an elusive mix”?

Francesco Zappa Nardelli INRIA Paris

http://www.di.ens.fr/~zappa/projects/weakmemory

Based on work done by or with

Peter Sewell, Jaroslav Sevéik, Susmit Sarkar, Tom Ridge, Scott Owens,
Viktor Vafeiadis, Magnus O. Myreen, Kayvan Memarian, Luc Maranget,
Derek Williams, Pankaj Pawan, Thomas Braibant, Mark Batty, Jade Alglave.

1-2

lec2 - 1 February 2018

Compilers vs. programmers

Com pilers

Prmcnples, Techniques,
L4 and Tools

° &
< .

Alfred V. Ah()
Ravi Sethi
Jeffrey D. Ullman

2-1

lec2 - 1 February 2018

Compilers vs. programmers

Compilers and programmers should cooperate,

don't they?

Alfred V. Aho & 0Y
Ravi Sethi faf?» ‘

Jeffrey D. Ullman

2-2 lec2 - 1 February 2018

COﬂStaﬂt p I’O pag at | O ﬂ (an optimising compiler breaks your program)

A simple and innocent looking optimization:

int x = 14; > int x = 14;
inty =7 -x/ 2; int y =7 - 14 / 2;

3 lec2 - 1 February 2018

COﬂStaﬂt p I’O pag at | O ﬂ (an optimising compiler breaks your program)

A simple and innocent looking optimization:

y =7 - 14 / 2;

int x = 14; > int x = 14;
inty =7 -x/ 2; int
Consider the two threads below:
x =y =20
x =1 if (x == 1) {
if (y == 1) x =0
print x y =1

Intuitively, this program always prints 0

lec2 - 1 February 2018

COﬂStaﬂt p I’O pag at | O ﬂ (an optimising compiler breaks your program)

A simple and innocent looking optimization:

int x = 14;

> int x = 14;

inty =7 -x/ 2; int y =7 - 14 / 2;

Consider the two threads below:

x =y =20
x =1 if (x == 1) {
if (y == 1) x =0
; -
print 1 Y '

Sun HotSpot JVM or GCJ: always prints 1.

lec2 - 1 February 2018

Background: lock and unlock

e Suppose that two threads increment a shared memory location:
x =0

tmpl = *x; tmp2 = *Xx;
*x = tmpl + 1; |*x = tmp2 + 1;

e |f both threads read 0, (even in an ideal world) x == 1 is possible:

tmpl = *x; tmp2 = *xX; *x = tmpl + 1; *x = tmp2 +1

6 lec2 - 1 February 2018

Background: lock and unlock

¢ |_ock and unlock are primitives that prevent the two threads from
interleaving their actions.

x =0
lock(); lock();
tmpl = *x; tmp2 = *x;
*x = tmpl + 1; |*x = tmp2 + 1;
unlock(); unlock();

® |n this case, the interleaving below is forbidden, and we are
guaranteed that x == 2 at the end of the execution.

‘Qtﬁ\‘mpl = *X; tmp2 = *X; *x = tmpl + 1; *x = tmp2 +1

lec2 - 1 February 2018

I_azy Iﬂ |t|a| IS&J[IOH (an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never
used (e.g. device drivers code). Compare:

int x = computeInitValue(); // eager initialization

// clients refer to x

with:

int xValue() {
static int x = computeInitValue(); // lazy initialization
return Xx;

} ... // clients refer to xValue()

8 lec2 - 1 February 2018

The singleton pattern

Lazy initialisation is a pattern commonly used. In C++ you would write:

class Singleton {

public:
static Singleton *instance (void) {
1f (instance == NULL)
instance = new Singleton;
return instance ;
}
// other methods omitted
private:

static Singleton *instance ; // other fields omitted

}i

Singleton::instance () -> method ();

But this code is not thread safe! Why?

lec2 - 1 February 2018

Making the singleton pattern thread safe

A simple thread safe version:

class Singleton {
public:
static Singleton *instance (void) {
Guard<Mutex> guard (lock); // only one thread at a time

if (instance == NULL)
instance = new Singleton;
return instance_;
}
private:

static Mutex lock ;
static Singleton *instance_;

}i

Every call to instance must acquire and release the lock: excessive overhead.

10 lec2 - 1 February 2018

Obvious (broken) optimisation

class Singleton {

public:
static Singleton *instance (void) {
if (instance_ == NULL) {
Guard<Mutex> guard (lock); // lock only if unitialised
instance = new Singleton; }
return instance_ ;
}
private:

static Mutex lock ;
static Singleton *instance_;

}i

Exercise: whv is it broken?

11

lec2 - 1 February 2018

Clever programmers use double-check locking

class Singleton {
public:
static Singleton *instance (void) {
// First check
if (instance == NULL) {
// Ensure serialization
Guard<Mutex> guard (lock);
// Double check

if (instance == NULL)
instance = new Singleton;
}
return instance ;
}
private: [..]
}i

Idea: re-check that the Singleton has not been created after acquiring the lock.

12 lec2 - 1 February 2018

Double-check locking: clever but broken

The instruction

instance = new Singleton;

does three things:

1) allocate memory

2) construct the object

3) assign to instance the address of the memory

Not necessarily in this order! For example:

instance = // 3
operator new(sizeof(Singleton)); // 1
new (instance) Singleton // 2

If this code is generated, the order is 1,3,2.

13

lec2 - 1 February 2018

Broken...

if (instance_ == NULL) { // Line 1
Guard<Mutex> guard (lock);
if (instance == NULL) {
instance =
operator new(sizeof(Singleton)); // Line 2

new (instance) Singleton; }}

Thread 1:
executes through Line 2 and is suspended; at this point, instance_ is non-

NULL, but no singleton has been constructed.

Thread 2:
executes Line 1, sees instance_ as non-NULL, returns, and dereferences

the pointer returned by Singleton (i.e., instance_).

Thread 2 attempts to reference an object that is not there yet!

14 lec2 - 1 February 2018

The fundamental problem

Problem: You need a way to specify that step 3 come after steps 1 and 2.
There is no way to specify this in C++

Similar examples can be built for any programming language...

15 lec2 - 1 February 2018

That pesky hardware (1)

Consider misaligned 4-byte accesses
int32 t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

® n-bytes on an n-byte boundary (n = 1,2,4,16)

® PG or later: ... or if unaligned but within a cache line

Question: what about multi-word high-level language values?

16-1

lec2 - 1 February 2018

That pesky hardware (1)

Consider misaligned 4-byte accesses

int32 t a = 0

a = 0x44332211 if (a == 0x00002211)

print "error"

(Disclaime

Intel SDN This is called a out-of-thin air read

® n-byte the program reads a value

® P6 or | that the programmer never wrote.

QuestioN —Wrar aoouT U= WOoTra TMYTI=TEVET TarnTgUage Varues 7

16-2

lec2 - 1 February 2018

That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread O Thread 1
x =1 y =1
print y print x
| Thread cee | Thread
At the end of some executions: L] L ‘
OO0 = coe s
is printed on the screen, E-; B é B
both on x86 and Power/ARM).))
il |

Shared Memory

17 lec2 - 1 February 2018

That pesky hardware (2)

...and differ between architectures...

Thread 0 Thread 1
x =1 print y
y =1 print x

At the end of some executions:

1 0

is printed on the screen on Power/ARNV

but not on x86.

Thread,

18

lec2 - 1 February 2018

Compilers vs. programmers

Com pilers

Prmcnples, Techniques,
L4 and Tools

° &
< .

Alfred V. Ah()
Ravi Sethi
Jeffrey D. Ullman

19-1

lec2 - 1 February 2018

Compilers vs. programmers

Tension:

® the programmer wants to understand the code he writes
® the compiler and the hardware want to optimise it.

Which are the valid optimisations that the compiler or the hardware

can perform without breaking the expected semantics of a concurrent
program?

Which is the semantics of a concurrent program?

19-2 lec2 - 1 February 2018

This lecture

Programming language models
1) defining the semantics of a concurrent programming language
2) data-race freedom

3) soundness of compiler optimisations

Previous lecture: hardware models
1) why are industrial specs so often flawed?
focus on x86, with a glimpse of Power/ARM

2) usable models: x86-TSO, PowerARM

20

lec2 - 1 February 2018

1400
1200
1000
800
600
400
200

effect of VS2005 compiler
optimisations on speed

Od 01

M runtime (seconds)

02

A brief tour of compiler optimisations

350
300
250
200
150
100

50

effect of additional VS2005
optimisations on speed

none

JOPT:NOWINSS8

M runtime (seconds)

JGL

21

lec2 - 1 February 2018

World of optimisations

A typical compiler performs many optimisations.

gcc 4.4.1. with =02 option goes through 147 compilation passes.

computed using -fdump-tree-all and -fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes with each pass
composed of one or more smaller passes.

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends

22

lec2 - 1 February 2018

World of optimisations

A typical compiler performs many optimisations.

