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Compilers vs. programmers
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Compilers vs. programmers

Compilers and programmers should cooperate, 

 don't they?
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Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization: 

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;  
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Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization: 

Consider the two threads below: 

Intuitively, this program always prints 0 

x = y = 0

x = 1
if (y == 1)
  print x

if (x == 1) {
  x = 0
  y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;  
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Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization: 

Consider the two threads below: 

Sun HotSpot JVM or GCJ: always prints 1. 

x = y = 0

x = 1
if (y == 1)
  print x

if (x == 1) {
  x = 0
  y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;  

  print 1  
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Background: lock and unlock

• Suppose that two threads increment a shared memory location: 

• If both threads read 0, (even in an ideal world) x == 1 is possible:

x = 0

tmp1 = *x;
*x = tmp1 + 1;

tmp2 = *x;
*x = tmp2 + 1;

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1 
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Background: lock and unlock

• Lock and unlock are primitives that prevent the two threads from 
interleaving their actions. 

• In this case, the interleaving below is forbidden, and we are 
guaranteed that x == 2 at the end of the execution.

x = 0

lock();
tmp1 = *x;
*x = tmp1 + 1;
unlock();

lock();
tmp2 = *x;
*x = tmp2 + 1;
unlock();

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1 
FORB

IDDEN
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Lazy initialisation (an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never 
used (e.g. device drivers code).  Compare: 

  int x = computeInitValue();     // eager initialization 
  …                               // clients refer to x 

with: 

int xValue() {
  static int x = computeInitValue(); // lazy initialization 
  return x;
} ...                      // clients refer to xValue() 
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The singleton pattern

Lazy initialisation is a pattern commonly used.  In C++ you would write: 

  class Singleton {
  public:
    static Singleton *instance (void) {
    if (instance_ == NULL)
    instance_ = new Singleton;
   return instance_;

    }
…                               // other methods omitted

  private:
  static Singleton *instance_;  // other fields omitted

  };

  … 
  Singleton::instance () -> method ();

But this code is not thread safe! Why?
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Making the singleton pattern thread safe

A simple thread safe version: 

class Singleton {
public:
static Singleton *instance (void) {
Guard<Mutex> guard (lock_); // only one thread at a time
if (instance_ == NULL)

instance_ = new Singleton;
return instance_;
}

private:
static Mutex lock_;
static Singleton *instance_; 

};

Every call to instance must acquire and release the lock: excessive overhead.
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Obvious (broken) optimisation

class Singleton {
public:
static Singleton *instance (void) {
if (instance_ == NULL) {

Guard<Mutex> guard (lock_); // lock only if unitialised 
  instance_ = new Singleton; }
return instance_;
}

private:
static Mutex lock_;
static Singleton *instance_; 

};

Exercise: why is it broken?
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Clever programmers use double-check locking
class Singleton {
public:
static Singleton *instance (void) {
// First check
if (instance_ == NULL) {

// Ensure serialization 
Guard<Mutex> guard (lock_);
// Double check
if (instance_ == NULL)

instance_ = new Singleton;
}
return instance_;
}

private: [..]
};

Idea: re-check that the Singleton has not been created after acquiring the lock.
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Double-check locking: clever but broken

The instruction  
instance_ = new Singleton; 

does three things: 
1) allocate memory 
2) construct the object 
3) assign to instance_ the address of the memory 

Not necessarily in this order!  For example: 

instance_ =                        // 3
  operator new(sizeof(Singleton)); // 1 
new (instance_) Singleton          // 2 

If this code is generated, the order is 1,3,2. 
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Broken…

    if (instance_ == NULL) {               // Line 1
      Guard<Mutex> guard (lock_);
      if (instance_ == NULL) {
        instance_ =                        
           operator new(sizeof(Singleton));   // Line 2 
        new (instance_) Singleton; }} 

Thread 1:

   executes through Line 2 and is suspended; at this point, instance_ is non-
NULL, but no singleton has been constructed. 

Thread 2:

  executes Line 1, sees instance_ as non-NULL, returns, and dereferences 
the pointer returned by Singleton (i.e., instance_). 

Thread 2 attempts to reference an object that is not there yet!
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The fundamental problem

Problem: You need a way to specify that step 3 come after steps 1 and 2. 

