
On General Recursion

On General Recursion

Pierre Castéran

Paris, June 2010

On General Recursion

Where structural recursion is not enough

When structural recursion is not enough : some examples

We present some simple case studies where the most natural
recursion scheme does not fill the structural recursion constraint :

I Discrete logarithm (base 10),

I Euclidean division,

I Merging sorted lists,

I Binary search.

On General Recursion

Where structural recursion is not enough

Computing the discrete logarithm (base 10)

Problem : Defining some function log10 : Z→Z, satisfying :

∀n, p : Z, 0 ≤ p ⇒ 10p ≤ n < 10p+1 ⇒ log10(n) = p

A first attempt could be :

Fixpoint log10 (n : Z) : Z :=
if Zlt_bool n 10
then 0
else 1 + log10 (n / 10).

On General Recursion

Where structural recursion is not enough

Fixpoint log10 (n : Z) : Z :=
if Zlt_bool n 10
then 0
else 1 + log10 (n / 10).

Error:
Recursive definition of log10 is ill-formed.
In environment
log10 : Z -> Z
n : Z
Recursive call to log10 has principal argument equal to ”n / 10”
instead of a subterm of n.

On General Recursion

Where structural recursion is not enough

Let us consider for instance the computation of log10(253).

I This number is written 11111010 in binary form and the
corresponding term is
Zpos(xO(xI(xO(xI(xI(xI(xI(xH)))))))).

I The next recursive call is log10(25) ; 25’s binary
representation is 11001, and the associated Coq term is In
Coq, this number is Zpos(xI(xO(xO(xI(xH))))).

I Clearly, the subterm constraint is not satisfied by this
computation.

On General Recursion

Where structural recursion is not enough

Euclidean division

This example is very similar to log10. If we want to compute the
euclidean division of a by b through successive subtractions, we
don’t respect the subterm condition.
Example : division of 100 by 27.

(100,27)
(73,27)

(46,27)
(19,27)
(0,19)

(1,19)
(2,19)

(3,19)

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =

1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =

1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =

1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =

1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =

1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =

1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =

1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Merging two sorted lists

merge(1 :: 3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge(3 :: 5 :: nil, 2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge(3 :: 5 :: nil, 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge(3 :: 5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge(5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge(5 :: nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge(nil, 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Where structural recursion is not enough

Binary search

Let a be a sorted array, for instance :

i 1 2 3 4 5 6 7 8 9 10 11 12

a(i) −10 −10 2 5 8 8 17 18 29 30 30 42

We look for instance for some index i such that a(i) = 7.

On General Recursion

Where structural recursion is not enough

Looking for 7 in a between the indexes 1 and 12 (12 cells) amounts
to look for 4 between the indexes 1 and 5 (5 cells), then between 4
and 5 (2 cells), etc.

1 2 3 4 5 6 7 8 9 10 11 12

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

Unfortunately, neither the number of cells nor the bounds give us a
structurally decreasing argument.

On General Recursion

Where structural recursion is not enough

Looking for 7 in a between the indexes 1 and 12 (12 cells) amounts
to look for 4 between the indexes 1 and 5 (5 cells), then between 4
and 5 (2 cells), etc.

1 2 3 4 5 6 7 8 9 10 11 12

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

Unfortunately, neither the number of cells nor the bounds give us a
structurally decreasing argument.

On General Recursion

Where structural recursion is not enough

Looking for 7 in a between the indexes 1 and 12 (12 cells) amounts
to look for 4 between the indexes 1 and 5 (5 cells), then between 4
and 5 (2 cells), etc.

1 2 3 4 5 6 7 8 9 10 11 12

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

Unfortunately, neither the number of cells nor the bounds give us a
structurally decreasing argument.

On General Recursion

Where structural recursion is not enough

Looking for 7 in a between the indexes 1 and 12 (12 cells) amounts
to look for 4 between the indexes 1 and 5 (5 cells), then between 4
and 5 (2 cells), etc.

1 2 3 4 5 6 7 8 9 10 11 12

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

Unfortunately, neither the number of cells nor the bounds give us a
structurally decreasing argument.

On General Recursion

Where structural recursion is not enough

Looking for 7 in a between the indexes 1 and 12 (12 cells) amounts
to look for 4 between the indexes 1 and 5 (5 cells), then between 4
and 5 (2 cells), etc.