— Common subexpression elimination
(copy propagation, partial redundancy elimination, value numbering)

— (conditional) constant propagation
— dead code elimination
— loop optimisations
(loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
— vectorisation
— peephole optimisations
— tail duplication removal
— building graph representations/graph linearisation
— register allocation
— call inlining
— local memory to registers promotion
— spilling
— instruction scheduling

23

lec2 - 1 February 2018

World of optimisations

However only some optimisations change shared-memory traces:

— Common subexpression elimination
(copy propagation, partial redundancy elimination, value numbering)

— (conditional) constant propagation
— dead code elimination
— loop optimisations
(loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
— vectorisation
— peephole optimisations
— tail duplication removal
— building graph representations/graph linearisation
— register allocation
— call inlining
— local memory to registers promotion
— spilling
— instruction scheduling

24

lec2 - 1 February 2018

What is an optimisation?

Compiler Writer Semanticist

\ | P

(4]
& ——
{ -
p . -
\ b’) N
\
‘ \

25-1 lec2 - 1 February 2018

What is an optimisation?

Compiler Writer

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST

25-2 lec2 - 1 February 2018

What is an optimisation?

Compiler Writer

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST

for (int i=0; i<2; i++) {
z = 1;
x[1] +=Y*t1 ;

}

"’“’ s

Semanticist

25-3

lec2 - 1 February 2018

What is an optimisation?

Compiler Writer

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;
for (int i=0; i<2; i++) {
z = 1i;

x[1] +=tmp ;

}

Semanticist

25-4

lec2 - 1 February 2018

What is an optimisation?

Compiler Writer Semanticist

Vi

Elimination of run-time events
Reordering of run-time events
Introduction of run-time events

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST

Operations on sets of events

tmp =y+1 ;

for (int i=0; i<2; i++) {
z = 1i;
x[1] +=tmp ;

}

25-5 lec2 - 1 February 2018

What is an optimisation?

Compiler Writer Semanticist

Elimination of run-time events
Reordering of run-time events
Introduction of run-time events

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on sets of events

Operations on AST

Ct] - Store z 0
tmp =y+l; Load y 42

for (int i=0; i<2; i++) {
z = 1;
x[1] +=tmp ;

Store x[0] 43
Store z 1
Load y 42
} Store x[1] 43

25-6 lec2 - 1 February 2018

What is an optimisation?

Compiler Writer

Sophisticated program analyses

Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;

for (int i=0; i<2; i++) {
z = 1i;
x[1] +=tmp ;

}

Semanticist

Load y 42
Store z 0

Store x[0] 43
Store z 1

Store x[1] 43

Elimination of run-time events
Reordering of run-time events
Introduction of run-time events

Operations on sets of events

25-7

lec2 - 1 February 2018

Eliminations

This includes common subexpression elimination, dead read

elimination, overwritten write elimination, redundant write elimination.

Irrelevant read elimination:
r=*xx; C » C
where r is not free in C.

Redundant read after read elimination:

rl=*x; r2=*x -» rl=*x; r2=rl

Redundant read after write elimination:

*x=rl; r2=*x » *x=rl; r2=rl

26

lec2 - 1 February 2018

Reordering

Common subexpression elimination, some loop optimisations, code
motion.

Normal memory access reordering:.
rl=+*x; r2=*y -»> r2=*y; rl=*x
*x=rl; *y=r2 -» *y=r2; *x=rl

rl=*x; *y=r2 & *y=r2; rl=*x

Roach motel reordering:.
memop; lock m » lock m; memop
unlock m; memop -» memop; unlock m

where memop is *x=rl or rl=*x

27

lec2 - 1 February 2018

Memory access introduction

Can an optimisation introduce memory accesses?

Yes, but rarely:

i = 0; i = 0;
c e - -
while (1 != 0) { tmp = *Xx;
J = *x + 1; while (1 != 0) {
i =1-11} J = tmp + 1;
i=1i-1 }

Note that the loop body is not executed.

28-1

lec2 - 1 February 2018

Memory access introduction

Back to our question now:

Which is the semantics of a concurrent program?

28-2 lec2 - 1 February 2018

Naive answer: enforce sequential consistency

29

lec2 - 1 February 2018

Sequential consistency

Multiprocessors have a sequentially consistent shared memory when:

...the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program...

Lamport, 1979.

Thread coe

Thread

Shared RAM

30

-«

lec2 - 1 February 2018

Compilers, programmers & sequential consistency

Com llers

Prmcnples, Techniques,
4, and Tools

s =
- R

Alfred V. Ah()
Ravi Sethi
Jeffrey D. Ullman

31-1 lec2 - 1 February 2018

Compilers, programmers & sequential consistency

Com llers

Prmcnples, Techniques,
4, and Tools

s =
- R

Alfred V. Ah()
Ravi Sethi
Jeffrey D. Ullman

Simple and intuitive
programming model

31-2 lec2 - 1 February 2018

Compilers, programmers & sequential consistency

Com llers

Y Prmcuples Techniques,
s, and Tools

Simple and intuitive
programming model

Expensive
to implement

31-3 lec2 - 1 February 2018

A Case for an SC-Preserving Compiler

Daniel Marino! ~ Abhayendra Singh® Todd Millstein' Madanlal Musuvathi* Satish Narayanasamy*

"University of California, Los Angeles " University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases in
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

Expensive
to implement

And this study supposes that the hardware is SC.

32 lec2 - 1 February 2018

SC and hardware

The compiler must insert enough synchronising instructions to prevent

hardware reorderings. On x86 we have:

« MFENCE Initial: [x]=0 A [y]=0

proc O

proc 1

flush the local write buffer

MOV [x]—$1 | MOV [y]—$1

. MFENCE MFENCE
« LOCK preflx (eg CMPXCHG) MOV EAX«[y] | MOV EBX«[x]
flush the local write buffer Forbid: EAX=0 A EBX=0
globally lock the memory
Initally, [100] =0 proc:0 proc:1
Atthe end, [100] =2 | LOCK; INC [100] | LOCK; INC [100]

These consumes hundreds of cycles... ideally should be avoided.

Naively recovering SC on x86 incurs in a ~40% overhead.

33

lec2 - 1 February 2018

A Case for an SC-Preserving Compiler

Daniel Marino! Abhayendra Singh® Todd Millstein' ~ Madanlal Musuvathi* Satish Narayanasamy*

"University of California, Los Angeles " University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases in
LLVM, a state-of-the-art C/C++ compiler,

incurs an average slowdown of 3.8% and a
male i | L2 4 .07 4 .20

progran
and SPEH

What is an SC-preserving compiler?

When is a compiler correct? lement

And this st

34 lec2 - 1 February 2018

When is a compiler correct?

A compiler is correct if any behaviour of the compiled
program could be exhibited by the original program.

l.e. for any execution of the compiled program, there is an execution of
the source program with the same observable behaviour.

Intuition: we represent programs as sets of memory action traces,
where the trace is a sequence of memory actions of a single thread.

Intuition: the observable behaviour of an execution is the subtrace of
external actions.

35 lec2 - 1 February 2018

Example

Is the transformation from P1 to P2 correct (in an SC semantics)?

rl = xx; r2 = *x;

if ri1=r2 then print 1 else print 2

rl = *x; r2 = ri;

if ri=r2 then print 1 else print 2

36

lec2 - 1 February 2018

Example

rl = *x; r2 = *x;

if ri=r2 then print 1 else print 2

rl = xx; r2 = ri;

if ri=r2 then print 1 else print 2

37-1

lec2 - 1 February 2018

Example

rl = *x; r2 = *Xx;
Pr=x*xx =1

if ri=r2 then print 1 else print 2
Py —%x = 1 rl = *x; r2 = ri;

if ri=r2 then print 1 else print 2

Executions of P1:

W, z=1,R, z=1,R, z=1,P, 1
R, z=0,W, z=1,R, z=1,P, 2
R;, =0,R;, =0, W, z=1,P, 1
Ry, z=0,R;, z=0,P, 1, W, z=1

37-2

lec2 - 1 February 2018

Example

rl = *x; r2 = *x;
Pr=x*xx =1
if ri=r2 then print 1 else print 2
Py—%x = 1 rl = xx; r2 = ri;
if ri=r2 then print 1 else print 2
Executions of P1: Executions of P2:
W, z=1,R, z=1,R, z=1,P, 1 W, z=1,R,, z=1,P, 1
R, z=0,W, z=1,R, z=1,P, 2 Ry, =0, W, z=1,P, 1
Rt2 :L':O, Rt2 fL':O, th ./L':l, Ptz 1 Rt2 fL':O, Ptg 17 th :L':]_

Rt2 :U:O, Rtg SC:O, Pt-z 1, th fL':].

37-3 lec2 - 1 February 2018

Example

Executions of P1:
W, z=1,R, z=1,R, z=1,P, 1
R, z=0,W, z=1,R, z=1,P, 2
Rt2 :L':O, Rt2 :C:O, th ./,E:l, PtQ 1
Rt2 :U:O, Rtg SC:O, Pt-z 1, th fL':].

Behaviours of P1: [Py, 1], 1P, 2,

rl = *x; r2 = *Xx;

if ri=r2 then print 1 else print 2

rl = xx; r2 = ri;

if ri=r2 then print 1 else print 2

Executions of P2;

th le, th SB:17 Ptz 1
Rt2 513:0, th le, Ptg 1
Rt2 SC:O, Ptg 17Wt1 CU:].