There is no way to specify this in C++ 

Similar examples can be built for any programming language… 
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That pesky hardware (1)

Consider misaligned 4-byte accesses 

(Disclaimer: compiler will normally ensure alignment) 

Intel SDM x86 atomic accesses: 

•  n-bytes on an n-byte boundary (n = 1,2,4,16) 

•  P6 or later: … or if unaligned but within a cache line 

Question: what about multi-word high-level language values? 

int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"
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That pesky hardware (1)

Consider misaligned 4-byte accesses 

(Disclaimer: compiler will normally ensure alignment) 

Intel SDM x86 atomic accesses: 

•  n-bytes on an n-byte boundary (n = 1,2,4,16) 

•  P6 or later: … or if unaligned but within a cache line 

Question: what about multi-word high-level language values? 

int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

This is called a out-of-thin air read:  

the program reads a value  
that the programmer never wrote.
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That pesky hardware (2)

Hardware optimisations can be observed by concurrent code: 

Thread 0 Thread 1

x = 1 y = 1

print y print x

At the end of some executions: 

 0  0


is printed on the screen,  
both on x86 and Power/ARM). 
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That pesky hardware (2)

...and differ between architectures... 

At the end of some executions: 

 1   0


is printed on the screen on Power/ARM, 
but not on x86. 

Thread 0 Thread 1

x = 1 print y

y = 1 print x
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Compilers vs. programmers
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Compilers vs. programmers

Tension: 
• the programmer wants to understand the code he writes 
• the compiler and the hardware want to optimise it. 

Which are the valid optimisations that the compiler or the hardware 
can perform without breaking the expected semantics of a concurrent  
program? 

Which is the semantics of a concurrent program? 
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This lecture

Programming language models


    1) defining the semantics of a concurrent programming language 

    2) data-race freedom  

    3) soundness of compiler optimisations 

Previous lecture: hardware models 


    1) why are industrial specs so often flawed? 

          focus on x86, with a glimpse of Power/ARM 

    2) usable models: x86-TSO, PowerARM
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A brief tour of compiler optimisations
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World of optimisations

         A typical compiler performs many optimisations. 

gcc 4.4.1. with -O2 option goes through 147 compilation passes.  

computed using -fdump-tree-all and -fdump-rtl-all 

Sun Hotspot Server JVM has 18 high-level passes with each pass 
composed of one or more smaller passes. 

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends
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World of optimisations

A typical compiler performs many optimisations. 

– Common subexpression elimination  
       (copy propagation, partial redundancy elimination, value numbering)  
– (conditional) constant propagation  
– dead code elimination 
– loop optimisations  
       (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)  
– vectorisation  
– peephole optimisations  
– tail duplication removal 
– building graph representations/graph linearisation  
– register allocation  
– call inlining  
– local memory to registers promotion 
– spilling  
– instruction scheduling 
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World of optimisations

However only some optimisations change shared-memory traces: 

– Common subexpression elimination  
       (copy propagation, partial redundancy elimination, value numbering)  
– (conditional) constant propagation  
– dead code elimination 
– loop optimisations  
       (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)  
– vectorisation  
– peephole optimisations  
– tail duplication removal 
– building graph representations/graph linearisation  
– register allocation  
– call inlining  
– local memory to registers promotion 
– spilling  
– instruction scheduling 
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What is an optimisation?

Compiler Writer Semanticist
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What is an optimisation?

 Sophisticated program analyses 
 Fancy algorithms 
 Source code or IR 

 Operations on AST

Compiler Writer Semanticist
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What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1

 Sophisticated program analyses 
 Fancy algorithms 
 Source code or IR 

 Operations on AST

Compiler Writer Semanticist
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tmp

What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

 Sophisticated program analyses 
 Fancy algorithms 
 Source code or IR 

 Operations on AST

Compiler Writer Semanticist
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tmp

What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

 Sophisticated program analyses 
 Fancy algorithms 
 Source code or IR 

 Operations on AST

 Elimination of run-time events 
 Reordering of run-time events 
 Introduction of run-time events 

 Operations on sets of events

Compiler Writer Semanticist
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tmp

What is an optimisation?

...assuming initially y=42... 

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ; Load y 42

 Sophisticated program analyses 
 Fancy algorithms 
 Source code or IR 

 Operations on AST

 Elimination of run-time events 
 Reordering of run-time events 
 Introduction of run-time events 

 Operations on sets of events

Compiler Writer Semanticist
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tmp

What is an optimisation?

...assuming initially y=42... 

