Coq Summer School

Yves Bertot

Introduction

- Welcome!
- Coq from the practical side
- But Theory has practical benefits, too.
- Start from what we expect you know: programming
- Need to learn a new programming language!
- Learn to state assertions about programs
- Need to learn a logical language
- Verify that the assertions do hold
- Need to learn how to prove statements

Week plan

- Today: basics about simple computations on numbers
- Tuesday: logical formulas and basic proofs
- Wednesday: more data-structures, starting with lists

All facets addressed, but small expressive power

- Thursday: Inductive predicates and dependent types
- Friday: dependent types in programming and recursion

Speakers and advisors

Speakers

- Assia Mahboubi: INRIA Researcher
- mathematical proofs and proof automation
- Pierre Castéran: University Lecturer
- Co-author of Coq'Art, formal methods
- Pierre Letouzey: University Lecturer
- Derivation of programs from proofs, libraries
- Yves Bertot: INRIA Researcher
- Co-author of Coq'Art, programming languages, geometry

Advisors for afternoon sessions

- Stéphane Glondu: PhD student
- Derivation of programs from proofs
- Francesco Zappa Nardelli: INRIA Researcher
- Programming languages

Interacting with Coq

There is no command called coq

- A command line interpreter : coqtop
- Commands to define, evaluate expressions, or query the internal database
- Outputs can be small data or complete listings
- User-interface support
- Have a window where commands from the user are stored
- Have one or two windows to display results of commands
- Show the state by coloring commands (become read-only)
- User-interfaces: coqide, Emacs/Proof-general, proofweb
- A batch compiler coqc
- Converts source files (suffixe .v) into pre-compiled files (.vo).

Expressions in Coq

- Programming in Coq: giving names to expressions
- Analogy in programming in C or Java
- left-hand sides of assignments
- arguments to procedure or method calls
- A command to verify if an expression is well-formed Check
- Check 3.

3 : nat

- Check 3 + 5 . 3 + 5 : nat
- Check true. true : bool
- Check 3 + true. Error: The term "true" has type "bool" while it is expected to have type "nat".

Finding functions

- Find functions by using Search.
- the argument is the name of the returned type.
- Search nat.

$$
0 \text { : nat }
$$

S: nat -> nat
pred: nat -> nat
plus: nat -> nat -> nat
mult: nat -> nat -> nat
minus: nat -> nat -> nat

- Several arrows when the function has several arguments
- Functions with several arguments can be used with only one
- Implicit parentheses on the right

```
nat -> nat -> nat \equiv nat -> (nat -> nat)
```


Using functions

- write the function on the left of the argument
- use parentheses only when necessary to avoid ambiguity
- Check plus 3.

```
plus 3 : nat -> nat
```

- Check plus 3 (plus 4 5).

$$
3+(4+5): \text { nat }
$$

- Implicit parentheses on the left

$$
\text { plus } 35 \equiv \text { (plus } 3) 5
$$

Constructing functions

- The function that maps x to e written fun $x=>e$
- Examples
- Check fun $x=x+3$. fun x : nat $=>x+3$: nat $->$ nat
- Check (fun $x=>x+3$) 5 . (fun x : nat $\Rightarrow x+3$) 5 : nat
- Functions are values, like anything else.
- Check fun x : nat -> nat $=>\mathrm{x}(\mathrm{x}(\mathrm{x} 3)$).
fun x : nat -> nat $=>$ x (x (x 3) : nat -> nat

Defining values and functions

- Keywords Definition and :=
- Give a name to a value, the value may be a function.
- Definition a_big_number $:=((123 * 1000)+456)$ * $1000+789$.
- Definition iter3on3 := fun $x=>x(x$ (x 3$)$).
- Alternative syntax for functions
- Definition iter3on3 f := f (f (f 3)). Definition iter3on3 (f : nat -> nat) := f (f (f 3)).

Local definitions

- Define intermediate results
- Forget after returning the main result
- Use a local name for some expression
- notation: let x := ... in ...
- Example

Check let x := 3 in $\mathrm{x} *(\mathrm{x}+\mathrm{x})$.
Check let x := 3 in $\mathrm{x} *(\mathrm{x}+\mathrm{x})$: nat

Evaluating expressions

- Symbolic evaluation
- Eval vm_compute in iter3on3 (plus 3).
= 12 : nat
- vm_compute can be replaced with lazy and other reduction strategies
- Beware that Coq is only a symbolic evaluation engine, efficiency not guaranteed
- Other approach: derive an Ocaml program and compile it!
- See Extraction
- Motto: write your program in Coq, perform small tests (when possible) and proofs, then extract and obtain high-guarantee software

Notations

- Nicer syntax for frequent constructs
- Same notation for different concepts
- A * B : cartesian product, natural number multiplication, or integer multiplication
- 5 : natural number S (S (S (S (S 0)))) or integer Zpos (xI (x0 xH))
- Check S (S (S O)). 3 : nat
- What is behind a notation : Locate.
- Locate "_ * _". Notation Scope
"x * y" := prod x y : type_scope
"n * m" := mult n m : nat_scope
(default interpretation)
- Locate "*".