Behaviours of P2: [P, 1]

37-4

lec2 - 1 February 2018

Example

P . 1 rl = *x; r2 = *Xx;
1 = *X =
if ri=r2 then print 1 else print 2
P vx = 1 rl = *x; r2 = ri;
’ if ri=r2 then print 1 else print 2
Executicne of D1 . Execiitions af P2-

Ry, It is correct to rewrite P1 into P2, but not the opposite!

Behaviours of P1: [P, 1], P, 2] Behaviours of P2: [P, 1]

38

lec2 - 1 February 2018

General CSE incorrect in SC

xx = 1; if *x=1 then (
xy = 1; X = 2;

if xy = 2 Xy = 2

then print *x)

There is only one execution with a printing behaviour:

W, z=1,W, y=1,R, z=1,W,, =2, W, y=2,R, y=2,R, z=2,P, 2

39 lec2 - 1 February 2018

General CSE incorrect in SC

*x = 1;
*y=1;
if *xy = 2

then print *x

But a compiler would optimise to:

xx = 1;
*y=1;
if xy = 2

then print 1

if *x=1 then (
XX = 2;
xy = 2

)

if *x=1 then (
X = 2;
*y=2

)

40

lec2 - 1 February 2018

General CSE incorrect in SC

xx = 1; if *x=1 then (
xy = 1; XX = 2;

if *xy = 2 Xy = 2

then print 1)

The only execution with a printing behaviour in the optimised code is:

W, z=1,W, y=1,R, z=1,W, z=2,W, y=2,R;, y=2,P, 1

So the optimisation is not correct.

41

lec2 - 1 February 2018

General CSE incorrect in SC

*X 1; r = *X;

xy = 1; print r;

Our first example highlighted that CSE is incorrect in SC.

Here is another example.

Py, 1,P;, 0,P; 1]
P, 0,P;, 1,P;, 1
Py, 0,P, 0,P; 1]
P;, 0,P, 0,P;, 0]

42-1 lec2 - 1 February 2018

General CSE incorrect in SC

xx = 1; r = *X;

xy = 1; print r;
print *y;
print *x;

The observable behaviours are (note that O - 1 - O is not observable):
Py, 1,Py, 1,P;, 1]
Py, 1,P;, 0,P; 1]
P, 0,P;, 1,P;, 1
Py, 0,P, 0,P; 1]
P;, 0,P, 0,P;, 0]

42-2 lec2 - 1 February 2018

General CSE incorrect in SC

*x = 1; r = %X;

xy = 1; print r;
print *y;
print *x;

But a compiler would optimise as:

*x = 1; r = *X;

xy = 1; print r;
print *y,
print r;

43

lec2 - 1 February 2018

General CSE incorrect in SC

xx = 1; I = *X; xx = 1; r = *X;
xy = 1; print r; xy = 1; print r;
print *y; print *y;
print *x; print r;
Let's compare the behaviours of the two programs:
Py, 1, Py, 1,Pg, 1 Py, 1,Py, 1,Py, 1]
Py 1,P;, 0,P 1] Py, 1,P;, 0,Py, 1]
P;, 0,P;, 1,P; 1 P, 0,P;, 1,P; 0]
P;. 0,P, 0,P; 1] P;, 0,P;, 0,P;, O]
P;, 0,P, 0,P;, 0]

44-1

lec2 - 1 February 2018

General CSE incorrect in SC

*xx = 1; l r = *x; xx = 1; r = *X;

The optimised program exhibits a new, unexpected, behaviour.

:Ptg 13 Ptg 17 Ptg 1: :Ptg 1’ Ptg 1’ Ptg 1:
:PtQ 1, Py, 0,P, 1] :Ptz 1,P;, 0,Pg, 1
P;, 0,P;, 1,P; 1] P, 0,P;, 1,P; 0]
:PtQ 0, P¢, 0, Py, 1] P, 0,P;, 0,P;, 0
P;, 0,P, 0,P;, 0]

44-2 lec2 - 1 February 2018

Reordering incorrect

*x = 1; xy = 1, rl = %y xy = 1,
rl = xy r2 = *xx; = *x = 1; r2 = *Xx;
print ril print r2 print ril print r2

Again, the optimised program exhibits a new behaviour:

:Ptl 07 Ptz 1: :Ptl 07 Ptz 1:
P, 1,P, 0 P, 1,P, 0
P, 1,P, 1 P, 1,P; 1]

:Ptl 0, Ptz 0:

45 lec2 - 1 February 2018

Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

rl = *x; r2 = *x o rl ¥x; r2 = rl

The basic idea: whenever we perform the read r1 = *xin the
optimised program, we perfom both reads in the source program.

(More on this later)

46-1

lec2 - 1 February 2018

Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

rl = *x; r2 = *x o rl ¥x; r2 = rl

Can we define a model that:

1) enables more optimisations than SC, and
2) retains the simplicity of SC?

46-2 lec2 - 1 February 2018

Alternative answer: data-race freedom

47

lec2 - 1 February 2018

Data-race freedom

Our examples again:

® the problematic transformations
(e.g. swapping the two writes in

Thread O Thread 1
*y = 1 if *xy ==]
*x =1 then print *y

Observable behaviour: 0

thread 0) do not change the meaning of single-threaded programs;

® the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

48-1

lec2 - 1 February 2018

Data-race freedom

Our exam

® the prof
(e.g. sw
thread (

® the pro

...intuition...

Programming languages provide

synchronisation mechanisms

if these are used (and implemented) correctly,
we might avoid the issues above...

allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

II hread 1

k== 1

) print *y

viour: 0

orograms;

Je that

48-2

lec2 - 1 February 2018

The basic solution Thread 0 Throad 1
*y = 1 if *x ==
Prohibit data races xx = 1 then print *y

Observable behaviour: 0

Defined as follows:

® twO memory operations conflict if they access the same memory
location and at least one is a store operation;

® a SC execution (interleaving) contains a data race if two conflicting

operations corresponding to different threads are adjacent (maybe
executed concurrently).

Example: a data race in the example above:

th y:17 th 3::1, Rtg le, Rtg y:]., Pt2 1

49-1 lec2 - 1 February 2018

The basic solution Thread 0 Throad 1
*y = 1 if *x ==
Prohibit data races xx = 1 then print *y

Observable behaviour: 0

Defined as follows:

® WO men
location

® o SC ex¢

operatio

The definition of data race quantifies only

over the sequential consistent executions

mory

flicting
t (maybe

executed concurrently).

Example: a data race in the example above:

th y:]., th le, Rtg le, Rtg y:]., Pt2 1

49-2

lec2 - 1 February 2018

How do we avoid data races”? (focus on high-level languages)

* Locks

No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) calls

from other threads balance.

e Atomic variables
Allow concurrent access “exempt” from data races. Called volatile in Java.

Example:

Thread 0 Thread 1
*y = 1 lock();
lock(); tmp = *Xx;
*x =1 unlock();

unlock();

if tmp = 1
then print *y

50

lec2 - 1 February 2018

How do we avoid data races”? (focus on high-level languages)

Thread 0 Thread 1
*y =1 lock();
lock(); tmp = *Xx;
*x =1 unlock();
unlock(); if tmp = 1
then print *y

This program is data-race free:

1; lock(Q);*x = 1l;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

*
<
[

1; lock(Q); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
[

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1l;unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

51-1 lec2 - 1 February 2018

How do we avoid data races”? (focus on high-level languages)

® lock (), unlock() are opaqgue for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

® lock (), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

m

1; lock(Q);*x = 1l;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

*
<
[

1; lock(Q); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
[

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1l;unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

51-2 lec2 - 1 February 2018

How do W Compiler/hardware can continue to reorder accesses
Intuition:
compiler/hardware do not know about threads, but only
®lock(), un racing threads can tell the difference!
potentially i _

moved past them

® lock (), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

m

*
<
[

1; lock(Q); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
[

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1
lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1l;unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

1; lock(Q);*x = 1l;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

51-3 lec2 - 1 February 2018

Another example of DRF program

Exercise: is this program DRF?

Thread O Thread 1

if *x == 1 if *xy == 1
then *y =1 then *x = 1

52-1

lec2 - 1 February 2018

Another example of DRF program

Exercise: is this program DRF?

Thread O

Thread 1

if *x == 1

then *y =1

if *Y ==]_

then *x =1

Answer: yes!

The writes cannot be executed in any SC execution, so they cannot

participate in a data race.

52-2

lec2 - 1 February 2018

Another example of DRF program

Exercise: is this program DRF?

Thread O

Thread 1

if *x == 1

then *y =1

if *Y ==]_

then *x =1

AN

The
pan

Data-race freedom is not the ultimate panacea

- the absence of data-races is hard to verify / test (undecidable)

- imagine debugging: my program ended with a wrong result, then
either my program has a bug OR it has a data-race

52-3

lec2 - 1 February 2018

Validity of compiler optimisations, summary

Transformation SC DRF
Memory trace preserving transformations v v
Redundant read after read elimination e v
Redundant read after write elimination e v
Irrelevant read elimination v v
Redundant write before write elimination e v
Redundant write after read elimination v v
Irrelevant read introduction v X
Normal memory accesses reordering X v
Roach-motel reordering x (v for locks) v
External action reordering X v

* Optimisations legal only on adjacent statements.

