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Constant propagation

A simple, and innocuous, optimisation:

x = 14
Source code y = 7 — x / 2
x = 14 x = 14

Optimised code

3 lec2 - 24 January 2019



Shared memory concurrency

Shared memory

x =1
Thread 1 if (y ==
print x
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Shared memory concurrency

Shared memory

x =1
Thread 1 if (y ==
print x

Intuitively this program always prints O
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Shared memory concurrency
But if the compiler propagates the constant x = 1...
X =y =20
x =1

if (y == 1)
print x

Thread 1
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Shared memory concurrency

But if the compiler propagates the constant x = 1...

X =y =20
x =1 1if (x == 1) {
Thread 1 if (Y __ 1) x = 0 Thread 2
print-X- y =1}
print 1

...the program always writes 1 rather than O.
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The fundamental problem

The programmer wants
to understand the code
he writes
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The compiler (and the
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Background: lock and unlock

e Suppose that two threads increment a shared memory location:
x =0

tmpl = *Xx; tmp2 = *X;
*x = tmpl + 1; [*x = tmp2 + 1;

e |f both threads read 0, (even in an ideal world) x == 1 is possible:

tmpl = *x; tmp2 = *x; *x = tmpl + 1; *x = tmp2 +1
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Background: lock and unlock

¢ |_ock and unlock are primitives that prevent the two threads from
interleaving their actions.

x =0
lock(); lock();
tmpl = *x; tmp2 = *x;
*x = tmpl + 1; [*xX = tmp2 + 1;
unlock(); unlock();

® |n this case, the interleaving below is forbidden, and we are
guaranteed that x == 2 at the end of the execution.

LY

‘Qmﬁ\ mpl = *xX; tmp2 = *x; *x = tmpl + 1; *x = tmp2 +1
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I_azy Iﬂ Itlal ISatIOﬂ (an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never
used (e.g. device drivers code). Compare:

int x = computeInitValue(); // eager initialization

// clients refer to x

with:

int xValue() {

static int x = computelInitValue(); // lazy initialization
return Xx;

}oe.. // clients refer to xValue()
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The singleton pattern

Lazy initialisation is a pattern commonly used. In C++ you would write:

class Singleton {

public:
static Singleton *instance (void) {
if (instance == NULL)
instance = new Singleton;
return instance ;
}
- // other methods omitted
private:

static Singleton *instance ; // other fields omitted

}i

Singleton::instance () -> method ();

But this code is not thread safe! Why?
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Making the singleton pattern thread safe

A simple thread safe version:

class Singleton {
public:
static Singleton *instance (void) {

Guard<Mutex> guard (lock ); // only one thread at a time
i1f (instance == NULL)

instance = new Singleton;
return instance ;
private:

static Mutex lock ;
static Singleton *instance_;

}i

Every call to instance must acquire and release the lock: excessive overhead.
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Obvious (broken) optimisation

class Singleton {

public:
static Singleton *instance (void) {
i1f (instance == NULL) {
Guard<Mutex> guard (lock ); // lock only if unitialised
instance = new Singleton; }
return instance ;
}
private:

static Mutex lock ;
static Singleton *instance_;

}i

Exercise: why is it broken?
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Clever programmers use double-check locking

class Singleton {
public:
static Singleton *instance (void) {
// First check
if (instance == NULL) {
// Ensure serialization
Guard<Mutex> gquard (lock );
// Double check

if (instance == NULL)
instance = new Singleton;
}
return instance ;
}
private: [..]

}i

ldea: re-check that the Singleton has not been created after acquiring the lock.
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Double-check locking: clever but broken

The instruction
instance = new Singleton;
does three things:

1) allocate memory
2) construct the object

3) assign to instance the address of the memory

Not necessarily in this order! For example:

instance = // 3
operator new(sizeof(Singleton)); // 1
new (instance ) Singleton // 2

If this code is generated, the order is 1,3,2.

14
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Broken...

if (instance == NULL) { // Line 1
Guard<Mutex> guard (lock );
if (instance == NULL) {
instance =
operator new(sizeof(Singleton)); // Line 2

new (instance ) Singleton; }}

Thread 1:
executes through Line 2 and is suspended; at this point, instance_ is non-
NULL, but no singleton has lbeen constructed.

Thread 2:
executes Line 1, sees instance_ as non-NULL, returns, and dereferences
the pointer returned by Singleton (i.e., instance_).

Thread 2 attempts to reference an object that is not there yet!
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The fundamental problem

Problem: You need a way to specify that step 3 come after steps 1 and 2.
There is no way to specify this in C++

Similar examples can be built for any programming language. ..
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That pesky hardware (1)

Consider misaligned 4-byte accesses
int32 t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

® n-pbytes on an n-byte boundary (n = 1,2,4,16)

® PG or later: ... or if unaligned but within a cache line

Question: what about multi-word high-level language values”

17-1
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That pesky hardware (1)

Consider misaligned 4-byte accesses
int32 t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

(Disclaime

Intel SDN This is called a out-of-thin air read:
® n-byte the program reads a value

® PG or | that the programmer never wrote.

Question"
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That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread O Thread 1
x =1 y =1
print y print x
| Thread e | Thread
At the end of some executions: I P ‘ i
00 5 5
IS printed on the screen, g'i — % —
both on x86 and Power/ARM). s .
1 l

Shared Memory
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That pesky hardware (2)

...and differ between architectures...

Thread 0O Thread 1
x = 1 print y Thread,
y =1 print x -

At the end of some executions:

1 0

IS printed on the screen on Power/ARM
but not on x86.

19 lec2 - 24 January 2019



Compilers vs. programmers
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Compilers vs. programmers

Tension:
® the programmer wants to understand the code he writes
® the compiler and the hardware want to optimise it.

Which are the valid optimisations that the compiler or the hardware
can perform without breaking the expected semantics of a concurrent
program?

Which is the semantics of a concurrent program?
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This lecture

Programming language models
1) defining the semantics of a concurrent programming language
2) data-race freedom

3) soundness of compiler optimisations

Previous lecture: hardware models
1) why are industrial specs so often flawed?
focus on x86, with a glimpse of Power/ARM

2) usable models: x86-TSO, PowerARM
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World of optimisations

A typical compiler performs many optimisations.

gcc 4.4.1. with =02 option goes through 147 compilation passes.

computed using -fdump-tree-all and —fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes with each pass
composed of one or more smaller passes.

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends

23
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World of optimisations

A typical compiler performs many optimisations.

— Common subexpression elimination
(copy propagation, partial redundancy elimination, value numbering)

— (conditional) constant propagation
— dead code elimination
— loop optimisations
(loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
— vectorisation
— peephole optimisations
— tail duplication removal
— building graph representations/graph linearisation
— register allocation
— call inlining
— local memory to registers promotion
— spilling
— instruction scheduling
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World of optimisations

However only some optimisations change shared-memory traces:

— Common subexpression elimination
(copy propagation, partial redundancy elimination, value numbering)

— (conditional) constant propagation
— dead code elimination
— loop optimisations
(loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
— vectorisation
— peephole optimisations
— tail duplication removal
— building graph representations/graph linearisation
— register allocation
— call inlining
— local memory to registers promotion
— Spilling
— instruction scheduling
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What is an optimisation?

Compiler Writer Semanticist
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What is an optimisation?

Compiler Writer Semanticist

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST
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What is an optimisation?

Compiler Writer Semanticist

B
’I - Q”\‘“ -

Sophisticated program analyses

(

Fancy algorithms
Source code or IR

Operations on AST

for (int 1i=0; 1i<2; 1i++) {
z = 1;
x[i] +=Yt+1 ;

}
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What is an optimisation?

Compiler Writer Semanticist

B
’I - Q”\‘“ -

Sophisticated program analyses

Fancy algorithms [

Source code or IR

Operations on AST

tmp =y+1 ;

for (int 1i=0; 1i<2; 1i++) {
z = 1;
x[1] +=tmp ;

}
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What is an optimisation?

Compiler Writer Semanticist

-(! \ '\ ‘

Elimination of run-time events
Reordering of run-time events
Introduction of run-time events

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST Operations on sets of events

tmp =y+1 ;
for (int 1i=0; 1i<2; 1i++) {
zZ = 1;

x[1] +=tmp ;

}
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What is an optimisation?

Compiler Writer

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;

for (int 1i=0; 1i<2; 1i++) {
z = 1;
x[1] +=tmp ;

}

26-6

Semanticist

Elimination of run-time events
Reordering of run-time events
Introduction of run-time events

Operations on sets of events

Store z 0
Load y 42
Store x[0] 43
Store z 1
Load y 42
Store x[1] 43
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What is an optimisation?

