
Coq Summer School

Yves Bertot

Introduction

I Welcome!

I Coq from the practical side
I But Theory has practical bene�ts, too.

I Start from what we expect you know: programming
I Need to learn a new programming language!

I Learn to state assertions about programs
I Need to learn a logical language

I Verify that the assertions do hold

I Need to learn how to prove statements

Week plan

I Today: basics about simple computations on numbers

I Tuesday: logical formulas and basic proofs

I Wednesday: more data-structures, starting with lists

All facets addressed, but small expressive power

I Thursday: Inductive predicates and dependent types

I Friday: dependent types in programming and recursion

Speakers and advisors

Speakers

I Assia Mahboubi: INRIA Researcher
I mathematical proofs and proof automation

I Pierre Castéran: University Lecturer
I Co-author of Coq'Art, formal methods

I Pierre Letouzey: University Lecturer
I Derivation of programs from proofs, libraries

I Yves Bertot: INRIA Researcher
I Co-author of Coq'Art, programming languages, geometry

Advisors for afternoon sessions

I Stéphane Glondu: PhD student
I Derivation of programs from proofs

I Francesco Zappa Nardelli: INRIA Researcher
I Programming languages

Interacting with Coq

There is no command called coq

I A command line interpreter : coqtop
I Commands to de�ne, evaluate expressions, or query the

internal database
I Outputs can be small data or complete listings

I User-interface support
I Have a window where commands from the user are stored
I Have one or two windows to display results of commands
I Show the state by coloring commands (become read-only)

I User-interfaces: coqide, Emacs/Proof-general, proofweb

I A batch compiler coqc
I Converts source �les (su�xe .v) into pre-compiled �les (.vo).

Expressions in Coq

I Programming in Coq: giving names to expressions

I Analogy in programming in C or Java
I left-hand sides of assignments
I arguments to procedure or method calls

I A command to verify if an expression is well-formed Check
I Check 3.

3 : nat
I Check 3 + 5.

3 + 5 : nat
I Check true.

true : bool
I Check 3 + true.

Error: The term "true" has type "bool"

while it is expected to have type "nat".

Finding functions

I Find functions by using Search.
I the argument is the name of the returned type.
I Search nat.

O: nat

S: nat -> nat

pred: nat -> nat

plus: nat -> nat -> nat

mult: nat -> nat -> nat

minus: nat -> nat -> nat

I Several arrows when the function has several arguments

I Functions with several arguments can be used with only one
I Implicit parentheses on the right

nat -> nat -> nat ≡ nat -> (nat -> nat)

Using functions

I write the function on the left of the argument

I use parentheses only when necessary to avoid ambiguity
I Check plus 3.

plus 3 : nat -> nat
I Check plus 3 (plus 4 5).

3 + (4 + 5) : nat
I Implicit parentheses on the left

plus 3 5 ≡ (plus 3) 5

Constructing functions

I The function that maps x to e written

fun x => e

I Examples
I Check fun x => x + 3.

fun x : nat => x + 3 : nat -> nat
I Check (fun x => x + 3) 5.

(fun x : nat => x + 3) 5 : nat

I Functions are values, like anything else.
I Check fun x : nat -> nat => x (x (x 3)).

fun x : nat -> nat => x (x (x 3)) : nat -> nat

De�ning values and functions

I Keywords Definition and :=

I Give a name to a value, the value may be a function.
I Definition a_big_number := ((123 * 1000) + 456) *

1000 + 789.
I Definition iter3on3 := fun x => x (x (x 3)).

I Alternative syntax for functions
I Definition iter3on3 f := f (f (f 3)).

Definition iter3on3 (f : nat -> nat) :=

f (f (f 3)).

Local de�nitions

I De�ne intermediate results

I Forget after returning the main result

I Use a local name for some expression

I notation : let x := ... in ...

I Example

Check let x := 3 in x * (x + x).

Check let x := 3 in x * (x + x) : nat

Evaluating expressions

I Symbolic evaluation
I Eval vm_compute in iter3on3 (plus 3).