53-1

lec2 - 1 February 2018

Validity of compiler optimisations, summary

Transformation SC

Memory trace preserving transformations v

Jaroslav Sevcik
Safe Optimisations for Shared-Memory Concurrent Programs
PLDI 2011

oach-motel reordering

External action reordering
* Optimisations legal only on adjacent statements.

53-2 lec2 - 1 February 2018

Compilers, programmers & data-race freedom

Com llers

Prmcnples, Techniques,
4, and Tools

e
e —

Alfred V. Ah()
Ravi Sethi
Jeffrey D. Ullman

54-1

lec2 - 1 February 2018

Compilers, programmers & data-race freedom

Com llers

‘ Prmc:ples,Techmques,
“fd, and Tools

Do =

Can be implemented
efficiently

54-2

lec2 - 1 February 2018

Compilers, programmers & data-race freedom

Y Prmcuples Techniques,
s, and Tools

Com llers

Intuitive programming
model (but detecting
races is tricky!)

Can be implemented
efficiently

54-3 lec2 - 1 February 2018

Data-race freedom, formalisation

55

lec2 - 1 February 2018

A toy language: semantics

location, x shared memory location
register, r thread-local variable
integer, n integers
thread id, t thread identifier
statement, s .= statements
r := X read from memory
X 1= r write to memory
r :=n load constant into register
lock lock
unlock unlock
print r output
program, p :i= S;..;S a program is a sequence of statements
system = concurrent system

| to:po | « | tn:pn parallel composition of n threads

56-1 lec2 - 1 February 2018

A toy language: semantics

location, x
register, r

shared memory location
thread-local variable

1n;
thi

St

We work with a toy language, but this approach scales to the full

Java Memory Model or C11/C++11.

TOCK [OCK
unlock unlock
print r output
program, p :i= S;..;S a program is a sequence of statements
system = concurrent system
| to:po | | tn:pn parallel composition of n threads

56-2

lec2 - 1 February 2018

Traces and tracesets

Definition [trace]: a sequence of memory operations (read, write, thread
start, 1/0O, synchronisation). Thread start is always the first action of
thread. All actions in a trace belong to the same thread.

Definition [traceset]: a traceset is a prefix-closed set of traces.

Thread O || Thread 1
Sample traceset: r1:=x r2:=y
=rq x:=1
y: print r2

{5(0), R[x=v], W[y=v]] [v € V}
U{IS(1), Rly=v], W[x=1], X(v)] | v € V'}

57-1 lec2 - 1 February 2018

Remarks:

Tr.

1. Reads can read arbitrary values from memory.

De 2. Tracesets should not be confused with interleavings.

stq 3. Tracesets do not enforce receptiveness or determinism:

thr 2

{[S(0)], [5(0), R[x=1]], [S(0), W[y=1]]}

De Is also a valid traceset for the example below.

Thread O || Thread 1
Sample traceset: r1:=x r2:=y
=rq x:=1
y: print r2

{5(0), R[x=v], W[y=v]] [v € V}
U{IS(1), Rly=v], W[x=1], X(v)] | v € V'}

lad

57-2

lec2 - 1 February 2018

Associate tracesets to toy language programs

R[X=V]

» < S[r=v], s >

W[X=S(r)]; <5 s >

¥r (= X; s >
X ¢= r; s
r (= n; s >

L

T, < S[r=n], s >

lock; s > 2, < §, s >

unlock; s >

X(S(r))

print r; s >

to:po | « | ta:p

> < S5, s >

58

lec2 - 1 February 2018

Tracesets and interleavings

Definition [interleaving]: an interleaving is a sequence of thread-identifier-
action pairs.

Example: y:=1; || r2:=v;print r2;

I'= [<Ov S(O)>) <17 S(D)) <Oa W[Y:1]>) <1v R[VZOD) <1v X(O)>]

Given an interleaving /, the trace of tid in | is the sequence of actions of
thread tid in /, e.g.:

trace 11" =[S(1), R[v=0], X(0)].

Conversely, given a traceset, we can compute all the well-formed
interleavings (called executions)... (next slide)

59 lec2 - 1 February 2018

Tracesets and interleavings

An interleaving / is an execution of a traceset T if:

- for all tid, tracetid/ e T (traces belong to the traceset)
- tids correspond to entry points S(tid)

- lock / unlock alternates correctly

- each read sees the most recent write to the same location (read/from).

(The last property enforce the sequentially consistent semantics for memory accesses).

60-1 lec2 - 1 February 2018

Tracesets and interleavings

An interleaving / is an execution of a traceset T if:

- for
- tid!
Remarks:
- loc
1. Interleavings order totally the actions, and do not keep track
- 83 of which actions happen in parallel.)

(The| 2.1t is however possible to put more structure on interleavings, Bses).
and recover informations albout concurrency.

60-2 lec2 - 1 February 2018

Happens-before

Definition [program order]. program order, <po, IS a total order over the
actions of the same thread in an interleaving.

Definition [synchronises with]: in an interleaving /, index i synchronises-
with index j, i <sw |, if i <] and A(l) = U (unlock), A(l) = L (lock).

Definition [happens-before]. Happens-before is the transitive closure of
program order and synchronises with.

61 lec2 - 1 February 2018

Examples of happens before

unlock();

Thread 0 Thread 1
*y = 1 lock();
lock(); tmp = *Xx;
*x =1 unlock();

if tmp 1
then print *y

S\\/

/ /N S

0:Wly=1], 0:L, @:W[x=1], @:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1],

0:WLy=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U
(% N
DO S(tid) actions omitted.

1:X(D)

62

lec2 - 1 February 2018

Data-race freedom

Definition [data-race-freedom]. A traceset is data-race free if none of
its executions has two adjacent conflicting actions from different
threads.

Equivalently, a traceset is data-race free if in all its executions all pairs of
conflicting actions are ordered by happens-before.

Two conflicting accesses
A racy program not related by happens before.

Thread 0 Thread 1 X\

xy = 1 if g == 1 0:W[y=1], 1:R[x=0], 0:W[x=1]

*x = 1 then print *y \/

PO

63 lec2 - 1 February 2018

Data-race freedom: equivalence of definitions

Given an execution

a++ [a] ++ B ++ [b]

of a traceset T where [a] and [b] are the first conflicting actions not
related by happen-before, we build the interleaving

a ++ B' ++ [a] ++ [b]
where B' are all the actions from B that strictly happen-before [b].

It remains to show that a ++ B' ++ [a] ++ [b] is an execution of T.

The formal proof is tedious and not easy (see Boyland 2008, Bohem & Adve 2008,
Sevcik), here will give the intuitions of the construction on an example.

64 lec2 - 1 February 2018

Data-race freedom: equivalence of definitions

Thread
Thread

1: x
2: r2

=1

’
=z

rl

:= X; print rl
print r2; x := 2

I | 1: S(1)] 2: S(2)]1: Wr(x,1)

1: Rd(x,1)

2: Rd(z,0)

1: Ext(1)

2: Ext(0)

2: Wr(x,2)

O 7

Jo[1:S(1)] 2: S(2)1: Wr(x,1)

2: Rd(z,0)

2: Ext(0)

1: Rd(x,1)

2: Wr(x,2)

I | 1: S(1)

2: 5(2)

2: Wr(x,1)

1: Rd(z,0)

2: Ext(1)

1: Rd(x,1)

2: Wr(x,2)

| <

4

J: 1 1:S(1)] 2: S(2)|1: Rd(z,0)

2: Wr(x,1)

1: Rd(x,1)

read first

write first

65

lec2 - 1 February 2018

batch

8 o, u. [F. bass

(DI
pasantn’ DY rument of the
3 At O | Toe LN P rich thas 14

i

bas so-rl le'yg

bass0-rilieve |

i}{.

i
L
i

aacd] ola da gamby
’aluii“ a8

&—_,;« - el ,n. & Asy of a pene

=.~-$....¢ panchint. £ f trees of the hag
- 5 1k ,,,‘.,5(-0-' of trees of the I

- oum 1O, Mo e il S0
o MOV A mi wale, O | Loy 3
g wain -ﬂ--‘.h-ﬁw ey, the by
e s W S o, g D e deneon | (SN, . [AS. baet) ‘

peeieg) Aamihe hotow * CC, $ o Certain pLrOng w
- 3 A= s uh| 3 AW shloem of vas
.-.!3'.-.-‘-—'.3.,...-4" o, irem the pRIoC
m"’mg‘:“‘"ﬁw‘l""“’.’ partard
e “.A—IEW4M“°
b & g ot

28"
8, sDurieey

bate 80

battue
Prom Asate) To lessen by retrenching, | the whole nocounty; — only in pd., adiective.
|3 lower, moderate, | by, == v o To bave such an account —n:’u. "
teawny. Shak! | Bat'ten (b11"'m), v v. (ON. batwa to grow better.) To
beat t thrive, grow fat: also, to grow fertide; mrow rank. == w. i
To make fat; fatten
bat'ten, » (!I Baitom stick, stafll
or floonng,

o, v b
u:\l;b:u, or reduciag; abat
£1c.; a8, 80 Bade one .