Compiler Writer

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;

for (int 1i=0; 1i<2; 1i++) {
z = 1;
x[1] +=tmp ;

}

26-7

Semanticist

Elimination of run-time events
Reordering of run-time events
Introduction of run-time events

Operations on sets of events

Load y 42
Store z 0

Store x[0] 43
Store z 1

Store x[1] 43
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Eliminations

This includes common subexpression elimination, dead read
elimination, overwritten write elimination, redundant write elimination.

Irrelevant read elimination:

r=*x; C » C
where r Is not free in C.

Redundant read after read elimination:

rl=*x; r2=*x -» rl=*x; r2=rl

Redundant read after write elimination:

*x=rl; r2=*x > *x=rl; r2=rl

27 lec2 - 24 January 2019



Reordering

Common subexpression elimination, some loop optimisations, code
motion.

Normal memory access reordering:
rl=*x; r2=*y - r2=*y; rl=*x
*x=rl; *y=r2 - *y=r2; *x=rl

rl=*x; *y=r2 & *y=r2; rl=*x

Roach motel reordering:
memop; lock m » lock m; memop
unlock m; memop - memop; unlock m

where memop is *x=rl or rl=*x
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Memory access introduction

Can an optimisation introduce memory accesses?

Yes, but rarely:

i = 0; i = 0;
c e - .
while (1 != 0) { tmp = *Xx;
j = *x + 1; while (i != 0) {
i =1-1} J = tmp + 1;
i=1i-1 }

Note that the loop body is not executed.

29-1
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Memory access introduction

Back to our question now:

Which is the semantics of a concurrent program?
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Naive answer: enforce sequential consistency
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Sequential consistency

Multiprocessors have a sequentially consistent shared memory when:

...the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program...

Lamport, 1979.

Thread eoe Thread

Shared RAM




Compilers, programmers & sequential consistency
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Compilers, programmers & sequential consistency
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Compilers, programmers & sequential consistency

Com llers

y Prmcuples Techniques,
“d, and Tools

Expensive
to implement

Simple and intuitive
programming model
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A Case for an SC-Preserving Compiler

Daniel Marino! ~ Abhayendra Singh®  Todd Millstein' ~ Madanlal Musuvathi*  Satish Narayanasamy*

"University of California, Los Angeles " University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases 1n
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

Expensive
to implement

And this study supposes that the hardware is SC.
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SC and hardware

The compiler must insert enough synchronising instructions to prevent
hardware reorderings. On x86 we have:

« MFENCE Initial: [X]:O A [y]=0 1
. proc proc
flush the local write buffer MOV X8 MOV [y]—$1
, MFENCE MFENCE
e LOCK prefix (e.g. CMPXCHG) MOV EAX<[y] | MOV EBX«[x]
flush the local write buffer Forbid: EAX=0 A EBX=0
globally lock the memory
Initally, [100] =0 proc:0 proc:1

Atthe end, [100] =2 | LOCK; INC [100] | LOCK; INC [100]

These consumes hundreds of cycles... ideally should be avoided.

Naively recovering SC on x86 incurs in a ~40% overhead.
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A Case for an SC-Preserving Compiler

Daniel Marino! ~ Abhayendra Singh®  Todd Millstein’  Madanlal Musuvathi*  Satish Narayanasamy*

"University of California, Los Angeles " University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases 1n
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maxim — E— — e
progran
and SPI

What is an SC-preserving compiler?

When is a compiler correct?

And this st
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When is a compiler correct?

A compiler is correct if any behaviour of the compiled
program could be exhibited by the original program.

l.e. for any execution of the compiled program, there is an execution of
the source program with the same observable behaviour.

Intuition: we represent programs as sets of memory action traces,
where the trace is a sequence of memory actions of a single thread.

Intuition: the observable behaviour of an execution is the subtrace of
external actions.
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Example

rl = xx; r2 = *x;
Pr=%xx =1

if ri=r2 then print 1 else print 2
Py—%x = 1 rl = *x; r2 = ri;

if ri=r2 then print 1 else print 2

Is the transformation from P1 to P2 correct (in an SC semantics)?
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Example

rl = *x; r2 = *Xx;
Pir=xx =1
if ri1=r2 then print 1 else print 2
1 = x%xx; r2 = ri;
Py=xx =1 I‘ *t r_ '
if ri=r2 then print 1 else print 2
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Example

rl = *x; r2 = *Xx;
Pir=xx =1
if ri1=r2 then print 1 else print 2
1 = %x; r2 = ri;
Py=xx =1 I‘ *t r_ '
if ri=r2 then print 1 else print 2

Executions of P1:
W, z=1,R,, z=1,R,, z=1,P, 1
Ry, z=0,W, z=1,R, z=1,P, 2
RtZ CC:O, Rt2 51320, th 51?21, Ptg 1
RtZ CU:O, Rt2 :U:O, Ptg 1, th 33:1

38-2 lec2 - 24 January 2019



Example

rl = xx; r2 = *x;
P1 = xx = 1
if ri1=r2 then print 1 else print 2
Py —%x = 1 rl = xx; r2 = ri;
if ri=r2 then print 1 else print 2
Executions of P1: Executions of P2:
W, z=1,R,, z=1,R,, z=1,P, 1 Wi, =1, Ry, 2=1,P,, 1
Ry, =0, W, z=1,R, z=1,P, 2 R, z=0, W, z=1,P, 1
RtZ CC:O, Rt2 51320, th 51?21, Ptg 1 Rt2 CB:O, Ptg 1, th le

RtZ CU:O, Rt2 :U:O, Ptg 1, th 33:1
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Example
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Executions of P1:
W, z=1,R,, z=1,R,, z=1,P, 1
Ry, z=0,W, z=1,R, z=1,P, 2
RtZ CC:O, Rt2 51320, th 51?21, Ptg 1
RtZ CU:O, Rt2 :U:O, Ptg 1, th 33:1

Behaviours of P1: [P, 1], [P, 2]

38-4

rl = *x; r2 = *Xx;
if ri1=r2 then print 1 else print 2

rl = xx; r2 = ri;
if ri=r2 then print 1 else print 2

Executions of P2:

th 3321, Rt2 :Czl, Ptg 1
Rt2 CL':O, th le, Pt2 1
Rtg CU:O, Ptg 1, th le

Behaviours of P2: [P, 1]
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Example

rl = *x; r2 = *Xx;
Pr=xx=1] . .
if ri1=r2 then print 1 else print 2
rl = xx; r2 = ri;
Py=x*x =1/ . .
if ri=r2 then print 1 else print 2
Execyticne of D1 . Execiitions of P2-

R, It is correct to rewrite P1 into P2, but not the opposite!

Behaviours of P1: [P, 1], [P, 2] Behaviours of P2: [P, 1]
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General CSE incorrect in SC

xx = 1; if *x=1 then (
xy = 1; XX = 2;

if *xy = 2 Xy = 2

then print *x )

There is only one execution with a printing behaviour:

W, z=1,W, y=1,R, z=1,W,; z=2,W, y=2,R, y=2,R, z=2,P, 2

40 lec2 - 24 January 2019



General CSE incorrect in SC

xx = 1; if *x=1 then (
xy = 1; XX = 2;

if *xy = 2 Xy = 2

then print *x )

But a compiler would optimise to:

xx = 1; if *x=1 then (
xy = 1, XX = 2;

if *y = 2 Xy = 2

then print 1 )
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General CSE incorrect in SC

xx = 1; if *x=1 then (
xy = 1; X = 2;

if *xy = 2 Xy = 2

then print 1 )

The only execution with a printing behaviour in the optimised code is:

W, z=1,W, y=1,R, z=1,W, z=2,W, y=2,R, y=2,P, 1

So the optimisation is not correct.
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General CSE incorrect in SC

*X 1; r = %X;

xy = 1; print r;

Our first example highlighted that CSE is incorrect in SC.

Here is another example.

P;, 1,P;, 0,Py 1]
Py, 0,P;, 1,P;, 1
P;, 0,P;, 0,Py 1]
P, 0,P;, 0,P;, 0
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General CSE incorrect in SC

*x = 1; r = *X;

xy = 1; print r;
print *y;
print *x;

The observable behaviours are (note that O - 1 - O is not observable):
Py, 1,P;, 1,P; 1
P;, 1,P;, 0,Py 1]
Py, 0,P;, 1,P;, 1
P;, 0,P;, 0,Py 1]
P, 0,P;, 0,P;, 0
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General CSE incorrect in SC

*x = 1; r = *X;

xy = 1; print r;
print *y,
print *x;

But a compiler would optimise as:

*x = 1; r = *X;

xy = 1; print r;
print *y;
print r;
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General CSE incorrect in SC

*¥x = 1; r = *X; ¥x = 1, r = %X;
¥y = 1; print r; xy = 1; print r;
print *y, print *y;
print *x; print r;
Let's compare the behaviours of the two programs:
Pi, 1,Pg, 1,Pg, 1 :Ptz 1,Py, 1, Py, 1]
Py, 1,P;, 0,P 1] P, 1,P:, 0,P;, 1]
Py, 0,Ps, 1,P;, 1] :Ptz 0,Ps, 1,Py, 0
P;, 0,P;, 0,P 1 P;, 0,P:, 0,P;, 0]
P, 0,P;, 0,P;, 0
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General CSE incorrect in SC

= 1; l r = *X; *x = 1; r *X,;

The optimised program exhibits a new, unexpected, behaviour.