= 12 : nat
I vm_compute can be replaced with lazy and other reduction

strategies

I Beware that Coq is only a symbolic evaluation engine,

e�ciency not guaranteed

I Other approach: derive an Ocaml program and compile it!
I See Extraction

I Motto: write your program in Coq, perform small tests (when

possible) and proofs, then extract and obtain high-guarantee

software

Notations

I Nicer syntax for frequent constructs

I Same notation for di�erent concepts
I A * B : cartesian product, natural number multiplication, or

integer multiplication
I 5 : natural number S (S (S (S (S O)))) or integer

Zpos (xI (xO xH))
I Check S (S (S O)).

3 : nat

I What is behind a notation : Locate.
I Locate "_ * _".

Notation Scope

"x * y" := prod x y : type_scope

"n * m" := mult n m : nat_scope

(default interpretation)
I Locate "*".

Prede�ned boolean type

I boolean value : true and false

I control structure : if ... then ... else ...

I functions andb, orb, negb

I Extra functions when loading the package Bool.
I Require Import Bool.
I In�x notations &&, andb, ||, orb

I Find functions using the Search command.

I Beware: intuitive notations often not boolean

I Shows a distinction between programming and logical
reasoning

I Check fun x y:nat => if x <= y then 0 else 1.

Error: The term "x <= y" has type "Prop"

which is not a (co-)inductive type.

Natural numbers

I Simple, theoretical, representation, but ine�cient
I addition, +, subtraction, -, multiplication *
I Unusual behavior for subtraction: 3 - 5 = 0

I More functions after Require Import Arith.
I beq_nat, leb (comparison)

I Examples
I Definition evenb x :=

beq_nat (2 * Div2.div2 x) x.
I Definition Collatz x :=

if evenb x then Div2.div2 x else 3*x+1.

Integers

I Positive and negative numbers, with better e�ciency

I Available only after Require Import ZArith.

I addition, subtraction, multiplication, exponent � ,

I Notations as for natural numbers after Open Scope Z_scope.

I Zle_bool, Zlt_bool, Zeq_bool, Zeven_bool division /,

square root,

I An iterator: able to repeat any function from a type to itself
from a given initial

I Definition ZCollatz (x : Z) :=

if Zeven_bool x then x / 2 else 3 * x + 1.
I Eval vm_compute in iter 10 Z ZCollatz 31.

= 242 : Z

I Note that the function's second argument is the type in which

iterations occur.

pairs and tuples

I For any two types A B, A * B is also a type

I Elements of the type are pairs, written (a, b).

I Accessing elements of a pair is done with the following

construct: let (a, b) := ... in ...

I The names a and b are local names

I the notation (1, 2, 3) stands for ((1, 2), 3)

I Example:
I Definition fact (x:Z) :=

let (_, r) :=

iter x (Z * Z)

(fun p => let (n, r) := p in (n+1, n * r))

(1, 1) in r.

Eval vm_compute in fact 100.

Lists

I Collections of data of the same type, to replace arrays

I Require Import List.

I Constructed from the empty list by adding elements in front of

existing lists

I Accessed using hd and nth, with obligation to give a value for

the default cases

I Notations: 1::2::3::nil.

I Peculiarity of nil: empty list of a given type, which must be

guessed from the context.

I Check nil.

Error: Cannot infer the implicit parameter A of

nil

I Check nil:list nat.

Programming with lists

I pre-de�ned functions: app (++), length, map, filter, seq,

rev, combine

I Iterators: fold_left and fold_right.

Require Import ZArith List.

Open Scope Z_scope.

Definition mx_row (M :list (list Z)) (n:nat) :=

nth n M nil.

Definition mx_col (M :list (list Z)) (n:nat) :=

map (fun row => nth n row 0) M.

Programming with lists

Definition vec_sum (v : list Z) :=

fold_right Zplus 0 v.

Definition pairwise_mult (V1 V2 : list Z) :=

map (fun (p : Z * Z) => let (x,y) := p in x*y)

(combine V1 V2).

Definition vec_prod (V1 V2 : list Z) :=

vec_sum (pairwise_mult V1 V2).

Programming with lists

Definition coord_mx (n m:nat) :=

map (fun i =>

map (fun j => (i, j)) (seq 0 m))

(seq 0 n).

Definition mx_prod (n m p : nat)

(M N:list (list Z)) :=

map (map (fun t : nat*nat =>

let (i, j) := t in

vec_prod (mx_row M i)

(mx_col N j)))

(coord_mx n p).