1, A strip of sawed
3 wtrip of wood used for

Lmae. I
o (34-t7),
‘:,!:u Sat, fr. AS. Nit) Chiefly
I . e, 3 Sat-bottomed geting
it n. [From mar the animal] /
icalate fab (Dgcocephalug |
a in West_Infes, the fying mor
vws volitans) of the Athaatic, and a

o
with viokenge, w—=m A -emlmuul
", v 4. [From sar a stick To capture for cake or Bescult, of flour, hayld, etg

Ariving them toward & Meht, where they | Frant. A beuise oa the face of 3 plate or of type in the
1ted. — bat"fowl'er, n. — bat’| - | form; alse, the (aces or type %o injured
tho 9. n. 0 marms (Bdsha). FAS. Bath] 1. Act | Dat'ter, v.i. & £ To shooe sently backward, as a wall or
hody, or part of it, for claanliness, com the Like, == n. As izward 4 wope of the outer face
faet, health, etc., 1o water, vapor, Dot air, ssud, or the like | of & wall, wsually with & dimisabing thickaes.
2. Water or other modium for bathisg. 3. Any Mauid bat'ler, n. Oaze who wiclds a bat: 3 batsman
i which obiects are immersed 30 that It may act upon | Bat'lerdng-ram’, n. Ml An engise of astiquity usually
them; abo, the receptacle Bolding the hquid. 4. Stateof | < of & huge Iron- tioped
being covered with a fead, as sweat. Sha ted or hung s as to
where persons may bathe: Collog., a batheoom. 6, A re |
ceptache for water is which to bathe. 7. A building ar
ranced, a8 ia apartments, for bathing: alse (es. in . the
claborate el = of antiguty;: as, the
Diochetian at Rome Chem , ete. A modium, as wat
aur, sand, oe oll, for regulatisg the to
placed 1o or wioo it alwo. the v

¥ 3 s
| & Act of batteriag or
Apparatus used
| A sumber of
sel_containiog sech | simlar machines devices orgr.

L L BN R

et

LR ks .
Wow + revef e work) Scubtare ia low relel. See
. P .
e Rast wErime MANTS ' L3 |
fu\ h-!‘ [Correot. of beeweperdh, ir. AS. Sars, | Budd)
“fylﬂ.._ ootmard from the mais e re
’.-..u,,., with two fasks. —~bas’tione
(<hind), ofy
S, . [AS dar) 1
sloct, L) stck; 2 cdub; a club »
| om¢ ead thicker e broader than
other, wied 23 Baseball, cricket,
2 Insome gamen, 3 racket. 3
cncket, Baseball, etc, a bats
e, the | Batfer;abo, act of or turn at Bat
pHCe, mass, or wad
ser. 6. Ussally baer
otn battieg of & poor grade ured
‘b‘ matt etc.; — usually
Collag. A stroke: a sharp
lbx.nltdnou«:,s;«.i 7

-
=3

qweiie; f
Frundag bus
Flasks (8, I wv i
Curtains.

weee.

ATIES; Bar'riNG Tl.; strike or Mt with e o
- 0w a t

b do at, as in baschal et

(Cotrgot. {r, ME. daki . i
of 38 on ((”imo ¢, Appar ulSuxd.mil]

) “.qh«unl mam-
their ;-wc

L
e They o A%em
of true

Al 030 operation; groul
a5, 3 bateh of letters. %

vent, 8od, siléot, makén i B
““&hﬂﬂudsﬁ.‘

Bath’o-tith"ic g Al v tor, & Rre ATTRiee, of & mimee ehdeunier, 1
thom' . i , } ' ¢ ontgumts, ACtiSn s .
ba’thos Gr

(Gr., ¢
aller or style;

TES, CONTEAT, SUICTE

Limax; ¢ n battlerroond
bath'y. (BAth'T. [Ge. bathys deep.) A combin Mne)

meaning deep; denotiag, specil, the sen deg , &

bath’y.-sphere, a Lind of diving sphere for deepsea

¢ LTk, Dattik (1K), n
k) Am «f of executing color o
y coating with waz o

A fine cotton fabwic
F. Mten, fr. OF fr
Batthe
ledore and shuttlececk. wues.
ck and Seet
(ME. datilment, batel ""o]
. surmounting the wa

ba-tra‘ekd.
frog, f2. &

Y i Ay, who wiclds & bat, as in sed a3 & deceealive
aseball, cncket, ete me turs it is to bat 4 . .
Batt (bit). Var. of AT, cotten bat | P qymented ¢ :
battall.ous (B3t/1.1 3 Archoic. | pattleplane’ (plin), » A
Arrayed or | fa ich powered mulitary ~
bat-ta'ta (baad ane, mounting & gun o
batigha. See A
Obs. A marsh
Bat.talton (bd.edly
ene] 1. Asarmy
dvinos of an arm v 1 , lorces moced vessels Gias.
3. Ml A tactical wait, as of a beadauarters and two or | Bat.tug’ (BI4&/; bE¥; F. ba't#), n. (F., fr. Bative to
IOCE COMPANIS. beat) Hunting. Act of beating s Nﬂw. elc.,
Bat'tel (b, n. Oxford Univ., Eng. College accounts | for game; act of u;l-‘l:.nnl game »o drivea. 2. Waatea
i-' provisons from the kitchen and buttery; 3;; loosely, | slaughtor, as of belpless crowds.

obuis; go; siog; thes, thin; natlre, verdlre (115); x = ch ia G. ieh, sch; bon; yet; zh = x in arure.
Numbers refes 1o () la Galde to Pry ol 4 €1, precede Vocabulary. | Forelge Woed,

(I battaplia, fr. I
aie. Ovder of battle. | euns
e | bat"tle.shdp’ (shlp’), m. Nav

Oneof aclags of the largest and Batdements. 4, 4 Merbons:
mest heavily armed and ar- B, B Cresch: & Mackicols:

66

lec2 - 1 February 2018

Option 1

No concurrency.

Implemented by highly-successful programming languages (OCaml)

Poor match for current trends

Don't.

67

lec2 - 1 February 2018

Option 2

A good match for some problems (see Erlang, MPI, ...)

Don't.

No shared memory

68

lec2 - 1 February 2018

Option 3

But language ensures data-race freedom

Possible:

- syntactically ensuring data accesses protected by associated locks

- fancy effect type systems

Not suitable for general purpose programming.

Don't.

69

lec2 - 1 February 2018

Option 4

Don't.

Leave it (sort of) up to the hardware

Example:

MLton, a high performance ML-to-x86 compiler with concurrency
extensions

Accesses to ML refs exhibit the underlying x86-TSO behaviour
(atomicity is guaranteed though)

70 lec2 - 1 February 2018

Option 5

Do.

Use data race freedom as a definition

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way
Sarita Adve & Mark Hill, 1990 |

71 lec2 - 1 February 2018

Option 5

Do.

Use data race freedom as a definition

Pro:
- simple
- strong guarantees for most code
- allows lots of freedom for compiler and hardware optimisations

Cons:
- undecidable premise
- can't write racy programs (escape mechanisms?)

72 lec2 - 1 February 2018

Ada 83

[ANSI-STD-1815A-1983, 9.11] For the actions performed by a program that uses shared

variables, the following assumptions can always be made:

* If between two synchronization points in a task, this task reads a shared variable
whose type is a scalar or access type, then the variable is not updated by any other
task at any time between these two points.

* If between two synchronization points in a task, this task updates a shared variable
whose task type is a scalar or access type, then the variable is neither read nor
updated by any other task at any time between these two points.

The execution of the program is erroneous if any of these assumptions is violated.

Data-races are errors

73 lec2 - 1 February 2018

Posix Threads Specification

[IEEE 1003.12008, Base Definitions 4.11] Applications shall ensure that access to any
memory location by more than one thread of control (threads or processes) is
restricted such that no thread of control can read or modify a memory location while
another thread of control may be modifying it.

Data-races are errors

74 lec2 - 1 February 2018

C++ 2011 / Clx

[C++ 2011 FDIS (WG21/N3290) 1.10p21] The execution of a program contains a
data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results

in undefined behavior.

Data-races are errors

75 lec2 - 1 February 2018

Data race freedom as a definition

® Core of the C11/C++11 standard.
Hans Boehm & Sarita Adve, PLDI 2008.

e Part of the JSR-133 standard.

Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.

76 lec2 - 1 February 2018

Data race freedom as a definition

® Core of the C11/C++11 standard.
Hans Boehm & Sarita Adve, PLDI 2008.

with some escape mechanism called "low level atomics”.

Mark Batty & al., POPL 2011.

® Part of the JSR-133 standard.
Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.

DRF gives no guarantees for untrusted code: a disaster for Java, which
relies on unforgeable pointers for its security guarantees.

JSR-133 is DRF + some out-of-thin-air guarantees for all code.

77 lec2 - 1 February 2018

A word on JSR-133

Goal 1: data-race free programs are sequentially consistent;
Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

78

lec2 - 1 February 2018

Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements.