Pi, 1,Pg, 1,Pg, 1 Py, 1, Py, 1, Py, 1]
Py, 1,P;, 0,P 1] P, 1,P:, 0,P;, 1]
P, 0,P;, 1,P;, 1] P, 0,P;, 1,P; 0]
P;, 0,P;, 0,P 1 P;, 0,P:, 0,P;, 0]
P, 0,P;, 0,P;, 0
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Reordering incorrect

xx = 1; Xy = 1, rl = *y xy = 1,
rl = *y r2 = *x; = *x = 1; r2 = *X;
print ril print r2 print ril print r2

Again, the optimised program exhibits a new behaviour:

Dtl 07 th 1 :Dtl 07 th 1:
Dtl 17 th 0 :Dtl 17 th O:
Dtl 17 th 1 .Dtl 17 th 1.

_:)tl 07 th O-
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Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

rl = *x; r2 = *x — rl = xx; r2 = rl

The basic idea: whenever we perform the read r1l = *xin the
optimised program, we perfom both reads in the source program.

(More on this later)
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Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

rl = xx; r2 = *x o rl = *x; r2

rl

Can we define a model that:

1) enables more optimisations than SC, and
2) retains the simplicity of SC?
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The layman solution
orbid data-races




Data-race freedom

Thread O Thread 1
Our examples again: y =1 if *x == 1
*x =1 then print *y

® the problematic transformations
(e.g. swapping the two writes in
thread 0) do not change the meaning of single-threaded programs;

Observable behaviour: 0

® the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).
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Data-race freedom

Our exarn

® the prol
(e.g. sw
thread (

® the pro

...Intuition...
Programming languages provide

synchronisation mechanisms

if these are used (and implemented) correctly,
we might avoid the issues above...

allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).
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The basic solution

Prohibit data races

Defined as follows:

Thread 0O Thread 1
*y = 1 if *g ==
*x =1 then print *y

Observable behaviour: 0

e two memory operations conflict if they access the same memory
location and at least one is a store operation;

® a SC execution (interleaving) contains a data race if two conflicting
operations corresponding to different threads are adjacent (maybe

executed concurrently).

Example: a data race in the example above:

th yzl, th ZL’:]., th $:1, th y:]., Ptz ].
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The basic solution

Prohibit data races

Thread 0O Thread 1
*y = 1 if *g ==
*x =1 then print *y

Defined as follows:

Observable behaviour: 0

® f\wO men

location The definition of data race quantifies only

® 5 SC exd over the sequential consistent executions

operati
executed concurrently).

Example: a data race in the example above:

th y:]., th 33:]., Rtg le, th y:]., Ptg

50-2
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How do we avoid data races? (focus on high-level languages)

e Locks

No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) calls
from other threads balance.

e Atomic variables
Allow concurrent access “exempt” from data races. Called volatile in Java.

Example:

Thread O Thread 1
*y = 1 lock();
lock(); tmp = *Xx;
*x = 1 unlock();

unlock();

if tmp =1

then print *Y |

51
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How do we avoid data races? (focus on high-level languages)

Thread O Thread 1
*y =1 lock();
lock(); tmp = *Xx;
*x =1 unlock();
unlock(); if tmp = 1
then print *y |

This program is data-race free:

*y = 1; lock();*x = 1;unlock(); lockQ);tmp = *x;unlock(); if tmp=1 then print *y
*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); 1f tmp=1

*y = 1; lock(); tmp = *x; unlock(); 1f tmp=1; lock(); *x = 1; unlock();
lockQ);tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1

lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1l;unlock();

lockQ);tmp = *x;unlock(); *y = 1; 1if tmp=1; lock(); *x = 1; unlock();
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How do we avoid data races? (focus on high-level languages)

®lock(),unlock() are opague for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

®lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y
*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*y = 1; lock(); tmp = *x; unlock(); 1f tmp=1; lock(); *x = 1; unlock();
lockQ);tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1

lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1l;unlock();

lockQ);tmp = *x;unlock(); *y = 1; 1if tmp=1; lock(); *x = 1; unlock();

52-2 lec2 - 24 January 2019



How do W Compiler/hardware can continue to reorder accesses
Intuition:
compiler/hardware do not know about threads, but only
®lock(), un racing threads can tell the difference!
potentially m

moved past them

®lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y
*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*y = 1; lock(); tmp = *x; unlock(); 1f tmp=1; lock(); *x = 1; unlock();
lockQ);tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1

lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1l;unlock();

lockQ);tmp = *x;unlock(); *y = 1; 1if tmp=1; lock(); *x = 1; unlock();
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Another example of DRF program

Exercise: is this program DRF?

Thread O

Thread 1

if *x == 1

then *y =1

if *y == ]

then *x =

1
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Another example of DRF program

Exercise: is this program DRF?

Answer: yes!

Thread O

Thread 1

if *x == 1

then *y =1

if *y == ]

then *x =

1

The writes cannot be executed in any SC execution, so they cannot
participate in a data race.
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Another example of DRF program

Exercise: is this program DRF?

Thread O Thread 1

if *x == 1 if *y == 1
then *y =1 then *x = 1

AN

The
par

Data-race freedom is not the ultimate panacea

- the absence of data-races is hard to verify / test (undecidable)

- Imagine debugging: my program ended with a wrong result, then
either my program has a bug OR it has a data-race
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Validity of compiler optimisations, summary

Transformation SC DRF
Memory trace preserving transformations v v
Redundant read after read elimination e v
Redundant read after write elimination e v
Irrelevant read elimination v v
Redundant write before write elimination e v
Redundant write after read elimination 7 v
Irrelevant read introduction v X
Normal memory accesses reordering X v
Roach-motel reordering x (v'for locks) v
External action reordering X v

* Optimisations legal only on adjacent statements.
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Validity of compiler optimisations, summary

Transformation SC

Memory trace preserving transformations v

Jaroslav Sevcik
Safe Optimisations for Shared-Memory Concurrent Programs
PLDI 2011

x (v'for locks)

X

Roach-motel reordering

External action reordering
* Optimisations legal only on adjacent statements.
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Compilers, programmers & data-race freedom

Com llers

Prmcuples, Techniques,
4, and Tools

P e S <N

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman
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Compilers, programmers & data-race freedom

Com llers

) Prmcuples,Technlques,
&fd, andTools

- S <

Can be implemented
efficiently

55-2 lec2 - 24 January 2019



Compilers, programmers & data-race freedom

Com llers

y Prmcuples Techniques,
“d, and Tools

Can be implemented
efficiently

55-3

Intuitive programming
model (but detecting
races is tricky!)
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wa'te }L.'& 4wn

Data-race freedom, formalisation
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A toy language: semantics

location, x shared memory location
register, r thread-local variable
integer, n integers
thread id, t thread identifier
statement, s 1= Statements
r := x read from memory
X =T write to memory
r := n load constant into register
lock lock
unlock unlock
print r output
program, p = S;..;S a program is a sequence of statements
system = concurrent system

| to:po | - | tnipn parallel composition of n threads
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A toy language: semantics

location, x shared memory location
register, r thread-local variable
in

thi]

We work with a toy language, but this approach scales to the full
Java Memory Model or C11/C++11.

Std

ocC
unlock unlock
print r output
program, p = S;..;S a program is a sequence of statements
system = concurrent system

| to:po | - | tnipn parallel composition of n threads
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Traces and tracesets

Definition [trace]: a sequence of memory operations (read, write, thread
start, I/O, synchronisation). Thread start is always the first action of
thread. All actions in a trace belong to the same thread.

Definition [traceset]: a traceset is a prefix-closed set of traces.

Thread O || Thread 1
Sample traceset: r1:=x r2:=y
—r1 x:=1
y: print r2

U {IS(

58-1

1S(0), R[x=v], Wly=]| [ v € V}
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Remarks:

Tri

1. Reads can read arbitrary values from memory.

De 2. Tracesets should not be confused with interleavings. d

stq 3. Tracesets do not enforce receptiveness or determinism:

thri :

{[5(0)], [S(0), R[x=1]], [S(0), W[y=1]]}

De is also a valid traceset for the example below.