1 2 3 4 5 6 7 8 9 10 11 12

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

−10 −10 2 5 8 8 17 18 29 30 30 42

Unfortunately, neither the number of cells nor the bounds give us a
structurally decreasing argument.

On General Recursion

Bounding the number of calls to a recursive function

Bounding the number of calls to a recursive function

It is sometimes possible to bound the number of calls to a
recursive function. In this case, one can use this information for
building a well-formed structural recursion.
For instance, when merging two lists u and v , the natural number
l = |u|+ |v | decreases by 1 at each recursive call.

On General Recursion

Bounding the number of calls to a recursive function

merge(1 :: 3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =
merge_aux 8 (1 :: 3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =

1 :: merge_aux 7 (3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge_aux 6 (3 :: 5 :: nil) (2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge_aux 5 (3 :: 5 :: nil) (4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge_aux 4 (5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge_aux 3 (5 :: nil) (8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge_aux 2 nil (8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Bounding the number of calls to a recursive function

merge(1 :: 3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =
merge_aux 8 (1 :: 3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge_aux 7 (3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =

1 :: 2 :: merge_aux 6 (3 :: 5 :: nil) (2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge_aux 5 (3 :: 5 :: nil) (4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge_aux 4 (5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge_aux 3 (5 :: nil) (8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge_aux 2 nil (8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Bounding the number of calls to a recursive function

merge(1 :: 3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =
merge_aux 8 (1 :: 3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: merge_aux 7 (3 :: 5 :: nil) (2 :: 2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: merge_aux 6 (3 :: 5 :: nil) (2 :: 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: merge_aux 5 (3 :: 5 :: nil) (4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: merge_aux 4 (5 :: nil, 4 :: 8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: merge_aux 3 (5 :: nil) (8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: merge_aux 2 nil (8 :: 34 :: nil) =
1 :: 2 :: 2 :: 3 :: 4 :: 5 :: 8 :: 34 :: nil

On General Recursion

Bounding the number of calls to a recursive function

Function merge_aux (n : nat) (u v : list Z) {struct n}
: list Z :=
match u,v,n with 0%nat, _, _ => nil

| S _, u, nil => u
| S _, nil, v => v
| S p, a::u’, b::v’ =>

if Zle_bool a b
then a::(merge_aux p u’ v)
else b::(merge_aux p u v’)

end.

Definition merge u v :=
merge_aux (length u + length v) u v .

On General Recursion

Bounding the number of calls to a recursive function

A look at the extracted code

let rec merge_aux n u v =
match n with
| O -> Nil
| S p ->

(match u,v with
| Nil, Nil -> u
| Nil,Cons (z0, l) -> v
| Cons (a, u’), Nil -> u
| Cons (a, u’), Cons (b, v’) ->

if zle_bool a b
then Cons (a, (merge_aux p u’ v))
else Cons (b, (merge_aux p u v’)))))

let merge u v = merge_aux (length u + length v) u v

On General Recursion

Bounding the number of calls to a recursive function

Main drawbacks of this solution

I More computations than needed :

1. Computation of the lists’ length
2. merging the lists

This computation appears also in the extracted program.

I a correctness proof of merge must include a proof that the
numeric argument given to merge_aux is large enough.

We shall now present some techniques for avoiding this extra work
as much as possible.

On General Recursion

Using Measures over Natural Numbers

Using Measures over Natural Numbers

We present a simple technique that allows the user to write
recursive functions with less constraints than “pure” structural
recursion. Furthermore, termination arguments are erased during
extraction.

On General Recursion

Using Measures over Natural Numbers

A first example

Require Import Recdef.

(* Zabs_nat : Z → nat *)

Function log10 (n : Z) {measure Zabs_nat n}: Z :=
if Zlt_bool n 10
then 0
else 1 + log10 (n / 10).

On General Recursion

Using Measures over Natural Numbers

We have to prove that the measure associated with the argument
n strictly decreases along recursive calls.

1 subgoal

============================
forall n : Z,
Zlt bool n 10 = false -> (Zabs nat (n / 10) < Zabs nat n)%nat

The library Recdef allows Coq to accept this definition, once this
goal (called a proof obligation) is solved.

On General Recursion

Using Measures over Natural Numbers

Merge, with measures

Definition plus_length (u_v : list Z * list Z):nat :=
(length (fst u_v) + length (snd u_v))%nat.