Programs should never read values that cannot be written by the
program:

initially x = y = 0

rl :=x r2 =y
y :=rl X =12
print ril print r2

the only possible result should be printing two zeros because no other

value appears in or can be created by the program.

79

lec2 - 1 February 2018

Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements.

Programs should never read values that cannot be written by the
program:

initially x = y = 0

rl :=x r2 =y
y :=rl X =12
print ril print r2

the only possible result should be printing two zeros because no other

value appears in or can be created by the program.

80

lec2 - 1 February 2018

Out-of-thin-air
Under DRF, it is correct to speculate on values of writes:

initially x = y = 0

y := 42 r2 =y
rl := x X =12
if (r1 '= 42) y := print r2
print rl

The transformed program can now print 42. This will be theoretically
possible in C++11, but not in Java.

The program above looks benign, why does Java care so much about
out-of-thin-air?

81 lec2 - 1 February 2018

Out-of-thin-air

Out-of-thin-air is not so benign for references. Compare:

initially x = y = 0 initially x = y = null
rl := x r2 := . = . —
y and rl :=x r2 =y
y :=rl X =12 y :=rl X 1= 12
print rl print r2 r2.run()

What should r2.run() call?

If we allow out-of-thin-air, then it could do anything!

82

lec2 - 1 February 2018

A word on JSR-133

Goal 1: data-race free programs are sequentially consistent;
Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

The model is intricate, and fails to meet goal 3.

An example: should the source program print 1? can the optimised
program print 17?

x =y =0 HotSpot Optimization x =y =0
-
r1=xr2=y rl = x x =1
I X=(r2==1)?y:1 = 1 r2 =y
Y print r2 Y print r2

Jaroslav Sevéik, David Aspinall, ECOOP 2008

83

lec2 - 1 February 2018

A word on C11/C++11 low-level atomics

std: :atomic<int> flagd(@),flagl(@),turn(0);

void lock(unsigned index) {)
if (@ == index) { o . .
flag@.store(l, std::memory_order_relaxed); Atomic \/QT‘&O\bLQ‘. dﬁﬂi&f&&b(}ﬂ
turn.exchange(l, std::memory_order_acq_rel);

while (flagl.load(std::memory_order_acquire) <@
&& 1 == turn.load(std::memory_order_relaxed)
std: :this_thread: :yield();
} else {

flagl.store(l, std::memory_order_relaxed);)
turn.exchange(@, std::memory_order_acq_rel); Ne S‘jM&o‘x “FOT‘

ﬂﬂﬁﬂﬂij ACLCLsSses
while (flag@.load(std: :memory_order_acquire)
&& @ == turn.load(std::memory_order_relaxed))
std: :this_thread: :yield(); S

ky
ks
void unlock(unsigned index) { : J
if (@ == index) { Qualvfuer
flag@.store(@, std::memory_order_release);
} else {
flagl.store(@, std::memory_order_release);
}
¥

84 lec2 - 1 February 2018

Low level atomics

MO SEQ CST

MO RELEASE / MO ACQUIRE

MO RELEASE / MO _CONSUME

MO_ RELAXED

LESS RELAXED
A

v
MORE RELAXED

85-1

lec2 - 1 February 2018

Low level atomics

LESS RELAXED
MO SEQ CST ‘ Sequential consistent accesses l

MO RELEASE / MO ACQUIRE

MO RELEASE / MO _CONSUME

MO_ RELAXED v
MORE RELAXED

85-2 lec2 - 1 February 2018

Low level atomics

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE ‘ Efficient implementation of message passing l

MO RELEASE / MO _CONSUME

MO_ RELAXED v
MORE RELAXED

85-3 lec2 - 1 February 2018

Low level atomics

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power

MO_ RELAXED

MORE RELAXED

85-4 lec2 - 1 February 2018

Low level atomics

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power

MO_RELAX‘ No synchronisation; direct access to hardware l

MORE RELAXED

85-5 lec2 - 1 February 2018

Memory access synchronisation

x =y =20
Thread 1 Thread 2

y =1 if (x.load (MO ACQUIRE) == 1)

X.store(1l,MO RELEASE) r2 =y

86-1 lec2 - 1 February 2018

Memory access synchronisation

x =y =20
Thread 1 Thread 2
y =1 if (x.load (MO ACQUIRE) == 1)
Y A Y
X.store(1l,MO RELEASE) r2 =y

happens—before\ .
y —

(sequenced—befors U synchronizes—witl;f a_;f_

Non-atomic loads must return the most recent write
in the happens-before order (unique in a DRF program)

86-2 lec2 - 1 February 2018

Understanding MO_RELAXED

x =y =20
Thread 1

y =1 if (x.load(MO RELAXED)
X.store(1l,MO RELAXED) r2 =y

Thread 2

== 1)

87-1

lec2 - 1 February 2018

Understanding MO_RELAXED

x =y =20
Thread 1 Thread 2
y = 1 if (x.load(MO_RELAXED) == 1)
X.store(1l,MO RELAXED) r2 =y
DATA RACE

Two conflicting accesses not related by happens-before

87-2 lec2 - 1 February 2018

Understanding MO_RELAXED

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
Xx.store(1,MO RELAXED) r2 = y.load(MO RELAXED)

WELL DEFINED

but r2 = 0 is possible

88-1

lec2 - 1 February 2018

Intuition
the compiler (or hardware) can reorder independent accesses

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
Xx.store(1,MO RELAXED) r2 = y.load(MO RELAXED)

WELL DEFINED

but r2 = 0 is possible

88-2 lec2 - 1 February 2018

Intuition
the compiler (or hardware) can reorder independent accesses

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
Xx.store(1,MO RELAXED) r2 = y.load(MO RELAXED)

Allow a RELAXED load to see any store that:
- does not happen-after it

- is not hidden by an intervening store hb-ordered between them

88-3 lec2 - 1 February 2018

The full model

[t a=cae + ot 570

. —]
b= (a8) |
Lo [[
¥ e 3 a3 of FmNGE - THF H ey u,,
[eroztne I oo .
(R,

e————

et il vise s b

v o
[ot=mrn e] — .
[Bwren | e
e —— ot i e cons .
1 i N - " P ———

Fon

e

s 8
‘ Tease menoryoxdes 3 of

o < (Mo, Mo_Acakes Mo-sec-cst)
(i)

ook 21 =y

(2~ e oo)

o i e 30
o e 5,)

| Nowsamoun
[|
I | M.»lla,,w(‘;l '
p— e ik o

s 39 s action 3)

—_—

Sowr: 1 (ocatonkind)

ako (0 35 1)

cattomi oction]

)
e ez
e (0.0 5 1)

o s,

IS
(new GoWR %)

(-2
new CoRW)

)
‘.ruu ,J;, mmhmmmm,; =

p—— Son e E—— .
Naar on i » MUTEX |
(E— ——)
—— Rt ,
* of action_id thresd_id location | carries_a_dependency_to_set actions threads location.
e m it eon B H
s o e o o thrend 2 b = (thsendid_of 5 = threodLid_of b) i 31 s«
(lation —lcaton 8) | o o 3 fenee ¥ st ¢
|
|
PP ————
" ¢ I sttty
(threacid_of nord —_ — mem_ord } s ttony
(threndid_of S00-CST, Mo-consume consistent_simple_happens_before shb-
et s Moo z 5 - ‘
o i st o vmf,mm, "
o o fependency et e ek = st e ons chr in
- o S el mm red-before mu./mum m »em set actions thre: in
- imefexive (* yw Sapprsbotae = e e Jppes) dbreads n
pention wellformed_reads_from_smapping = wellformed_reads_from_mapping &V isnbock 3)}
s o b e 0
I | :
| o 1) P
‘ . | S e
e ot Lok T | - S .
et fock_u mmu ctions. 5
\lfe“n,nc(k‘ (ot cvmsses) = 1))
e s ol Aroxtc_a _ T (304 Blcks the calln tread anl cversip of the mute can be obiand for the Beletantermn S ik
i n
T

89-1

lec2 - 1 February 2018

The full model

T
e |
reen I [P T—
s = o ot rmros T 1ooF I | E
[t o= et o o«
P | quen - effcts_twl vise_head b
—— J [
= = e 3 s 5 e,
T €. , . (5" ant
5 5 I ol 5o 3 e————
o]
T H e 13—y 50 < 0~
| co actons - [———
st v s>
‘ 1 sion b1\
RPN |
‘ | R =

oo \

g (bl e

P) N
‘ menory_oedee 3 of ot
o o =)

(* ferce scronizseon
ience 375 A —

oction b) =
erces ofsieeftcs. (5~)
s of sl s,

b (sud b
G0) < i
then ()

["
(new GoWR %)
it . s doation .4 b atatonk oo b
e
(ne oM %)

T e mam [
| | Nox_sosnc
[T | 1rome
FE——— | —— cion i
st s] e o sk o
B -0
e Yo | E——
Yoo . I ——
Ma_Acquie . Mutex |
ety o
e
|
actionid thread.id on | carries_a_dependency_to_set actions threads location.
Ui of sctand e bestin . H
saume_thread 2 b = (thresd_idof 3 = thrvadd_of b) e
Y avisman
PR — =
N S
f u——

[
(it (oo) E—

simplehappers_baere

can reason abo

(value_written (Stony S —— ot .
| T i 27 (o 2= s Setryruhh
e 3 of Usioc T et lock-order = Sl s 8 PR .
- - " - -l in
5035 ks The i e vl ot s)
ectomicsre 2 (£ 30411 e R o o st iy o 4) g (7
o T o T i o e, ot . e ey o v, s e, inspchonzed it Gt dpendry, oo depndecy,
(=N & .
[t o —com o ot tow v oF | e
e s

89-2

lec2 - 1 February 2018

Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

Thread 2 is not affected by Thread 1 and vice-versa

This program is data-race free

This program must print 42

90-1 lec2 - 1 February 2018

Shared memory

int a = 1;
2aad la .