Thread O || Thread 1
Sample traceset: r1:=x r2:=y
—rq x:=1
y: print r2

1[5(0), Rlx=v], Wly=v]] | v € V}
U{[5(1), Rly=v], W[x=1], X(v)] | v € V'}

58-2
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Associate tracesets to toy language programs

R[x=v
< S, r := X; s > [ ]: < S[r=v], s >
W[x=S(r
<SS, X :t=r; s > J ( )]; < S, s >
<SS, r :=n; s > —;L»- < S[r=n], s >

< S, lock; s > ._E_> < S, s >

U
< S, unlock; s > — < S5, s >

. X(S(r))
< S, print r; s > » < S, s >

< S, to:po | | thiPn > » < S, pi >
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Tracesets and interleavings

Definition [interleaving]: an interleaving is a sequence of thread-identifier-
action pairs.

Example: y:=1; || r2:=v;print r2;

I' = (0,5(0)) , (1,5(1)), (0, W[y=1]) , {1, R[v=0]) , (1, X(0))]

Given an interleaving /, the trace of tid in | is the sequence of actions of
thread tid in /, e.g.:

trace 7 /"' =[ S(1), R[v=0], X(0) |.

Conversely, given a traceset, we can compute all the well-formed
interleavings (called executions)... (next slide)
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Tracesets and interleavings

An interleaving / is an execution of a traceset 7 if:
- for all tid, tracetid/ e T (traces belong to the traceset)
- tids correspond to entry points S(tid)

- lock / unlock alternates correctly

- each read sees the most recent write to the same location (read/from).

(The last property enforce the sequentially consistent semantics for memory accesses).
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Tracesets and interleavings

An interleaving / is an execution of a traceset 7 if:

- for

- tids

Remarks:
- lo@

1. Interleavings order totally the actions, and do not keep track
- € of which actions happen in parallel.

(The| 2. It is however possible to put more structure on interleavings, pses)-
and recover informations about concurrency.
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Happens-before

Definition [program order]|. program order, <po, IS a total order over the
actions of the same thread in an interleaving.

Definition [synchronises with]: in an interleaving /, index i synchronises-
with index |, i <sw j, if i < and A(l) = U (unlock), A(l) = L (lock).

Definition [happens-before]: Happens-before is the transitive closure of
program order and synchronises with.
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Examples of happens before

Thread 0 Thread 1
*y = 1 lock();
lock(); tmp = *x;
*x =1 unlock();

if tmp = 1
then print *Y |

unlock();

hb S\

/ /N T

Q:W[y=1], 0:L, 0:W[x=1], Q:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1)

\p/\/\/ N \p/\/\/
bK/SK\

0:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U

(ST

S(tid) actions omitted.

PO
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Data-race freedom

Definition [data-race-freedom]. A traceset is data-race free if none of
Its executions has two adjacent conflicting actions from different
threads.

Equivalently, a traceset is data-race free if in all its executions all pairs of
conflicting actions are ordered by happens-before.

Two conflicting accesses
A racy program not related by happens before.

Thread 0 Thread 1 X\

xy = 1 f ky == 0:Wly=1], 1:R[x=0], 0:W[x=1]

*x =1 then print *y \_/

PO
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Data-race freedom: equivalence of definitions

Given an execution

a ++ [a] ++ B ++ [b]

of a traceset T where [a] and [b] are the first conflicting actions not
related by happen-before, we build the interleaving

a++ B' ++ [a] ++ [b]
where B' are all the actions from B that strictly happen-before [b].

It remains to show that a ++ B' ++ [a] ++ [b] is an execution of T.

The formal proof is tedious and not easy (see Boyland 2008, Bohem & Adve 2008,
Sevcik ), here will give the intuitions of the construction on an example.
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Data-race freedom: equivalence of definitions

Thread
Thread

1: x
2: r2

:= 1

’
1= Z;

rl :=

X; print rl;

print r2; x := 2;

2: 5(2)

1: Wr(x,1)

1: Rd(x,1)

2: Rd(z,0)

1: Ext(1)

2: Ext(0)

2: Wr(x,2)

|

O~ 7

2: 5(2)

1: Wr(x,1)

2: Rd(z,0)

2: Ext(0)

1: Rd(x,1)

2: Wr(x,2)

read first

2: 5(2)

2: Wr(x,1)|1: Rd(z,0)

2: Ext(1)

1: Rd(x,1)

2: Wr(x,2)

<

4

2: 5(2)

1: Rd(z,0) |2: Wr(x,1)

1: Rd(x,1)

66
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Option 1

Don't.

No concurrency.

Implemented by highly-successful programming languages (OCaml)

Poor match for current trends
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Option 2

Don't.

No shared memory

A good match for some problems (see Erlang, MPI, ...)
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Option 3

Don't.

But language ensures data-race freedom

Possible:
- syntactically ensuring data accesses protected by associated locks

- fancy effect type systems

Not suitable for general purpose programming.
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Option 4

Don't.

Leave it (sort of) up to the hardware

Example:

MLton, a high performance ML-to-x86 compiler with concurrency
extensions

Accesses to ML refs exhibit the underlying x86-TSO behaviour
(atomicity is guaranteed though)
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Option 5

Do.

Use data race freedom as a definition

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way
Sarita Adve & Mark Hill, 1990 |
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Option 5

Do.

Use data race freedom as a definition

Pro:
- simple
- strong guarantees for most code
- allows lots of freedom for compiler and hardware optimisations

Cons:
- undecidable premise
- can't write racy programs (escape mechanisms?)
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Ada 83

[ANSI-STD-1815A-1983, 9.11] For the actions performed by a program that uses shared

variables, the following assumptions can always be made:

* If between two synchronization points in a task, this task reads a shared variable
whose type is a scalar or access type, then the variable is not updated by any other
task at any time between these two points.

* If between two synchronization points in a task, this task updates a shared variable
whose task type is a scalar or access type, then the variable is neither read nor
updated by any other task at any time between these two points.

The execution of the program is erroneous if any of these assumptions is violated.

Data-races are errors
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Posix Threads Specification

[IEEE 1003.1-2008, Base Definitions 4.11] Applications shall ensure that access to any
memory location by more than one thread of control (threads or processes) is
restricted such that no thread of control can read or modity a memory location while
another thread of control may be modifying it.

Data-races are errors
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C++ 2011

[C++ 2011 FDIS (WG21/N3290) 1.10p21] The execution of a program contains a
data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results
in undefined behavior.

Data-races are errors
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Data race freedom as a definition

® Core of the C11/C++11 standard.
Hans Boehm & Sarita Adve, PLDI 2008.

® Part of the JSR-133 standard.

Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.
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Data race freedom as a definition

® Core of the C11/C++11 standard.
Hans Boehm & Sarita Adve, PLDI 2008.

with some escape mechanism called "low level atomics”.

Mark Batty & al., POPL 2011.

® Part of the JSR-133 standard.
Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.

DRF gives no guarantees for untrusted code: a disaster for Java, which
relies on unforgeable pointers for its security guarantees.

JSR-133 is DRF + some out-of-thin-air guarantees for all code.
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Escape lanes n

for expert programmers T




Low-level atomics in C11/C++11

std: :atomic<int> flag@(@),flagl(@),turn(d);
void lock(Cunsigned index) { ““~._------~‘.
if (0 index) {

flag@.store(l, std::memory_order_relaxed); Atomic variab|e CIGCICII'CIHOH
turn.exchange(l, std::memory_order_acq_rel);

while (flagl.load(std::memory_order_acquire)
&% 1 == turn.load(std: :memory_order_relaxed))
std: :this_thread: :yield();
} else {

flagl.store(l, std::memory_order_relaxed); New syntax
turn.exchange(@, std::memory_order_acq_rel);

for memory accesses
while (flag@.load(std: :memory_order_acquire)

&& 0 == turn.load(std: :memory_order_relaxed))

std: :this_thread: :yield();
ks
}

void unlock(unsigned index) { Qua|iﬁer
if (@ == index) {
flag@.store(@, std::memory_order_release);
} else {
flagl.store(@, std::memory_order_release);
¥
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Low level atomics

LESS RELAXED

MO SEQ CST 1
MO RELEASE / MO _ACQUIRE
MO RELEASE / MO_CONSUME
MO RELAXED v

MORE RELAXED
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Low level atomics

LESS RELAXED

MO SEQ CST ‘ Sequential consistent accesses l

MO RELEASE / MO_ACQUIRE

MO RELEASE / MO_CONSUME

MO RELAXED v
MORE RELAXED
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Low level atomics

MO SEQ CST

LESS RELAXED

Sequential consistent accesses

MO_RELEASE ‘ Efficient implementation of message passing l

MO RELEASE / MO_CONSUME

MO RELAXED

\4

MORE RELAXED
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Low level atomics

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

1\4 Efficient implementation of message passing on ARM/Power l

MO RELAXED v
MORE RELAXED
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Low level atomics

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power

MO_RELAX‘ No synchronisation; direct access to hardware l

MORE RELAXED
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MO_SEQ_CST

The compiler must ensure that MO SEQ CST accesses have
sequentially consistent semantics.