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

Load y 42

 Sophisticated program analyses 
 Fancy algorithms 
 Source code or IR 

 Operations on AST

 Elimination of run-time events 
 Reordering of run-time events 
 Introduction of run-time events 

 Operations on sets of events

Compiler Writer Semanticist
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Eliminations

This includes common subexpression elimination, dead read 
elimination, overwritten write elimination, redundant write elimination. 

Irrelevant read elimination:  
r=*x; C ! C

where r is not free in C.  

Redundant read after read elimination: 
r1=*x; r2=*x ! r1=*x; r2=r1

Redundant read after write elimination: 
*x=r1; r2=*x ! *x=r1; r2=r1
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Reordering

Common subexpression elimination, some loop optimisations, code 
motion. 

Normal memory access reordering: 
r1=*x; r2=*y ! r2=*y; r1=*x
*x=r1; *y=r2 ! *y=r2; *x=r1 
r1=*x; *y=r2 ⇄ *y=r2; r1=*x

Roach motel reordering:  
memop; lock m ! lock m; memop

unlock m; memop ! memop; unlock m 
where memop is *x=r1 or r1=*x
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Memory access introduction

Can an optimisation introduce memory accesses?  

Yes, but rarely: 

Note that the loop body is not executed. 

i = 0;
...
while (i != 0) {
   j = *x + 1; 
   i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
   j = tmp + 1; 
   i = i-1 }

→
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Memory access introduction

Can an optimisation introduce memory accesses?  

Yes, but rarely: 

Note that the loop body is not executed. 

i = 0;
...
while (i != 0) {
   j = *x + 1; 
   i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
   j = tmp + 1; 
   i = i-1 }

→

Back to our question now: 

Which is the semantics of a concurrent program? 
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Naive answer: enforce sequential consistency
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Lamport, 1979. 

Sequential consistency

Multiprocessors have a sequentially consistent shared memory when: 

                                                                  


...the result of any execution is the same as if the operations of 
all the processors were executed in some sequential order, and 
the operations of each individual processor appear in this 
sequence in the order specified by its program... 
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Compilers, programmers & sequential consistency
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Compilers, programmers & sequential consistency

Simple and intuitive 
programming model 
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Compilers, programmers & sequential consistency

Simple and intuitive 
programming model 

Expensive  
to implement 
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Expensive  
to implement 

An  SC-preserving  compiler,  obtained  by 
restricting  the  optimization  phases  in 
LLVM, a state-of-the-art  C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs  from the  SPLASH-2,  PARSEC, 
and SPEC CINT2006 benchmark suites.

And this study supposes that the hardware is SC. 
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SC and hardware

The compiler must insert enough synchronising instructions to prevent 
hardware reorderings.  On x86 we have: 

• MFENCE

   flush the local write buffer 

• LOCK prefix (e.g. CMPXCHG)

   flush the local write buffer 
   globally lock the memory 

These consumes hundreds of cycles…  ideally should be avoided. 
Naively recovering SC on x86 incurs in a ~40% overhead.
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Expensive  
to implement 

An  SC-preserving  compiler,  obtained  by 
restricting  the  optimization  phases  in 
LLVM, a state-of-the-art  C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs  from the  SPLASH-2,  PARSEC, 
and SPEC CINT2006 benchmark suites.

And this study supposes that the hardware is SC. 

What is an SC-preserving compiler? 

When is a compiler correct?
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When is a compiler correct?	

i.e. for any execution of the compiled program, there is an execution of 
the source program with the same observable behaviour. 

Intuition: we represent programs as sets of memory action traces, 
where the trace is a sequence of memory actions of a single thread. 

Intuition: the observable behaviour of an execution is the subtrace of 
external actions. 

A compiler is correct if any behaviour of the compiled 
program could be exhibited by the original program.
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Example

Is the transformation from P1 to P2 correct (in an SC semantics)?
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Example

37-1 lec2 - 1 February 2018



Example

Executions of P1:
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Example

Executions of P1: Executions of P2:
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Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:
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Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

It is correct to rewrite P1 into P2, but not the opposite!
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General CSE incorrect in SC

There is only one execution with a printing behaviour: 
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General CSE incorrect in SC

But a compiler would optimise to: 
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General CSE incorrect in SC

The only execution with a printing behaviour in the optimised code is: 

So the optimisation is not correct. 
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General CSE incorrect in SC

The observable behaviours are (note that 0 - 1 - 0 is not observable): 

Our first example highlighted that CSE is incorrect in SC. 