This is a compiler bug

TS, D= oC,

for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

Thread 2 is not affected by Thread 1 and vice-versa
This program is data-race free
This program must print 42

e ——————

90-2

lec2 - 1 February 2018

Shared memory

int a = 1;
2aad la .

This is a concurrency compiler bug

TS, D= oC,

for (s=0; s!=4; s++) { printf("%d\n", b);
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

Thread 2 is not affected by Thread 1 and vice-versa
This program is data-race free

This program must print 42
R,

90-3 lec2 - 1 February 2018

Compiler testing: state of the art

Yang, Chen, Eide, Regehr - PLDI 2011

Random
Generator

i

C program

clang -0O0

results

[

clang -03

ﬁ majority

vote

minority

91-1 lec2 - 1 February 2018

Compiler testing: state of the art

Yang, Chen, Eide, Regehr - PLDI 2011

Random @

Cidiig ~uu

W‘Its 1 /

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Cidiig “"vo Bl “U P,

ﬁ< majority

vote

minority

91-2 lec2 - 1 February 2018

Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random C@O

Reported hundreds of bugs

Cannot catch
concurrency compiler bugs

A=

*< majority

vote : - > |
minority

91-3 lec2 - 1 February 2018

Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs?

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:

how to test for correctness?
limit case: two compilers generate correct code with disjoint final states

92 lec2 - 1 February 2018

ldea

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

\

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Hunt concurrency compiler bugs
search for transformations of sequential code
not sound in an arbitrary non-racy context

93 lec2 - 1 February 2018

Random % SEQUENTIAL

—>
Generator PROGRAM optimising

compiler
under test

reference
semantics

EXECUTABLE

tracing

REFERENCE

MEMORY ¢) MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

94

lec2 - 1 February 2018

Soundness of compiler optimisations in
the C11/C++11 memory model

95 lec2 - 1 February 2018

Elimination of overwritten writes

Store g 1
b l Under which conditions is it

g

Store g 2

correct to eliminate the first store?

96

lec2 - 1 February 2018

A same-thread release-acquire pair is a pair of
a release action followed by an acquire action
in program order.

An action is a release if it is a possible source of a synchronisation

unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read

97 lec2 - 1 February 2018

Elimination of overwritten writes

Store g 1

]

no access to g

no st rel/acq pair

g

Store g 2

It is safe to eliminate the first store
if there are:

1. no intervening accesses to g
2. no intervening

same-thread release-acquire pair

98

lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic fl1 = f2 = 0;

Thread 1
g =1;
fl.store(1,RELEASE);

while(f2.1oad(ACQUIRE)==0);
g = 2,

99-1 lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic fl1 = f2 = 0;

Thread 1 candidate overwritten write
g=1;

fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);

g = Z;

99-2 lec2 - 1 February 2018

The soundness condition

Shared memory
g = 0; atomic f1 = f2 = Q;
Thread 1 candidate overwritten write
g=1;

F1.store(1l,RELEASE); same-thread release-acquire pair
while(f2.1oad(ACQUIRE)==0); quire p
g = Z;

99-3 lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic fl1 = f2 = 0;

Thread 1 Thread 2
g = 1;
fl.store(1,RELEASE);

while(f2.1oad(ACQUIRE)==0);
g = 2,

while(f1l.1load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

100-1 lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 Thread 2
g =1;

fl.store(1,RELEASE);
while(
g = 2,

. printf(“%d”, g);
F2.10ad(ACQUIRE)==0); 5~ £2. store(1,RELEASED;

Thread 2 is non-racy

sy while(fl.1load(ACQUIRE)==0);

100-2

lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic fl1 = f2 = 0;

Thread 1 Thread 2
g = 1;

fl.store(1,RELEASED;
while(
g = 2;

) printf(“%d”, g);
F2.10ad(ACQUIRE)==0); 5 £2. store(1,RELEASED;

Thread 2 is non-racy
The program should only print 1

sync while(fl.1load(ACQUIRE)==0);

100-3

lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic fl1 = f2 = 0;

Thread T Thread 2
- sync while(fl.load(ACQUIRE)==0);
fl.StOFE(l,RELEASE); printf(“%d”, g);

‘ghilggfz-1°“d<ACQUIRE>==®> sy 2. store(1,RELEASED;

Thread 2 is non-racy
The program should only print 1

If we perform overwritten write elimination it prints @

100-4 lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic fl1 = f2 = 0;

Thread 1 Thread 2
g = 1;
fl.store(1,RELEASE);

while(f2.1oad(ACQUIRE)==0);
g = 2,

—’jygg,,+ while(fl.1load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

101-1 lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 Thread 2

g =1; syNc while(f1.10oad(ACQUIRE)==0);
° / [} ,

fl.StOFG(l,RELEASE), printf(“%d”, g);

, f2.store(1,RELEASE);
g = &,

101-2 lec2 - 1 February 2018

The soundness condition

Shared memory

g = 0; atomic fl1 = f2 = 0;

Thread 1

g=1; sync while(f1.1load(ACQUIRE)==0):
fl.store(1,RELEASE); /;-print%(“%d” é)Q)==0);

g =2; " data race f2.store(1,RELEASE);

Thread 2

If only a release (or acquire) is present, then
all discriminating contexts are racy.
It is sound to optimise the overwritten write.

101-3 lec2 - 1 February 2018

Eliminations: bestiary

Store g v1 Store g v1
sb l Sbl

no access to g no access to g

no rel/acq pair no rel/acq pair
sb l sbl

Store g v Store g v1

Read g v

y

no access to g

no rel/acq pair

|

Read g v

Store g v

:

no access to g

no rel/acq pair

|

Read g v

Read g v

|

no access to g

no rel/acq pair

|

Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

102-1

lec2 - 1 February 2018

Also correctness statements for

reorderings, merging, and introductions of events.

Store g w1 Store g w1 Read g v Store g v

L |

no access to g no access to g

no access to g no access fo g

no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair

S R B

Store g v Store g v1 Read g v Read g v

Read g v

|

no access to g

no rel/acq pair

|

Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

102-2

lec2 - 1 February 2018

From theory to the Cmmtest tool

Random % _, SEQUENTIAL

PR RA S
Generator OGRAM optimising
compiler
reference under test
semantics

EXECUTABLE

tracing

REFERENCE

MEMORY ——> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

104-1

lec2 - 1 February 2018

CSmith
extended with locks
and atomics

SEQUENTIAL
PROGRAM

optimising
compiler
under test

reference
semantics

EXECUTABLE

tracing
REFERENCE
MEMORY ——> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

104-2

lec2 - 1 February 2018

CSmith
extended with locks
and atomics

SEQUENTIAL
PROGRAM

optimising
compiler
under test

reference
semantics

EXECUTABLE

REFERENCE
MEMORY ¢ > MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

binary
Instrumentation

104-3

lec2 - 1 February 2018

CSmith
extended with locks
and atomics

SEQUENTIAL
PROGRAM

optimising
compiler
under test

gcc/clang -O0

EXECUTABLE EXECUTABLE

binary .
instrumentation . binary .
Instrumentation

REFERENCE
MEMORY ¢ > MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

105-1

lec2 - 1 February 2018

CSmith
extended with locks |

and atomics

SEQUENTIAL

PROGRAM Lo
optimising

compiler
under test

gcc/clang -O0

Instrumentation

binary

EXECUTABLE EXECUTABLE
binary
instrumentation
REFERENCE
MEMORY p y MEMORY
TRACE TRACE

OCaml tool
1. analyse the traces to detect eliminable actions
2. match reference and optimised traces

105-2

lec2 - 1 February 2018

const unsigned int g3 = QUL;
long long g4 = 0x1;

int gb = 6oL;

volatile unsigned int g5 = 1UL;

void func_1(void){
int *18 = &g6;
int 136 = Ox5E9DO7OFL;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
g5++;
int *1102 = &136;
for (g6 = 4; go < (-3); gb += 1);
1102 = &go;
*¥1102 = ((*18) && (1107 << 7)*(*1102));

Start with a randomly generated well-defined program

106-1

lec2 - 1 February 2018

const unsigned int g3 = @QUL; void func_1(void){

long long g4 = 0x1;
int gob = 6L;
volatile unsigned int g5 = 1UL;

int *18 = &g6;

int 136 = Ox5E9DO70OFL;

unsigned int 1107 = OxAA37C3ACL;

g4 &= g3;

g5++;

int *1102 = &136;

for (g6 = 4; g6 < (-3); g6 += 1);