Thread O Thread 1

X.store(1l,MO SEQ CST) y.store(1,MO SEQ CST)
rl = y.load(MO SEQ CST) | r2 = x.load(MO_SEQ CST)

The program above cannot end withrl = r2 = 0.
Sample compilation on x86: Sample compilation on Power:
store: MOV; MFENCE store: HWSYNC; ST

load: MOV load: HWSYNC; LD; CMP; BC; ISYNC
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MO_RELEASE / MO_ACQUIRE

Supports a fast implementation of the message passing idiom:

Thread O Thread 1

x.store(l,MO_RELAXED)/w rl = y.load(MO ACQUIRE)

y.store(1,MO RELEASE) r2 = x.load(MO RELAXED)

The program above cannot end withrl = 1 and r2 = 0.
Accesses to the data structure can be reordered/optimised (MO RELAXED).

Sample compilation on x86: Sample compilation on Power:

store: MOV store: LWSYNC; ST
load: MOV load: LD; CMP; BC; ISYNC
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MO_RELEASE / MO_CONSUME

Supports a fast implementation of the message passing idiom on Power:

Thread O Thread 1

y.load(x,MO CONSUME)

x.store(l,MO_RELAXED)4;ﬁ:r1
y.store(&x,MO RELEASE) r2 = (*x).load(MO RELAXED)

The program above cannot end withrl = 1 and r2 = 0.
The two loads have an address dependency, Power won't reorder them.

Sample compilation on x86: Sample compilation on Power:

store: MOV store: LWSYNC; ST
load: MOV load: LD
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Memory access synchronisation

Thread 1 Thread 2
v = 1 if (x.load(MO ACQUIRE) == 1)

X.store(1l,MO RELEASE) r2 =y
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Memory access synchronisation

x =y =20
Thread 1 Thread 2
AR if (x.load(MO ACQUIRE) == 1)
Y A Y
X.store(1l,MO RELEASE) r2 =y

happens—before\ o
y —

(sequenced-befors ) synchronizes—witﬁ }+

Non-atomic loads must return the most recent write
in the happens-before order (unique in a DRF program)
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Understanding MO_RELAXED

Thread 1 Thread 2

y =1 if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 =y
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Understanding MO_RELAXED

Thread 1 Thread 2

y = 1‘\ii (x.load (MO _RELAXED) == 1)
X.store(1l,MO RELAXED) r2 =y

DATA RACE

Two conflicting accesses not related by happens-before
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Understanding MO_RELAXED

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 = y.load(MO RELAXED)

WELL DEFINED

but r2 = 0 is possible
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Intuition
the compiler (or hardware) can reorder independent accesses

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 = y.load(MO RELAXED)

WELL DEFINED

but r2 = 0 is possible
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Intuition
the compiler (or hardware) can reorder independent accesses

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 = y.load(MO RELAXED)

Allow a RELAXED load to see any store that:
- does not happen-after it

- is not hidden by an intervening store hb-ordered between them
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Thread 2 is not affected by Thread 1 and vice-versa
This program is data-race free
This program must print 42
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Shared memory

int a = 1;
2 ade  la .

This is a compiler bug

CITe S5, D="9C,
for (s=0; s!=4; s++) { printf("%d\n", b);
if (a==1)

return NULL;
for (b=0; b>=26; ++b)

)

Thread 2 is not affected by Thread 1 and vice-versa
This program is data-race free
This program must print 42
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Shared memory

int a = 1;
2and  la (9. W%

This is a concurrency compiler bug

CITe S5, D="9C,
for (s=0; s!=4; s++) { printf("%d\n", b);
if (a==1)

return NULL;
for (b=0; b>=26; ++b)

)

Thread 2 is not affected by Thread 1 and vice-versa
This program is data-race free
This program must print 42

89-3 lec2 - 24 J

anuary 2019



Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)

5/19
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b

90-7
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b

Thread 2 is not affected by Thread 1 and vice-versa
(this program is data-race free)

This program must always print 42
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)

Typical system code!

5/19
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return 0;

for (b=0; b>=26; ++b)

)

gcc 4.7 -O2

...in some executions might print @

5/19
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gcc 4.7 -O2

movl a(%rip), %eax
movl b(%rip), %ebx
testl %edx, %edx
jne L2

movl $0, b(%rip)
ret

.L2:

movl %ebx, b(%rip)
movl S0, %eax

ret

H* HFH W FH

H* HF* I

int s;

for (s=0; s'!=4; s++) {

1f (a==1)

return 0;

for (b=0; b>=26; ++b)

)

load a into eax
load b into ebx
if a==

jump to .L2

store ebx into b
return 0

93-1
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return 0;
for (b=0; b>=26; ++b)

)

gcc 4.7 -O2
¥

The outer loop can be (and is) compiled away

movl a(%rip), %eax # load a into eax
movl b(%rip), %ebx # load b into ebx
testl %edx, %edx # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
return 0

movl %ebx, b(%rip)
movl $0, %eax
ret

H* HF* I

6/19
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gcc 4.7 -O2

movl a(%rip), %eax
movl b(%rip), %ebx
testl %edx, %edx
jne L2

movl $0, b(%rip)
ret

.L2:

movl %ebx, b(%rip)
movl S0, %eax

ret

H* HFH W F

H* HF* I

int s;

for (s=0; s'!=4; s++) {

1f (a==1)

return 0;

for (b=0; b>=26; ++b)

)

load a into eax
load b into ebx
if a==

jump to .L2

store ebx into b
return 0

94
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return 0;
for (b=0; b>=26; ++b)

)

gcc 4.7 -O2
1

‘ Prefetch b, in case it comes handy later |

movl a(%rip), %eax # load a into eax
movl b(%rip), %ebx # load b into ebx
testl %edx, %edx # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
return 0

movl %ebx, b(%rip)
movl $0, %eax
ret

H* HF* I

6/19
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gcc 4.7 -O2

movl a(%rip), %eax
movl b(%rip), %ebx
testl %edx, %edx
jne .L2

movl $0, b(%rip)
ret

.L2:

movl %ebx, b(%rip)
movl $0, %eax

ret

H* HFH W I

H* HF* I

int s;

for (s=0; s!=4; s++) {

if (a==1)

return 0;

for (b=0; b>=26; ++b)

)

load a into eax
load b into ebx
if a==

jump to .L2

store ebx into b
return 0

96
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return 0;
for (b=0; b>=26; ++b)

)

gcc 4.7 -O2
h

‘ Restore the prefetched value of b l

movl a(%rip), %eax # load a into eax
movl b(%rip), %ebx # load b into ebx
testl %edx, %edx # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
return 0

movl %ebx, b(%rip)
movl $0, %eax
ret

H* H* I

6/19
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gcc 4.7 -O2

movl a(%rip), %eax
movl b(%rip), %ebx
testl %edx, %edx
jne L2

movl $0, b(%rip)
ret

.L2:

movl %ebx, b(%rip)
movl S0, %eax

ret

H* HFH W FH

H* HF* I

int s;

for (s=0; s'!=4; s++) {

1f (a==1)

return 0;

for (b=0; b>=26; ++b)

)

load a into eax
load b into ebx
if a==

jump to .L2

store ebx into b
return 0

98
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The compiler has introduced
the prefetch and restore of b

Surprising but correct in sequential executions

movl a(%rip), %eax # load a into eax
movl b(%rip), %ebx # load b into ebx
testl %edx, %edx # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
return 0

movl %ebx, b(%rip)
movl $0, %eax
ret

H* H* I

6/19
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Thread 1

movl
movl
testl
jne
movl
ret
L2:

mov1
movl
ret

Shared memory

int a =
int b
a(%rip),%eax
b(%rip),%ebx
%eax, %eax
L2
$0, b(%rip)

%ebx, b(%rip)
$0, %eax

100-1

1;
0,

Thread 2

b = 42;
printf("%d\n"

, b);

719
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Thread 1

mov 1
movl
testl
jne
movl
ret
L2:
mov1
movl
ret

Shared memory

int a = 1;
int b = 0;
Thread 2

a(%rip),%eax b = 42;
b(%rip),%ebx printf("%d\n", b);
%eax, %eax
L2
$0, b(%rip)

- Read a (1) into eax
%ebx, b(%rip)
$0, %eax

719
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Thread 1

movl
mov 1
testl
jne
movl
ret
L2:
mov1
movl
ret

Shared memory

int a = 1;
int b = 0;
Thread 2
a(%rip),%eax b = 42;
b(%rip),%ebx printf("%d\n", b);
%eax, %eax
L2
$0, b(%rip)
- Read a (1) into eax
%ebx, b(%rip) - Read b (9) into ebx