Here is another example.
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General CSE incorrect in SC

The observable behaviours are (note that 0 - 1 - 0 is not observable): 
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General CSE incorrect in SC

But a compiler would optimise as: 
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General CSE incorrect in SC

Let's compare the behaviours of the two programs: 
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General CSE incorrect in SC

Let's compare the behaviours of the two programs: 

The optimised program exhibits a new, unexpected, behaviour.
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Reordering incorrect

Again, the optimised program exhibits a new behaviour: 
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Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is 
correct to rewrite: 

The basic idea: whenever we perform the read r1 = *x in the 
optimised program, we perfom both reads in the source program. 

(More on this later) 
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Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is 
correct to rewrite: 

The basic idea: whenever we perform the read r1 = *x in the 
optimised program, we perfom both reads in the source program. 

(More on this later) 

Can we define a model that: 
1) enables more optimisations than SC, and 
2) retains the simplicity of SC? 

46-2 lec2 - 1 February 2018



Alternative answer: data-race freedom
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Data-race freedom

Our examples again: 

• the problematic transformations  
   (e.g. swapping the two writes in   
   thread 0) do not change the meaning of single-threaded programs; 

• the problematic transformations are detectable only by code that 
allows two threads to access the same data simultaneously in 
conflicting ways (e.g. one thread writes the datas read by the other). 

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0
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Data-race freedom

Our examples again: 

• the problematic transformations  
   (e.g. swapping the two writes in   
   thread 0) do not change the meaning of single-threaded programs; 

• the problematic transformations are detectable only by code that 
allows two threads to access the same data simultaneously in 
conflicting ways (e.g. one thread writes the datas read by the other). 

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

...intuition...

Programming languages provide  

synchronisation mechanisms 

if these are used (and implemented) correctly,  
we might avoid the issues above...
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      Prohibit data races 

Defined as follows: 

• two memory operations conflict if they access the same memory 
location and at least one is a store operation; 

• a SC execution (interleaving) contains a data race if two conflicting 
operations corresponding to different threads are adjacent (maybe 
executed concurrently). 

Example: a data race in the example above: 

The basic solution Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0
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      Prohibit data races 

Defined as follows: 

• two memory operations conflict if they access the same memory 
location and at least one is a store operation; 

• a SC execution (interleaving) contains a data race if two conflicting 
operations corresponding to different threads are adjacent (maybe 
executed concurrently). 

Example: a data race in the example above: 

The basic solution

The definition of data race quantifies only  
over the sequential consistent executions

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

49-2 lec2 - 1 February 2018



How do we avoid data races? (focus on high-level languages)

• Locks

   No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) calls 
from other threads balance. 

• Atomic variables

  Allow concurrent access “exempt” from data races. Called volatile in Java. 

Example:  

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y
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This program is data-race free: 

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();
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This program is data-race free: 

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as 
potentially modifying any location, memory operations cannot be 
moved past them 

•lock(), unlock() contain "sufficient fences" to prevent hardware 
reordering across them and global orderering
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This program is data-race free: 

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as 
potentially modifying any location, memory operations cannot be 
moved past them 

•lock(), unlock() contain "sufficient fences" to prevent hardware 
reordering across them and global orderering

Compiler/hardware can continue to reorder accesses  


Intuition:  
compiler/hardware do not know about threads, but only 

racing threads can tell the difference!
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Another example of DRF program

Exercise: is this program DRF? 

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1
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Another example of DRF program

Exercise: is this program DRF? 

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!   

The writes cannot be executed in any SC execution, so they cannot 
participate in a data race.
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Another example of DRF program

Exercise: is this program DRF? 

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!   

The writes cannot be executed in any SC execution, so they cannot 
participate in a data race.

Data-race freedom is not the ultimate panacea 


- the absence of data-races is hard to verify / test (undecidable) 
- imagine debugging: my program ended with a wrong result, then 
either my program has a bug OR it has a data-race
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Validity of compiler optimisations, summary
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Validity of compiler optimisations, summary

  Jaroslav Sevcik 
  Safe Optimisations for Shared-Memory Concurrent Programs 

PLDI 2011  
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Compilers, programmers & data-race freedom
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Compilers, programmers & data-race freedom

Can be implemented  
efficiently 
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Compilers, programmers & data-race freedom

Intuitive programming 
model (but detecting 

races is tricky!) 