Predefined boolean type

- boolean value: true and false
- control structure : if ... then ... else ...
- functions andb, orb, negb
- Extra functions when loading the package Bool.
- Require Import Bool.
- Infix notations \&\&, andb, ||, orb
- Find functions using the Search command.
- Beware: intuitive notations often not boolean
- Shows a distinction between programming and logical reasoning
- Check fun x y:nat \Rightarrow if $x<=y$ then 0 else 1. Error: The term "x <= y" has type "Prop" which is not a (co-)inductive type.

Natural numbers

- Simple, theoretical, representation, but inefficient
- addition, +, subtraction, -, multiplication *
- Unusual behavior for subtraction: 3-5 = 0
- More functions after Require Import Arith.
- beq_nat, leb (comparison)
- Examples
- Definition evenb x := beq_nat (2 * Div2.div2 x) x.
- Definition Collatz x :=
if evenb x then Div2.div2 x else $3 * x+1$.

Integers

- Positive and negative numbers, with better efficiency
- Available only after Require Import ZArith.
- addition, subtraction, multiplication, exponent ^ ,
- Notations as for natural numbers after Open Scope Z_scope.
- Zle_bool, Zlt_bool, Zeq_bool, Zeven_bool division /, square root,
- An iterator: able to repeat any function from a type to itself from a given initial
- Definition ZCollatz (x : Z) :=
if Zeven_bool x then $\mathrm{x} / 2$ else $3 * \mathrm{x}+1$.
- Eval vm_compute in iter 10 Z ZCollatz 31.
$=242$: Z
- Note that the function's second argument is the type in which iterations occur.

pairs and tuples

- For any two types A B, A * B is also a type
- Elements of the type are pairs, written (a, b).
- Accessing elements of a pair is done with the following construct: let (a, b) := ... in ...
- The names a and b are local names
- the notation $(1,2,3)$ stands for $((1,2), 3)$
- Example:
- Definition fact (x:Z) := let (_, r) := iter x (Z * Z)
(fun $p=>$ let (n, r) $:=p$ in ($n+1, n * r$)
$(1,1)$ in r.
Eval vm_compute in fact 100.

Lists

- Collections of data of the same type, to replace arrays
- Require Import List.
- Constructed from the empty list by adding elements in front of existing lists
- Accessed using hd and nth, with obligation to give a value for the default cases
- Notations: 1::2::3::nil.
- Peculiarity of nil: empty list of a given type, which must be guessed from the context.
- Check nil.

Error: Cannot infer the implicit parameter A of nil

- Check nil:list nat.

Programming with lists

- pre-defined functions: app (++), length, map, filter, seq, rev, combine
- Iterators: fold_left and fold_right.

Require Import ZArith List.
Open Scope Z_scope.

Definition mx_row (M :list (list Z)) (n:nat) := nth n M nil.

Definition mx_col (M :list (list Z)) (n:nat) := map (fun row => nth n row 0) M.

Programming with lists

Definition vec_sum (v : list Z) := fold_right Zplus 0 v.

Definition pairwise_mult (V1 V2 : list Z) := $\operatorname{map}(f u n(p: Z * Z)=>$ let $(x, y):=p$ in $x * y)$ (combine V1 V2).

Definition vec_prod (V1 V2 : list Z) := vec_sum (pairwise_mult V1 V2).

Programming with lists

Definition coord_mx (n m:nat) := map (fun i =>

$$
\operatorname{map}(f u n j=>(i, j))(\text { seq } 0 \mathrm{~m}))
$$

$$
(\operatorname{seq} 0 \mathrm{n})
$$

Definition mx_prod (n m p : nat)
(M N:list (list Z)) :=
map (map (fun t : nat*nat =>

$$
\begin{aligned}
& \text { let }(i, j):=t \text { in } \\
& \text { vec_prod (mx_row } M \text { i) } \\
& \left.\left.\qquad\left(m x _c o l ~ N ~ j\right)\right)\right)
\end{aligned}
$$

(coord_mx n p).