Function merge (u_v : list Z * list Z)
{measure plus_length u_v} : list Z :=
match u_v with
(nil,v) => v

| (u,nil) => u
| ((a::u’) as u,(b::v’) as v) => if Zle_bool a b

then a::(merge (u’,v))
else b::(merge (u,v’))

end.

On General Recursion

Using Measures over Natural Numbers

Binary search, with measures

Let m (p: Z * Z) : nat := Zabs_nat (snd p - fst p).

Function search (bounds : Z*Z)
{measure m bounds} : option Z :=
let (from,to) := bounds in
if Zle_bool from to
then let m := middle from to in
if Zeq_bool x (a m)
then Some m
else if andb (Zle_bool from (m-1)) (Zlt_bool x (a m))

then search (from, m - 1)
else if Zle_bool (m +1) to

then search (m+1, to)
else None

else None.

On General Recursion

Using Measures over Natural Numbers

A more complex example

(* Example : pairs 4 returns the list
(4,4)::(4,3)::(4,2)::(4,1)::(3,3)::(3,2)::
(3,1)::(2,2)::(2,1)::(1,1)::nil *)

Function pairs_aux (p:nat*nat) {measure ????}:=
match p with (0,_) => nil

|(S i, S j) => (S i,S j)::pairs_aux (S i,j)
|(S i, 0) => pairs_aux (i, i)

end.

Definition pairs (i:nat) := pairs_aux (i,i).

On General Recursion

Using Measures over Natural Numbers

No simple (linear) measure can be given to Function !

Let’s consider a measure of the form :

fun p: nat*nat => α*(fst p)+β*(snd p)

The measure of (S i ,O) must be greater than the measure of (i ,i),
the same with (S i , S j) and (S i , j),

Thus, we should have β > 0 and α > β × i for any i , which is
impossible.

On General Recursion

Using Measures over Natural Numbers

Solutions ?

Using a non-linear measure, like :

fun p : nat*nat => let (i,j) := p in i*(i+1)+ j

The proof must be done manually, because the automatic tactic
omega doesn’t work properly with multiplications.

On General Recursion

Well-founded Relations

Well-founded Relations

Dotted lines represent any number of elementary relationships

On General Recursion

Well-founded Relations

Minimal elements are accessible

On General Recursion

Well-founded Relations

Elements whose all predecessors are accessible become accessible

On General Recursion

Well-founded Relations

. . .

On General Recursion

Well-founded Relations

Some time later . . .

On General Recursion

Well-founded Relations

On General Recursion

Well-founded Relations

On General Recursion

Well-founded Relations

Termination using well-founded relations

For proving that some recursive function f with main argument
a : A terminates, hence is acceptable by Coq :

1. Consider some well-founded relation R over A

2. Prove that for each recursive call f b, b R a holds.

We have to use the wf option of Function :

Function f (x:A1) (a : A) {wf R a} : B :=
... f y1 b ...

This command generates two kinds of proof obligations :

I Proving the relations b R a, under the hypotheses associated
to the context of each recursive call to f ,

I Proving that R is truly well-founded.

On General Recursion

Well-founded Relations

Termination using well-founded relations

For proving that some recursive function f with main argument
a : A terminates, hence is acceptable by Coq :

1. Consider some well-founded relation R over A

2. Prove that for each recursive call f b, b R a holds.

We have to use the wf option of Function :

Function f (x:A1) (a : A) {wf R a} : B :=
... f y1 b ...

This command generates two kinds of proof obligations :

I Proving the relations b R a, under the hypotheses associated
to the context of each recursive call to f ,

I Proving that R is truly well-founded.

On General Recursion

Well-founded Relations

Proving that some relation is well-founded

Coq’s Standard Library provides us with some useful examples of
well-founded relations :

I The predicate lt over nat (but you can use measure instead)

I The predicate Zwf c, which is the restriction of < to the
interval [c,∞[of Z.

On General Recursion

Well-founded Relations

Function log10 (n : Z){wf (Zwf 1) n} : Z :=
if Zlt_bool n 10
then 0
else 1 + log10 (n / 10).

Proof.
intros n teq;Zbool2Prop.
generalize (Z_div_lt n 10);intros;split;omega.
apply Zwf_well_founded.
Qed.

On General Recursion

Well-founded Relations

Using the Standard Library

The Standard Library provides the user with some useful theorems
that allow to prove some relation is well-founded.

