in the goal and replace with the

corresponding instance of g ? ?
I Variables must be guessed, as for apply
I Variable guessing can be tuned by the user

I Other approach to using equalities: injection to be studied

later

I Other approach to proving equalities: ring