$0, %eax

719
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
movl  a(%rip),%eax b = 42;
movl  b(%rip),%ebx printf("%d\n", b);
testl %eax, %eax
jne L2
movl  $0, b(%rip)
ret
L2: - Read a (1) into eax
movl  %ebx, b(%rip) -Read b (@) into ebx

movl  $0, %eax

-Store 42 into b
ret

719
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Thread 1

movl
movl
testl
jne
movl
ret
L2:

movl
movl
ret

Shared memory

a(%rip),%eax
b(%rip),%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
$0, %eax

int a =

int b

100-5

1;
0,

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax
- Read b (@) into ebx

- Store 42 into b
- Store ebx (@) into b

719
lec2 - 24 January 2019



Thread 1

movl
movl
testl
jne
movl
ret
L2:

mov1
movl
ret

Shared memory

a(%rip),%eax
b(%rip),%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
$0, %eax

int a =

int b

100-6

1;
0,

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax

- Read b (@) into ebx
- Store 42 into b

- Store ebx (@) into b
- Print b... @ is printed

719
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Shared memory

Introduces unexpected behaviours
In some concurrent context

testl %eax, %eax

jne
movl
ret
L2:
mov1
movl
ret

L2
$0, b(%rip)

%ebx, b(%rip)
$0, %eax

100-7

- Read a (1) into eax

- Read b (@) into ebx
- Store 42 into b

- Store ebx (@) into b
- Print b... @ is printed

719
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Shared memory

Introduces unexpected behaviours
In some concurrent context

This is a concurrency compiler bug

ret

L2: - Read a (1) into eax
movl  %ebx, b(%rip) - Read b (@) into ebx
TZ:c/l $0, %eax - Store 42 into b

- Store ebx (@) into b
- Print b... @ is printed

719
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Shared memory

Introduces unexnected hehaviours

A bug report is not research.

A technique to identity -
concurrency compiler bugs
in existing compilers is! |

- Print b... @ is printed

719
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Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random %
Generator

clang -00 clang -03 H

results

C program

[

vote ——
ﬁ majority minority

101-1 lec2 - 24 January 2019



Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random @

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

iallg vV vidilg v sse

w‘lts 1 /

)
ﬁ< — vote
majority

minority
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Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random c@

Reported hundreds of bugs

Cannot catch
concurrency compiler bugs

7=

' *< majority

vote . . > )
minority
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Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs¢

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:

how to test for correctness?
limit case: two compilers generate correct code with disjoint final states
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ldea

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

!

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Hunt concurrency compiler bugs

search for transformations of sequential code
not sound in an arbitrary non-racy context
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PROGRAM

Random % _, SEQUENTIAL
Generator

optimising
compiler
under test

reference
semantics

EXECUTABLE

tracing
REFERENCE
MEMORY —> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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Soundness of compiler optimisations in
the C11/C++11 memory model




Elimination of overwritten writes

Store g 1

Under which conditions is it
correct to eliminate the first store?

106 lec2 - 24 January 2019



A same-thread release-acquire pair is a pair of
a release action followed by an acquire action
in program order.

An action is a release if it is a possible source of a synchronisation

unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read
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Elimination of overwritten writes

Store g 1 It is safe to eliminate the first store
b l if there are:

no access to g
1. no Intervening accesses to g

2. no intervening
© l same-thread release-acquire pair

no st rel/acq pair

Store g 2
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The soundness condition

Shared memory

g =0; atomic f1 = f2 = 0;

Thread 1

g = 1;

f1l.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);
g = 2;
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The soundness condition

Shared memory

g =0; atomic f1 = f2 = 0;

Thread 1 candidate overwritten write
g =1

fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);

g = 2Z;
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The soundness condition

Shared memory

g =0; atomic f1 = f2 = 0;

Thread 1 candidate overwritten write
g=1;

fl.store(1,RELEASE); same-thread release-acquire pair
while(f2.1load(ACQUIRE)==0); quire pal

g = 2,
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2
g = 1;

f1l.store(1,RELEASE);
while(f2.1oad(ACQUIRE)==0);
g = 2;

while(fl.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2
g=1;
f1l.store(1,RELEASE);

while(f2.1load(ACQUIRE)=
g = 2;

_ sync_, while(f1.1load(ACQUIRE)==0);
_ printf(“%d”, g);
=0)55m- f2.store(1,RELEASED;

Thread 2 is non-racy
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The soundness condition

Shared memory

g =0; atomic f1 = f2 = 0;

Thread 1 Thread 2

g =1 sync while(f1.1oad(ACQUIRE)==0):
fl.StOFGCl,RELEA , printf(“%d” g).
While(fz.100d(ACQUIRE)==®);g\\ £2 StOFG(l RELEASE)'

g — 2; ynC . , ,

Thread 2 is non-racy
The program should only print 1
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The soundness condition

Shared memory

g =0; atomic f1 = f2 = 0;

Thread 1 Thread 2
- . syne while(fl.load(ACQUIRE)==0);
fl.StOFGCl,RELEASE), printf(“%d”, g);

Vg;’hSSFFZ-1°ad<ACQUIRE>==@) sy 2. store(1,RELEASE);

Thread 2 is non-racy
The program should only print 1

If we perform overwritten write elimination it prints @
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The soundness condition

Shared memory

g =0; atomic f1l = f2 = 0;

Thread 1 Thread 2

g=1; ync hile(f1l.load(ACQUIRE)==0):
f1.store(1,RELEASE): — e(t . Load(ACQUIRE)==0);

, printf(“%d”, g);
WhllE(FZ.100d<ACQUIRE)==®); fZ.StOFG(l,RELEASE);
g = 2;
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The soundness condition

Shared memory

g =0; atomic f1l = f2 = 0;

Thread 1 Thread 2

g =1; syne while(f1.1oad(ACQUIRE)==0);
° / d ,
fl.StOFGCl,RELEASE), printf(“%d”, g);

, f2.store(1,RELEASE);
g = ¢,
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The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 Thread 2

g =1; syne while(f1.1oad(ACQUIRE)==0);
° / d ,
fl.StOFGCl,RELEASE), printf(“%d”, g);

g =2; " data race f2.store(1,RELEASE);

If only a release (or acquire) is present, then
all discriminating contexts are racy.
It is sound to optimise the overwritten write.
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Eliminations: bestiary

Store g w1

g

no access fo g

no rel/acq pair

|

Store g v2

Store g vi

|

no access to g

no rel/acq pair

|

Store g vi

Read g v

y

no access to g

no rel/acq pair

g

Read g v

Store g v

:

no access to g

no rel/acq pair

|

Read g v

Read g v

|

no access to g

no rel/acq pair

g

Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

112-1
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Also correctness statements for

reorderings, merging, and introductions of events.

Store g vi Store g vi Read g v Store g v Read g v
sb l Sbl sbi sbl sbl

no access fo g no access to g no access to g no access to g no access to g

no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair

SR T A R

Store g v2 Store g v1 Read g v Read g v Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).
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From theory to the Cmmtest tool




Random % _, SEQUENTIAL

Generator PROGRAM optimising

compiler
under test

reference
semantics

EXECUTABLE

tracing
REFERENCE
MEMORY ¢ i MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

114-1
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CSmith
extended with locks
and atomics

SEQUENTIAL
PROGRAM

optimising
compiler
under test

reference
semantics

EXECUTABLE

tracing
REFERENCE
MEMORY —> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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CSmith
extended with locks
and atomics

SEQUENTIAL
PROGRAM

optimising
compiler
under test

reference
semantics

EXECUTABLE

binary
Instrumentation

REFERENCE
MEMORY —> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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CSmith
extended with locks
and atomics

SEQUENTIAL
PROGRAM

optimising
compiler
under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary . I
instrumentation : blnary .
Instrumentation
REFERENCE
M
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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CSmith

extended with locks |=—3» SEIS(;J(EEI,II[\?L
and atomics Optimising
compiler
under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary . |
Instrumentation : blnary .
Instrumentation
REFERENCE
TRACE TRACE
OCaml tool

1. analyse the traces to detect eliminable actions
2. match reference and optimised traces
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const unsigned int g3 = QUL;
long long g4 = 0Ox1;

int gb = 6L;

volatile unsigned int g5 = 1UL;

void func_1(void){
int *18 = &go6;
int 136 = Ox5E9DQ70FL;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
gS5++;
int *1102 = &136;
for (g6 = 4; go < (-3); g6 += 1);
1102 = &go;
*1102 = ((*18) && (1107 << 7)*(*1102));

Start with a randomly generated well-defined program
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const unsigned int g3 = @UL; Vvold func_1(void)y

long long g4 = 0x1;
int gb = oL;
volatile unsigned int g5 = 1UL;

int *18 = &go6;

int 136 = Ox5E9DQ70FL;

unsigned int 1107 = OxAA37C3ACL;

94 &= g3;

gS++;

int *1102 = &136;

for (gb = 4; go < (-3); g6 += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