Require Import Inclusion.
Require Import Zwf.

Lemma half_wf : well_founded
(fun i j : Z => 0 < i ∧ j = 2 * i).

Proof.
apply wf_incl with (Zwf 0).
(* prove that our relation is included in (Zwf 0) *)
intros i j [H H0];split;auto with zarith.
apply Zwf_well_founded.
Qed.

On General Recursion

Well-founded Relations

I Other modules (in the Wellfounded section of the Standard
Library) contain similar lemmas. Their use is interesting, but
requires some experience with the Coq system.

I It is possible to design tools for adapting these lemmas to the
use of Function.

On General Recursion

Well-founded Relations

Require Import Measures.(* Not in Standard Library *)

Let measures := (@fst nat nat) ::
(@snd nat nat) :: nil.

Function pairs_aux (p:nat*nat)
{wf (measures_lt measures) p}
: list (nat*nat):=

match p with (0,_) => nil
|(S i, S j) => (S i, S j)::pairs_aux (S i, j)
|(S i, 0) => pairs_aux (i, i)

end.

On General Recursion

Testing your function

Testing the function

Once Coq has accepted your function, and before proving it is
correct, it may be useful to do some simple tests :

Eval compute in log10 67.

waiting for an answer . . .

In fact, log10 is defined by a huge Coq term, which contains all
the termination proof. Just try to type :

Goal log10 67 = 2.
Proof.
unfold log10, log10_terminate;simpl.

A goal of more than 450 lines !

On General Recursion

Testing your function

Testing the function

Once Coq has accepted your function, and before proving it is
correct, it may be useful to do some simple tests :

Eval compute in log10 67.
waiting for an answer . . .

In fact, log10 is defined by a huge Coq term, which contains all
the termination proof. Just try to type :

Goal log10 67 = 2.
Proof.
unfold log10, log10_terminate;simpl.

A goal of more than 450 lines !

On General Recursion

Testing your function

Using the extraction facility

Extraction "log10.ml" log10.

The file log10.ml has been created by extraction.
The file log10.mli has been created by extraction.

let log_10 x = z_to_int (log10 (int_to_Z x));;

log_10 9999;;
- : int = 3
log_10 10000;;
- : int = 4
log_10 0;;
- : int = 0

On General Recursion

Testing your function

Using the extraction facility

Extraction "log10.ml" log10.
The file log10.ml has been created by extraction.
The file log10.mli has been created by extraction.

let log_10 x = z_to_int (log10 (int_to_Z x));;

log_10 9999;;
- : int = 3
log_10 10000;;
- : int = 4
log_10 0;;
- : int = 0

On General Recursion

Testing your function

Using the extraction facility

Extraction "log10.ml" log10.
The file log10.ml has been created by extraction.
The file log10.mli has been created by extraction.

let log_10 x = z_to_int (log10 (int_to_Z x));;

log_10 9999;;

- : int = 3
log_10 10000;;
- : int = 4
log_10 0;;
- : int = 0

On General Recursion

Testing your function

Using the extraction facility

Extraction "log10.ml" log10.
The file log10.ml has been created by extraction.
The file log10.mli has been created by extraction.

let log_10 x = z_to_int (log10 (int_to_Z x));;

log_10 9999;;
- : int = 3
log_10 10000;;

- : int = 4
log_10 0;;
- : int = 0

On General Recursion

Testing your function

Using the extraction facility

Extraction "log10.ml" log10.
The file log10.ml has been created by extraction.
The file log10.mli has been created by extraction.

let log_10 x = z_to_int (log10 (int_to_Z x));;

log_10 9999;;
- : int = 3
log_10 10000;;
- : int = 4
log_10 0;;

- : int = 0

On General Recursion

Testing your function

Using the extraction facility

Extraction "log10.ml" log10.
The file log10.ml has been created by extraction.
The file log10.mli has been created by extraction.

let log_10 x = z_to_int (log10 (int_to_Z x));;

log_10 9999;;
- : int = 3
log_10 10000;;
- : int = 4
log_10 0;;
- : int = 0

On General Recursion

Testing your function

Proving equalities in Coq

Among the few lemmas that are generated by Function, the
lemma log10_equation has the following statement, which
expresses the intention of the original definition :

log10_equation
: forall n : Z,
log10 n = (if Zlt_bool n 10

then 0
else 1 + log10 (n / 10))

On General Recursion

Testing your function

Goal log10 103=2.
repeat (rewrite log10_equation;simpl).