1102 = &gb;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

106-2

lec2 - 1 February 2018

void func_1(void){

Init g3 @ int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70FL;
nit g unsigned int 1107 = @xAA37C3ACL;
Init 95 1 g4 &= g3;
Init g6 © g>++;

int *1102 = &1306;

for (g6 = 4; g6 < (-3); g6 += 1);

1102 = &gb;

*1102 = ((*18) && (1107 << 7)*(*1102));

106-3

lec2 - 1 February 2018

void func_1(void){

Init g3 0 int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70FL;
nit g unsigned int 1107 = OxAA37C3ACL:
Init 95 1 g4 &= g3;
Init g6 6 go++;

int *1102 = &1306;

for (g6 = 4; g6 < (-3); g6 += 1);

1102 = &gb;

*1102 = ((*18) && (1107 << 7)*(*1102));

reference ¥
semantics

Load g4 1
Store g4 0
Load g5 1
Store g5 2
Store go 4
Load g6 4
Load g6 4
Load gob 4
Store go 1
Load g4 0

106-4 lec2

- 1 February 2018

void func_1(void){

Init g3 @ int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70FL;
nit g unsigned int 1107 = @xAA37C3ACL;
Init 95 1 g4 &= g3;
Init g6 © g>++;

int *1102 = &1306;

for (g6 = 4; g6 < (-3); g6 += 1);

1102 = &gb;

*1102 = ((*18) && (1107 << 7)*(*1102));

reference ¥
: gcc -O2 memory trace
semantics

Load g4 1
Store g4 0
Load g5 1 Load g5 1
Store g5 2 Store g4 0
Store g6 4 Store go 1
Load g6 4 Store g5 2
Load g6 4 Load g4 0
Load gob 4
Store gb 1
Load g4 0

106-5 lec2 - 1 February 2018

RaW#*

RaW*
~OW
v RaW*
%»R(“Q*
» RaR*

RaW*

reference
semantics

Load
Store
Load
Store
Store
Load
Load
Load
Store
Load

SRARAPMIANROR

void func_1(void){
int *18 = &g6;

int 136 = Ox5E9DO70OFL;
unsigned int 1107 = OxAA37C3ACL;

g4 &= g3;
g5++;

int *1102 = &136;

for (g6 = 4; g6 < (-3); g6 += 1);

1102 = &g6;

*1102 = ((*18) && (1107 << 7)*(*1102));

}
‘{”,ff”IN\\‘~\\\§‘gcc-()2rnenmanfnace

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0

106-6

lec2 - 1 February 2018

void func_1(void){

Init g3 @ int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70FL;
nit g unsigned int 1107 = @xAA37C3ACL;
Init 95 1 g4 &= g3;
Init g6 © g>++;

int *1102 = &1306;

for (g6 = 4; g6 < (-3); g6 += 1);

1102 = &gb;

*1102 = ((*18) && (1107 << 7)*(*1102));

reference ¥
: gcc -O2 memory trace
semantics

—RaW*—tLoad—¢g4—1+——
Store g4 0 >

RaW* Load g5 1 Load g5 1

Store g5 2 Store g4 0

~OWN*—Store—g6—4—— Store go 1

irRal*:—Load—g6—4—— Store g5 2

i RaR* Load 61 Load g4 0
I‘“| RGR* |ggd 96 4
Store gb 1

RaW* Load g4 0

106-7

lec2 - 1 February 2018

void func_1(void){
Init g3 0 int *18 = &g6;

Can match applying
only correct eliminations and reorderings

reference }
: gcc -O2 memory trace
semantics

—RaW*—toad—g4—1——
Store g4 0 >

RaW* Load g5 1
Store g5 2

Store gb 1
RaW* Load g4 0

<< ;

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0

106-8

lec2 - 1 February 2018

int a
int b

= 1; int s;
= 0; for (s=0; s!=4; s++) {
if (a==1)

return NULL;
for (b=0; b>=26; ++b)

b

If we focus on the miscompiled initial example...

107-1

lec2 - 1 February 2018

int a =
int b =

int s;
for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

107-2

lec2 - 1 February 2018

int a
int b

= 1; int s;
- 0; for (s=0; s!=4; s++) {
i1f (a==1)
return NULL;
for (b=0; b>=26; ++b)
}
reference
semantics
TL.oad a 1

107-3

lec2 - 1 February 2018

int a
int b

= 1, int s;
- 0; for (s=0; s!=4; s++) {
if (a==1)
return NULL;
for (b=0; b>=26; ++b)
hy
reference gcc -O2 memory trace
semantics
Load a 1 Load a1l
Load b 0

Store b 0

107-4

lec2 - 1 February 2018

Cannot match some events —— detect compiler bug

}
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
I.oad Db 0

Store b 0

107-5

lec2 - 1 February 2018

Applications

108 lec2 - 1 February 2018

1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found
in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.

109

lec2 - 1 February 2018

2. Checking compiler invariants

GCC internal invariant: never reorder with an atomic access

Baked this invariant into the tool and found a counterexample...
...not a bug, but fixed anyway

atomic_uint a; int main (int, char *[]) {
1nt32_t gl, gZ; a.load() & a.load ();
g2 =gl !'=0;
¥
Al.oad a 0 o-—___ _ o Load gl O
Aload a 0 o~__~-.->"~"-0 ALoad a 0
Load gl 0 o~ " T--0 Aload a O0
Store g2 O O-———=-=—=-- -0 Store g2 O

110 lec2 - 1 February 2018

3. Detecting unexpected behaviours

uintlo_t g uintleo_t g

for (; 9g==0; g--); —> g=0;

Correct or not?

111 lec2 - 1 February 2018

3. Detecting unexpected behaviours

uintlo_t g uintleo_t g

for (; 9g==0; g--); —> g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g O) ' (Store g O

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

11241 lec2 - 1 February 2018

3. Detecting unexpected behaviours

uintlo_t g uintleo_t g

for (; 9g==0; g--); —> g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g 0) ' (Store

g

0

False positives in Thread Sanitizer

112-2

lec2 - 1 February 2018

The formalisation of the C11 memory model
enables compiler testing... what else?

E‘ " v\ ‘ - .
R

e
+

113 lec2 - 1 February 2018

e
Proving the correctness of mappings for atomics

hitps://www.cl.cam.ac.uk/ ™~ pes20/cpp/cppOxmappings.html

| C/C++11 Operation || ARM implementation |

ILoad Relaxed: [1dr |
Idr + preserve dependencies until next kill_dependency
OR

Load Consume: 1dr; teq; beq; isb
OR
I1dr; dmb
1dr; teq; beq; isb

Load Acquire: OR
Idr; dmb

ILoad Seq Cst: [1dr; dmb

|Store Relaxed: ||str

|Store Release: |dmb; str

|Store Seq Cst: |dmbj; str; dmb

ICmpxchg Acquire (32 bit): ||_loop: ldrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; isb

’
|
|
|Cmpxchg Relaxed (32 bit):“_loop: ldrex roldval, [rptr]; mov rres, O; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop |
|
|

|Cmpxchg Release (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop;

|Cmpxchg AcqRel (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; isb \

|Crnpxchg SeqCst (32 bit): ||dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; dmb‘
|Acquire Fence: |dmb |
|Release Fence: ||dmb]
|Ache1 Fence: ||dmb ‘
ISeqCst Fence: |dmb |

114 lec2 - 1 February 2018

Inform new optimisations

e.g. the work by Robin Morisset on the Arm LLVM backend

s ¥ s/ -
while (flag. load(acqulre)) S“\ Wh) I

1}

115 lec2 - 1 February 2018

£192
A word on CompCertTSO L ' ’@.

Idea: the programming language memory model faithfully mimics the
processor model.

Our we might want radically different

programming languages!

(Radically different language = radically different challenges?)

A semantic preserving compiler,
CompCertTSO

Intel processors implement the x86-TSO MM

116 lec2 - 1 February 2018

Resources

Articles &
Resources

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

Starting point:
J. Sevcik
Safe Optimisations for Shared Memory Concurrent Programs

PLDI 2011
H. Bohem

Threads Cannot Be Implemented as a Library

PLDI 2005

117 lec2 - 1 February 2018

Conclusion

118

lec2 - 1 February 2018

Syllabus

In these lectures we have covered the hardware models of .
two modern computer architectures (x86 and Power/ARM - at least for
a large subset of their instruction set).

We have seen how compiler optimisations can also break concurrent
programs and the importance of defining the memory model of high-
level programming languages.

We have also introduced some proof methods to reason about
concurrency.

After these lectures, you might have the feeling that multicore
programming is a mess and things can't just work.

119 lec2 - 1 February 2018

The memory models of modern
hardware are better understood.

Programming languages attempt
to specify and implement
reasonable memory models.

Researchers and programmers
are now interested in these
problems.

120-1 lec2 - 1 February 2018

The memory models of modern
hardware are better understood.

attempt

4 Still, many open problems... ps

nmers
5€

S problems.

i

120-2 lec2 - 1 February 2018

The memory models of modern
hardware are better understood.

attempt

4 | Still, many research opportunities! s

nmers
5€

S problems.

i

120-3 lec2 - 1 February 2018