116-2
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void func_1(void)1i
int *18 = &go6;
int 136 = Ox5E9DQ70FL;
unsigned int 1107 = OxAA37C3ACL;
g4 &= 9g3;
gS++;
int *1102 = &136;
for (gb = 4; go < (-3); g6 += 1);
1102 = &go;
*1102 = ((*18) && (1107 << 7)*(*1102));

116-3
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reference
semantics

Load
Store
Load
Store
Store
Load
Load
Load
Store
Load

SPRAPMPMIANRLOR

void func_1(void)1i
int *18 = &go6;
int 136 = Ox5E9DQ70FL;
unsigned int 1107 = OxAA37C3ACL;
g4 &= 9g3;
gS++;
int *1102 = &136;
for (gb = 4; go < (-3); g6 += 1);
1102 = &go;
*1102 = ((*18) && (1107 << 7)*(*1102));

/
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reference
semantics

Load
Store
Load
Store
Store
Load
Load
Load
Store
Load

SPRAPMPMIANRLOR

void func_1(void)1i
int *18 = &go6;
int 136 = Ox5E9DQ70FL;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
gS++;
int *1102 = &136;
for (gb = 4; go < (-3); g6 += 1);
1102 = &go;
*1102 = ((*18) && (1107 << 7)*(*1102));

ks
‘r”,af”’ﬂ\\“\\\\slgcc-()2 memory trace

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0
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reference
semantics

RaW*

RaW#*
rOW*
v RaW#*
%»lQCﬂ{*
» RaR*

RaW#*

Load
Store
Load
Store
Store
Load
Load
Load
Store
Load

g4
g4
g>
g>
go
go
go
go
go
g4

SRPRARMPMIANRPROOR

void func_1(void)1i

unsigned int 1107 = OxAA37C3ACL;

int *18 = &go6;

int 136 = Ox5E9DQ70FL;
g4 &= g3;

gS++;

int *1102 = &136;

for (go = 4; go < (-3); g6 += 1);

1102 = &go;

*1102 = ((*18) && (1107 << 7)*(*1102));

116-6

ks
‘r”,af”’ﬂ\\“\\\\slgcc-()2 memory trace

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0
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void func_1(void)1i

Init 93 0 int *18 = &go6;
Init a4 1 int 136 = Ox5E9DO70OFL;
r1? 9 unsigned int 1107 = OxAA37C3ACL;
Init 95 1 g4 &= g3;
Init g6 6 go++;

int *1102 = &136;

for (gb = 4; go < (-3); g6 += 1);

1102 = &go;

*1102 = ((*18) && (1107 << 7)*(*1102));

reference }
semantics gcc -O2 memory trace

g4—1

Store g4 0
51/

5 2

RaW* Load g Load g5 1

Store g Store g4 0

~OW*—Storeg64—— Store g6 1

o RaWE—Load—g6-4—— Store g5 2

: RaR* Load 564 Load g4 0
:\. RGR* |eed g6 A
Store go 1

RaW* Load g4 0

116-7
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void func_1(void)1i
Init g3 @ int *18 = &g6;

Can match applying
only correct eliminations and reorderings

b

reference }
semantics gcc -O2 memory trace

—RaW*—Load—¢g4—1—
Store g4 0 >

RaW* Load g5 1 Load g5 1

Store g5 2 Store g4 0

~OWs—Store g64—— Store go 1

- RaW*—Load—g6—4—— Store g5 2

: RaR* Load 664 Load g4 0
:“, RGR* |96€| g6 4
Store go 1

RaW* Load g4 0
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int a = int s;
int b = 0; for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

If we focus on the miscompiled initial example...
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int a = int s;
int b = 0; for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b
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int a = 1; int s;
int b = 0; for (s=0; s'!'=4; s++) {
if (a==1)
return NULL;
for (b=0; b>=26; ++b)
}
reference
semantics

Load a 1
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int a = 1; int s;
int b = 0; for (s=0; s'!'=4; s++) {
if (a==1)
return NULL;
for (b=0; b>=26; ++b)
3
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
Load Db O

Store b 0
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Cannot match some events —— detect compiler bug

}
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
Load Db 0

Store b 0
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Applications




1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found
in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.
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2. Checking compiler invariants

GCC internal invariant: never reorder with an atomic access

Baked this invariant into the tool and found a counterexample...
...not a bug, but fixed anyway

atomic_uint a; int main (int, char *[]) {
int32_t gl, gZ; a.load() & a.load ();
g2 = gl '= 0;
¥
ALoad a 0 O~-___ _ _o Load gl O
Aload a 0 O~_._~.-’"~-0 ALoad a 0
Load gl 0 o~ ~T--0 ALload a O
Store g2 O O-—=—====- -0 Store g2 O
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3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); > g=0;

Correct or not?
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3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); > g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g 0 ) : ( Store g O

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

122-1 lec2 - 24 January 2019



3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); > g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g 0 ) : ( Store g O

False positives in Thread Sanitizer
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The formalisation of the C11 memory model
enables compiler testing... what else?

m\,‘!!&h 4 A

‘\sn




Proving the correctness of mappings for atomics
htps://www.cl.cam.ac.uk/ ™ pes20/cpp/cppOxmappings.html

| C/C++11 Operation || ARM implementation |
ILoad Relaxed: |1dr ‘
Idr + preserve dependencies until next kill_dependency
OR
Load Consume: 1dr; teq; beq; isb
OR
Idr; dmb
Idr; teq; beq; isb
Load Acquire: OR
Idr; dmb
ILoad Seq Cst: [1dr; dmb
IStore Relaxed: | str
|Store Release: |dmbj; str

|Cmpxchg Relaxed (32 bit):||_loop: 1drex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop

ICmpxchg Acquire (32 bit): ||_loop: ldrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, 0; bne _loop; isb

|
l
|Store Seq Cst: |dmbs; str; dmb ]’
|
|

|Cmpxchg Release (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, O; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop;

|Cmpxchg AcqRel (32 bit): ||dmb; _loop: ldrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; isb |

ICmpxchg SeqCst (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, O; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; dmb]

|Acquire Fence: |dmb ]
IRelease Fence: |dmb |
IAchel Fence: ||dmb }

|Sequt Fence: ”dmb




Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

Y -

- = |
g LW
while (flag.load(acquire)) g\\ W " N
{} U




Out of thin-air reads

_9



Memory access synchronisation

Thread 1 Thread 2
v = 1 if (x.load(MO ACQUIRE) == 1)

X.store(1l,MO RELEASE) r2 =y
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Memory access synchronisation

x =y =20
Thread 1 Thread 2
y=1 if (x.load(MO ACQUIRE) == 1)
Y y | Y
X.store(1l,MO RELEASE) r2 =y

happens—before\ o
) =

(sequenced-befors ) synchronizes—witﬁ }+

Non-atomic loads must return the most recent write
in the happens-before order
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Understanding MO_RELAXED

Thread 1 Thread 2

y =1 if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 =y
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Understanding MO_RELAXED

Thread 1 Thread 2

y = 1‘\ii (x.load (MO _RELAXED) == 1)
X.store(1l,MO RELAXED) r2 =y

DATA RACE

Two conflicting accesses not related by happens-before
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Understanding MO_RELAXED

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 = y.load(MO RELAXED)

WELL DEFINED

but r2 = 0 is possible
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Understanding MO_RELAXED

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 = y.load(MO RELAXED)

Allow a RELAXED load to see any store that:
- does not happens-after it

- is not hidden by an intervening store hb-ordered between them
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Intuition
the compiler (or hardware) can reorder independent accesses

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 = y.load(MO RELAXED)

Allow a RELAXED load to see any store that:
- does not happens-after it

- is not hidden by an intervening store hb-ordered between them
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Shorthand
from now on, all the memory accesses are
atomic with MO_RELAXED semantics
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Out-of-thin-air

Thread 1 Thread 2

rl

I
o
>
Il
e

ril X = 42

=
Il
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Out-of-thin-air

Thread 1 Thread 2

rl = x r2

Il
e

r1 =r2 =42

is a valid execution.

R x 42 rf rf Ry42
o e
Wy 42 W X 42
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Intuition

the compiler (or hardware) can reorder independent accesses

Thread 1

rl r2

I
o
Il
e

r1 =r2 =42

is a valid execution.