1 subgoal

============================
2 = 2

trivial.
Qed.

On General Recursion

Testing your function

Goal log10 103=2.
repeat (rewrite log10_equation;simpl).
1 subgoal

============================
2 = 2

trivial.
Qed.

On General Recursion

Correctness Proofs

Correctness Proofs

log10’s correctness is expressed by the following statement, which
relates the argument n and the result log10 n :

Lemma log10_OK :
forall n p, 0 ≤ p ->

10 ^ p ≤ n < 10^(p+1)->
log10 n = p.

On General Recursion

Correctness Proofs

intro n.
1 subgoal

n : Z
============================
forall p : Z, 0 ≤ p ->
10 ˆ p ≤ n < 10 ˆ (p + 1) ->
log10 n = p

functional induction (log10 n).

On General Recursion

Correctness Proofs

A first subgoal is generated from the structure of the function
definition :

Function log10 (n : Z) ...
if Zlt_bool n 10
then 0 ...

n : Z
e : Zlt_bool n 10 = true
p : Z
H : 0 ≤ p
H0 : 10 ^ p ≤ n < 10 ^ (p + 1)

============================
0 = p

On General Recursion

Correctness Proofs

Let us consider the else part of the function definition, which
contains a recursive call.

Function log10 (n : Z)wf (Zwf 1) n : Z :=
if Zlt_bool n 10
...
else 1 + log10 (n / 10).

Coq generates a context assuming the recursive calls correctness,
and a goal for proving the correctness of the computed result.

On General Recursion

Correctness Proofs

e : Zlt_bool n 10 = false
IHz : forall p : Z,

0 ≤ p ->
10 ^ p ≤ n / 10 < 10 ^ (p + 1) ->
log10 (n / 10) = p

H : 0 ≤ p
H0 : 10 ^ p ≤ n < 10 ^ (p + 1)
============================
1 + log10 (n / 10) = p

For solving this goal, we first assert that 0 < p (from e and H0),
then apply IHz to p − 1.

The actual proof uses properties of
exponentiation, the arithmetic solver omega, and conversions
between Zlt_bool and <.

On General Recursion

Correctness Proofs

e : Zlt_bool n 10 = false
IHz : forall p : Z,

0 ≤ p ->
10 ^ p ≤ n / 10 < 10 ^ (p + 1) ->
log10 (n / 10) = p

H : 0 ≤ p
H0 : 10 ^ p ≤ n < 10 ^ (p + 1)
============================
1 + log10 (n / 10) = p

For solving this goal, we first assert that 0 < p (from e and H0),
then apply IHz to p − 1.The actual proof uses properties of
exponentiation, the arithmetic solver omega, and conversions
between Zlt_bool and <.

On General Recursion

More examples

More examples

In this section, we present roughly some techniques we have used
in our correctness proofs. Full proofs are either left as exercises or
can be downloaded from the school’s page.

On General Recursion

More examples

Merge

Require Import Recdef.

Definition plus_length (u_v : list Z * list Z):nat :=
length (fst u_v) + length (snd u_v).

Function merge (u_v : list Z * list Z)
{measure plus_length u_v} : list Z :=
match u_v with
| (nil,v) => v
| (u,nil) => u
| ((a::u’) as u,(b::v’) as v) =>

if Zle_bool a b
then a::(merge (u’,v))
else b::(merge (u,v’))

end.

On General Recursion

More examples

Merge

We want to prove that, if u and v are sorted, then merge (u,v) is
sorted too.

Inductive sorted : list Z -> Prop :=
| sorted_nil : sorted nil
| sorted_single : forall a, sorted (a::nil)
| sorted_2 : forall a b l, a ≤ b -> sorted (b::l) ->

sorted (a::b::l).

Hint Constructors sorted.

Lemma sorted_merge_0: forall u_v, sorted (fst u_v) ->
sorted (snd u_v) ->
sorted (merge u_v).

On General Recursion

More examples

Merge

intro u_v; functional induction (merge u_v) ;simpl.

The tactic call functional induction (merge u v) considers 4
situations, each one corresponding to the possible results (in blue).
When needed, an induction hypothesis is generated for the
recursive calls (in red).

On General Recursion

More examples

Merge

The first subgoal corresponds to the case where u is empty :

(* match u_v with
| (nil,v) => v
...