Can be implemented  
efficiently 

54-3 lec2 - 1 February 2018



Data-race freedom, formalisation
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A toy language: semantics
location, x          shared memory location 
register, r         thread-local variable 
integer, n                integers 
thread_id, t           thread identifier 

statement, s  ::=     statements 
    | r := x            read from memory 
    | x := r            write to memory
    | r := n            load constant into register 
    | lock              lock 
    | unlock            unlock 
    | print r           output 

program, p ::=   s;…;s     a program is a sequence of statements 
     
system   ::=        concurrent system 
    | t0:p0 | … | tn:pn      parallel composition of n threads
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A toy language: semantics
location, x          shared memory location 
register, r         thread-local variable 
integer, n                integers 
thread_id, t           thread identifier 

statement, s  ::=     statements 
    | r := x            read from memory 
    | x := r            write to memory
    | r := n            load constant into register 
    | lock              lock 
    | unlock            unlock 
    | print r           output 

program, p ::=   s;…;s     a program is a sequence of statements 
     
system   ::=        concurrent system 
    | t0:p0 | … | tn:pn      parallel composition of n threads

We work with a toy language, but this approach scales to the full  
Java Memory Model or C11/C++11.
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Traces and tracesets

Definition [trace]:  a sequence of memory operations (read, write, thread 
start, I/O, synchronisation).  Thread start is always the first action of 
thread.  All actions in a trace belong to the same thread. 

Definition [traceset]:  a traceset is a prefix-closed set of traces. 

Sample traceset:  
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Traces and tracesets

Definition [trace]:  a sequence of memory operations (read, write, thread 
start, I/O, synchronisation).  Thread start is always the first action of 
thread.  All actions in a trace belong to the same thread. 

Definition [traceset]:  a traceset is a prefix-closed set of traces. 

Sample traceset:  

Remarks: 

   1. Reads can read arbitrary values from memory. 
   2. Tracesets should not be confused with interleavings. 
   3. Tracesets do not enforce receptiveness or determinism: 

        is also a valid traceset for the example below.

57-2 lec2 - 1 February 2018



Associate tracesets to toy language programs

< S, r := x; s >           < S[r=v], s >

<  S, x := r; s >              < S, s > 

< S, r := n; s >        < S[r=n], s >

< S, lock; s >        < S, s >

< S, unlock; s >        < S, s >

< S, print r; s >            < S, s > 

< S,  t0:p0 | … | tn:pn >         < S, pi > 

R[x=v]

W[x=S(r)]

τ

L

U

X(S(r))

S(i)

58 lec2 - 1 February 2018



Tracesets and interleavings

Definition [interleaving]: an interleaving is a sequence of thread-identifier-
action pairs. 

Example: 

Given an interleaving I, the trace of tid in I is the sequence of actions of 
thread tid in I, e.g.: 

     trace 1 I’ = [ S(1), R[v=0], X(0) ]. 

Conversely, given a traceset, we can compute all the well-formed 
interleavings (called executions)...  (next slide)
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Tracesets and interleavings

An interleaving I is an execution of a traceset T if: 

- for all tid,  trace tid I ∈  T  (traces belong to the traceset) 

- tids correspond to entry points S(tid) 

- lock / unlock alternates correctly 

- each read sees the most recent write to the same location (read/from). 

(The last property enforce the sequentially consistent semantics for memory accesses). 
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Tracesets and interleavings

An interleaving I is an execution of a traceset T if: 

- for all tid,  trace tid I ∈  T  (traces belong to the traceset) 

- tids correspond to entry points S(tid) 

- lock / unlock alternates correctly 

- each read sees the most recent write to the same location (read/from). 

(The last property enforce the sequentially consistent semantics for memory accesses). 

Remarks: 

  1. Interleavings order totally the actions, and do not keep track 
of which actions happen in parallel.   
  2. It is however possible to put more structure on interleavings, 
and recover informations about concurrency.  
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Happens-before

Definition [program order]: program order, <po, is a total order over the 
actions of the same thread in an interleaving. 

Definition [synchronises with]: in an interleaving I, index i synchronises-
with index j, i <sw j, if i < j and A(Ii) = U (unlock), A(Ij) = L (lock). 