R x 42 rf rf Ry42
o e
Wy 42 W X 42

131-3

Thread 2
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Out-of-thin-air reads

Thread 1 Thread 2
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Out-of-thin-air reads

"
Il
!
Il
o

Thread 1 Thread 2

rl r2

Il
"
Il
N

r1 =r2 =42

is also an allowed execution

R x 42 rf rf Ry42
o e
Wy 42 W X 42
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the value 42 appears out-of-thin-air

Thread 1 Thread 2

rl r2

Il
"
Il
N

rl r2

!
Il
o
Il

r1 =r2 =42

is also an allowed execution

R x 42 rf rf Ry42
o e
Wy 42 W X 42
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Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

;o= 42 initially x = y = 0

1 = x rl := r2 =y
if (r1 != 42) y := ri; « y :7rl X := 12
print ri rint ril print r2
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Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

;o= 42 initially x = y = 0

rl := x rl := r2 := y
1f (rl I= 42) y = rl, « y -~ rl X := 12
print ri rint ril print r2

It does not happen in practice... even if it might!
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Consequences of out-of-thin-air reads




struct foo {

atomic<struct foo *> next;

}

struct foo *a;

Thread 1
rl = a->next
rl->next = a
a next

\

next

135-1
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struct foo {

atomic<struct foo *> next;

}

struct foo *a;

Thread 1

rl = a->next

rl->next = a

a

\\\\\\$next

next

135-2
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struct foo {
atomic<struct foo *> next;

}

struct foo *a, *b;

Thread 1 Thread 2

rl = a->next r2 = b->next

rl->next = a r2->next = b
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struct foo {
atomic<struct foo *> next;

}

struct foo *a, *b;

Thread 1 Thread 2
rl = a->next r2 = b->next
rl->next = a r2->next = b

If a and b initially reference disjoint data-structures
we expect a and b to remain disjoint
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struct foo {
atomic<struct foo *> next;

}

struct foo *a, *b;

Thread 1 Thread 2
rl = a->next r2 = b->next
rl->next = a r2->next = b

a

next next

next next
\ > >
\

137-1 lec2 - 24 January 2019



If the compiler speculates r1=b and r2=a, then

the store r1->next=a justifies r2=b->next assigning r2=a

(and symmetrically to justify r1=b)

Thread 1

rl = a->next

rl->next = a

Thread 2

r2 = b->next

r2->next = b

next

next

\\\\\\$next
\\\\\\$

next
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If the compiler speculates r1=b and r2=a, then

the store r1->next=a justifies r2=b->next assigning r2=a

(and symmetrically to justify r1=b)

Thread 1 Thread 2
rl = a->next r2 = b->next
rl->next = a r2->next = b

a

next next

\\\\\\$next next
\
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If the compiler speculates r1=b and r2=a, then

the store r1->next=a justifies r2=b->next assigning r2=a

(and symmetrically to justify r1=b)

Break our basic intuitions

about memory and sharing!

a

b

\\\\\\$next next
\

next zz;% next
>
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Common compiler optimisations
are unsound in C11




1f (x.load(rlx)==42)
y.write(42,rlx)

1f (y.load(rlx)==42)
1f (a==1)

X.write(42,rlx)

139

Q
Il
-
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Il
-

1if (x.load(rlx)==42)| 1if (y.load(rlx)==42) | a
y.write(42,rlx) 1f (a==1)

X.write(42,rlx)

Remark 1

This code is not racy!

There is no consistent execution in which
the read of a occurs.
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Il
-

1if (x.load(rlx)==42)| 1if (y.load(rlx)==42) | a
y.write(42,rlx) 1f (a==1)

X.write(42,rlx)

Remark 2

a=1Ax=y=0

is the only possible final state
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Il
-

1if (x.load(rlx)==42)| 1if (y.load(rlx)==42) | a
y.write(42,rlx) 1if (a==1)

X.write(42,rlx)

Consider sequentialisation:
C|ID = C;D

(ought to be correct)
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Il
-

1if (x.load(rlx)==42)| 1if (y.load(rlx)==42) | a
y.write(42,rlx) 1if (a==1)

X.write(42,rlx)

'

a =1
1f (x.load(rlx)==42)| if (y.load(rlx)==42)
y.write(42,rlx) i1f (a==1)
X.write(42,rlx)
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a =1
1f (x.load(rlx)==42)| 1f (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)
X.write(42,rlx)
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Xx =y =a=2~0
a =1
1f (x.load(rlx)==42)| if (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)
X.write(42,rlx)
o T~ a = 1
Wha(a, 1) Rix(y, 1)
o T X=Vy =42
/ f .7 T T
rt erx(xy 1) - - I; _/_/ _____ WF|X(ZB7 1) y
- Y - IS also possible
Roa(a,1) -~ t
v

erx ('3/7 1)
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1f (x.load(rlx)==42)
y.write(42,rlx)

1f (y.load(rlx)==42)
1f (a==1)
X.write(42,rlx)

Break common source-to-source

(or LLVM IR - to - LLVM IR)

compiler optimisations

including expression linearisation and roach-motel reorderings
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Thread 0O Thread 1 Rx 42  rf f_ Ry42

y
rl = x r2 =y Sbl >< le
Wy 42 W x 42

y = rl X = 42

Thread 0 Thread 1 Rx42 T Ry42
- — | >< B
LT ey Wy 42 W X 42

y = rl X = r2
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Thread 0O Thread 1 Rx 42  rf f_ Ry42

y
rl = x r2 =y Sbl >< le
Wy 42 W x 42

r1=r2=42. (Can you spot the difference?

Thread 0 Thread 1 Rx42 - T - Ry42
= - o] >< o
S ety Wy 42 W X 42
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Thread 0O Thread 1 Rx 42  rf f_ Ry42

y
rl = x r2 =y Sbl >< le
Wy 42 W x 42

y = rl X = 42

The “bad” example has a cycle of dependencies.

Thread 0 Thread 1 Rx42 it Ry 42
= = o] >< o
T ey Wy 42 W X 42

y = rl X = r2
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Solution 1.

Prohibit executions with dependency cycles

The “bad” example has a cycle of dependencies.

Thread 0 Thread 1 Rx42 f - Ry42
. = o] >< o
S e T Wy 42 W x 42

y = rl X = r2
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Compiler writers
do not want to track all dependencies
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Compiler writers
do not want to track all dependencies

1f (X)

a[i++] = 1;
else

a[i++] = 2;

Does the store to i depend on the load of x?
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Solution 2. Brute force

Disallow cycles altogether

Rx 42 — i Ry42
sbl >< lsb
Wy 42 W x 42
acyclicchb U {(a,b) | f(b) = a})

147-1
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Allows all source-to-source optimisations

(except for r/w reordering on atomics)
but expensive on ARM and GPUs

Disallow cycles altogether

Rx42 —_ i Ry42
sbl >< lsb
Wy 42 W x 42
acyclicchb U {(a,b) | f(b) = a})

147-2
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Solution 3. less brute force

Allow cycles but make this racy

by allowing a to read 1

1f (x.load(rlx)==42)
y.write(42,rlx)

1f (y.load(rlx)==42)
1f (a==1)

X.write(42,rlx)

148-1
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Efficient implementation of atomics on ARM/GPUs

but all R/W reorderings are unsound

Allow cycles but make this racy

by allowing a to read 1

Q
Il

1f (x.load(rlx)==42)| if (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)

X.write(42,rlx)
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State of the art

“Implementations should ensure
that no “out-of-thin-air” values are
computed that circularly depend
on their own computation.”

Current proposal for C++XX




A word on JSR-133

Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.
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Out-of-thin-air

Out-of-thin-air is not so benign for references. Compare:

initially x = y = 0 initially x = y = null
rl := x r2 := = . —

3 3 y and rl :=x r2 =y
y :=rl X =12 y :=rl X 1= 12
print ril print r2 r2.run()

What should r2.run () call?

If we allow out-of-thin-air, then it could do anything!
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A word on JSR-133

Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

The model is intricate, and fails to meet goal 3.

An example: should the source program print 17 can the optimised
program print 17?

Xx =y =0 HotSpot Optimization x =y =0
-
rl=xr2=y rl = x x =1
X=(r2==1)?y:1l r2 =y
y = rl . y = rl .
print r2 print r2

Jaroslav Sevéik, David Aspinall, ECOOP 2008
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Currently, there is no really satisfactory proposal
for the semantics of a general-purpose
shared-memory concurrent programming language.




Currently, there is no really satisfactory proposal
for the semantics of a general-purpose
shared-memory concurrent programming language.

Remarkable and disturbing.




Resources

Articles &
Resources

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

Starting point:

J. Sevcik

Safe Optimisations for Shared Memory Concurrent Programs

PLDI 2011
H. Bohem

Threads Cannot Be Implemented as a Library

PLDI 2005
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Conclusion

155 lec2 - 24 January 2019



Syllabus

In these lectures we have covered the hardware models of &
two modern computer architectures (x86 and Power/ARM - at least for
a large subset of their instruction set).

We have seen how compiler optimisations can also break concurrent
programs and the importance of defining the memory model of high-
level programming languages.

We have also introduced some proof methods to reason about
concurrency.

After these lectures, you might have the feeling that multicore
programming IS a mess and things can't just work.
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The memory models of modern
hardware are better understood.

Programming languages attempt
to specify and implement
reasonable memory models.

Researchers and programmers
are now interested in these
problems.
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