*)

v : list Z
============================
sorted nil -> sorted v -> sorted v

The second subgoal is quite the same (up to symmetry).

On General Recursion

More examples

Merge

Let us consider the third subgoal :

(*...
| ((a::u’) as u,(b::v’) as v) =>
if Zle_bool a b then a::(merge (u’,v))
...*)

e0 : Zle bool a b = true
IHl : sorted u’ -> sorted (b :: v’) ->

sorted (merge (u’, b :: v’))
H : sorted (a :: u’)
H0 : sorted (b :: v’)
============================
sorted (a :: merge (u’, b :: v’))

On General Recursion

More examples

Merge

e0 : Zle_bool a b = true
IHl : sorted u’ -> sorted (b :: v’) ->

sorted (merge (u’, b :: v’))
H : sorted (a :: u’)
H0 : sorted (b :: v’)
============================
sorted (a :: merge (u’, b :: v’))

Inversion on H and H0 leads to consider some cases :

I u′ = nil or u′ = a0 :: w (with a ≤ a0)

I v ′ = nil or v ′ = b0 :: v ′′ (with b ≤ b0)

I comparison of a0 with b0

On General Recursion

More examples

Merge

For instance, in the following situation :

e0 : Zle_bool a b = true
IHl : sorted (a0 :: w) ->

sorted (b :: nil) ->
sorted (merge (a0::w, b :: nil))

H : sorted (a :: a0 :: w)
H2 : a ≤ a0
H3 : sorted (a0 :: w)
H4 : sorted (b :: nil)
============================
sorted (a :: merge (a0 :: w, b :: nil))

Using merge_equation (twice), then comparing a0 and b helps us
to solve the goal.

On General Recursion

More examples

Merge

H2 : a ≤ a0
H3 : sorted (a0::w)
IHl : sorted (a0::w) -> sorted (b::nil) ->

sorted (a0::merge (w,b::nil))
eg : Zle bool a0 b = true
===
sorted (a::a0::merge (w, b::nil))
auto.

On General Recursion

More examples

Binary Search

Binary Search

Function search (bounds : Z*Z){wf R bounds} :
option Z :=
let (from,to) := bounds in
if Zle_bool from to
then
let m := middle from to in
if Zeq_bool x (a m)
then Some m
else if andb (Zle_bool from (m-1)) (Zlt_bool x (a m))
then search (from, m-1)
else if Zle_bool (m +1) to

then search (m+1, to)
else None

else None.

On General Recursion

More examples

Binary Search

We want to prove, for instance, that if the array a is sorted from
from to to, and search a x (from, to) returns None then x
doesn’t occur in a. More precisely :

forall from to : Z,
from ≤ to ->
sorted from to ->
search (from, to) = None ->

forall k : Z, from ≤ k ≤ to -> a k <> x

On General Recursion

More examples

Binary Search

As for merge, the proof has the following main steps :
Conversion of the statement into the following form :

H’ : from ≤ to
p := (from, to) : Z * Z
H : sorted from to
H0 : search p = None
k : Z
H1 : from ≤ k ≤ to
H2 : a k = x
============================
False

Then do functional induction (search p).

On General Recursion

More examples

Binary Search

We have to solve some goals like the following one (where
from < m ≤ to and x < a(m))

H’ : from ≤ to
H : sorted from to
m := middle from to : Z
H0 : search (from, m - 1) = None
H1 : from ≤ k ≤ to
IHo : from ≤ m - 1 -> sorted from (m - 1) ->

search (from, m - 1) = None ->
from ≤ k ≤ m - 1 -> a k <> x

H3 : from ≤ m - 1
H4 : x < a m
m_1 : from ≤ m ≤ to
============================
a k <> x

On General Recursion

More examples

Binary Search

Conclusion and exercises

I Complete the example on merge.

I (difficult) Prove that Zlt is not well-founded.
Hint :

1. Assume Zlt is well-founded,
2. Define the following function :

Function loop (z:Z){wf Zlt z} : Z:= loop(z-1).

3. Prove that for all z , loop z = loop z + 1
4. Get a contradiction from all that.

	Where structural recursion is not enough
	Bounding the number of calls to a recursive function
	Using Measures over Natural Numbers
	Well-founded Relations
	Testing your function
	Correctness Proofs
	More examples
	Merge
	Binary Search