Definition [happens-before]: Happens-before is the transitive closure of 
program order and synchronises with. 
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Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

Examples of happens before

       0:W[y=1], 0:L, 0:W[x=1], 0:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1) 

po po po po po po po

swhb

0:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U 

po popo po

po

swhb

S(tid) actions omitted.
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Data-race freedom

Definition [data-race-freedom]:  A traceset is data-race free if none of 
its executions has two adjacent conflicting actions from different 
threads.   

Equivalently, a traceset is data-race free if in all its executions all pairs of 
conflicting actions are ordered by happens-before. 

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

0:W[y=1], 1:R[x=0], 0:W[x=1]

po

Two conflicting accesses

not related by happens before.A racy program
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Data-race freedom: equivalence of definitions

Given an execution                                  

of a traceset T where [a] and [b] are the first conflicting actions not 
related by happen-before, we build the interleaving    

where β' are all the actions from β  that strictly happen-before [b].   

It remains to show that                                is an execution of T. 

The formal proof is tedious and not easy (see Boyland 2008, Bohem & Adve 2008, 
Sevcik ), here will give the intuitions of the construction on an example.

α ++ [a] ++ β ++ [b]

α ++ β' ++ [a] ++ [b]

α ++ β' ++ [a] ++ [b]
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Data-race freedom: equivalence of definitions

Thread 1: x := 1; r1 := x; print r1; 
Thread 2: r2 := z; print r2; x := 2;

read first

write first
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Defining programming language memory models
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Option 1

Don't. 

No concurrency. 

Implemented by highly-successful programming languages (OCaml) 

Poor match for current trends
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Option 2

Don't. 

No shared memory 
   

A good match for some problems (see Erlang, MPI, …)
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Option 3

Don't. 

But language ensures data-race freedom 
   

Possible: 

- syntactically ensuring data accesses protected by associated locks 

- fancy effect type systems  

Not suitable for general purpose programming.
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Option 4

Don't. 

Leave it (sort of) up to the hardware 
   

Example:  

MLton, a high performance ML-to-x86 compiler with concurrency 
extensions  

Accesses to ML refs exhibit the underlying x86-TSO behaviour 
(atomicity is guaranteed though)
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Option 5

Do. 

Use data race freedom as a definition 
   

1. Programs that race-free have only sequentially consistent behaviours 

2. Programs that have a race in some execution can behave in any way 
                      Sarita Adve & Mark Hill, 1990
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Option 5

Do. 

Use data race freedom as a definition 
Pro:  
   - simple 
   - strong guarantees for most code 
   - allows lots of freedom for compiler and hardware optimisations 

Cons: 
   - undecidable premise 
   - can't write racy programs (escape mechanisms?)
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Data-races are errors
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Data-races are errors
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Les data-races sont des erreursData-races are errors
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Data race freedom as a definition

• Core of the C11/C++11 standard. 
Hans Boehm & Sarita Adve, PLDI 2008.   

• Part of the JSR-133 standard. 


Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.   
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Data race freedom as a definition

• Core of the C11/C++11 standard.  
Hans Boehm & Sarita Adve, PLDI 2008.   

    with some escape mechanism called "low level atomics". 
Mark Batty & al., POPL 2011.   

• Part of the JSR-133 standard. 


Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.   

DRF gives no guarantees for untrusted code: a disaster for Java, which 
relies on unforgeable pointers for its security guarantees. 

JSR-133 is DRF + some out-of-thin-air guarantees for all code. 
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A word on JSR-133

Goal 1: data-race free programs are sequentially consistent; 

Goal 2: all programs satisfy some memory safety requirements; 

Goal 3: common compiler optimisations are sound. 
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Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements. 

Programs should never read values that cannot be written by the 
program: 

the only possible result should be printing two zeros because no other 
value appears in or can be created by the program.
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Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements. 

Programs should never read values that cannot be written by the 
program: 

the only possible result should be printing two zeros because no other 
value appears in or can be created by the program.
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Out-of-thin-air

Under DRF, it is correct to speculate on values of writes: 

The transformed program can now print 42.  This will be theoretically 
possible in C++11, but not in Java. 

The program above looks benign, why does Java care so much about 
out-of-thin-air?  
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Out-of-thin-air

Out-of-thin-air is not so benign for references.  Compare: 

What should r2.run() call?  

If we allow out-of-thin-air, then it could do anything!

and

r2.run()
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Goal 1: data-race free programs are sequentially consistent; 

Goal 2: all programs satisfy some memory safety requirements; 

Goal 3: common compiler optimisations are sound. 

A word on JSR-133

The model is intricate, and fails to meet goal 3.   

An example: should the source program print 1? can the optimised 
program print 1?

Jaroslav Ševčík, David Aspinall, ECOOP 2008

x = y = 0

r1 = x
y = r1

r2 = y
x=(r2==1)?y:1
print r2

x = y = 0

r1 = x
y = r1

x = 1
r2 = y
print r2

HotSpot Optimization
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A word on C11/C++11 low-level atomics
std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {
    if (0 == index) {
        flag0.store(1, std::memory_order_relaxed);
        turn.exchange(1, std::memory_order_acq_rel);

        while (flag1.load(std::memory_order_acquire)
            && 1 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    } else {
        flag1.store(1, std::memory_order_relaxed);
        turn.exchange(0, std::memory_order_acq_rel);

        while (flag0.load(std::memory_order_acquire)
            && 0 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    }
}

void unlock(unsigned index) {
    if (0 == index) {
        flag0.store(0, std::memory_order_release);
    } else {
        flag1.store(0, std::memory_order_release);
    }
}

Atomic variable declaration

New syntax for  
memory accesses

Qualifier
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Low level atomics

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED
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Low level atomics

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses
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Low level atomics

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing
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Low level atomics

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power
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Low level atomics

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

85-5 lec2 - 1 February 2018



Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE)     r2 = y

x = y = 0
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Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE)     r2 = y

Non-atomic loads must return the most recent write  
in the happens-before order (unique in a DRF program) 

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y

DATA RACE 

Two conflicting accesses not related by happens-before 

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED 

but r2 = 0 is possible 

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED 

but r2 = 0 is possible 

x = y = 0

Intuition 
the compiler (or hardware) can reorder independent accesses
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Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED 

but r2 = 0 is possible 

 Allow a RELAXED load to see any store that: 

   - does not happen-after it 

   - is not hidden by an intervening store hb-ordered between them

x = y = 0

Intuition 
the compiler (or hardware) can reorder independent accesses
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The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a ̸
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid ) = aid) ∧
(action id of (Unlock aid ) = aid) ∧
(action id of (Atomic load aid ) = aid) ∧
(action id of (Atomic store aid ) = aid) ∧
(action id of (Atomic rmw aid ) = aid) ∧
(action id of (Load aid ) = aid) ∧
(action id of (Store aid ) = aid) ∧
(action id of (Fence aid ) = aid)

(thread id of (Lock tid ) = tid) ∧
(thread id of (Unlock tid ) = tid) ∧
(thread id of (Atomic load tid ) = tid) ∧
(thread id of (Atomic store tid ) = tid) ∧
(thread id of (Atomic rmw tid ) = tid) ∧
(thread id of (Load tid ) = tid) ∧
(thread id of (Store tid ) = tid) ∧
(thread id of (Fence tid ) = tid)

(memory order (Atomic load mem ord ) =
Some mem ord) ∧

(memory order (Atomic store mem ord ) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord ) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l ) = Some l) ∧
(location (Atomic store l ) = Some l) ∧
(location (Atomic rmw l ) = Some l) ∧
(location (Load l ) = Some l) ∧
(location (Store l ) = Some l) ∧
(location (Fence ) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v ) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ∥ → F

is unlock a =
case a of Unlock → T ∥ → F

is atomic load a =
case a of Atomic load → T ∥ → F

is atomic store a =
case a of Atomic store → T ∥ → F

is atomic rmw a =
case a of Atomic rmw → T ∥ → F

is load a = case a of Load → T ∥ → F

is store a = case a of Store → T ∥ → F

is fence a = case a of Fence → T ∥ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

∥ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
∥ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
∥ Non atomic → is load or store a
∥ Atomic → is load or store a ∨ is atomic action a)

∥ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
∥ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

∥ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

∥ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

∥ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a ≠ b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

∥ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c ≠ a) ∧ (c ≠ b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a ≠ b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a ≠ b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ≠ {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ≠ {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc ≠ {})

then {}
else executions
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The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a ̸
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid ) = aid) ∧
(action id of (Unlock aid ) = aid) ∧
(action id of (Atomic load aid ) = aid) ∧
(action id of (Atomic store aid ) = aid) ∧
(action id of (Atomic rmw aid ) = aid) ∧
(action id of (Load aid ) = aid) ∧
(action id of (Store aid ) = aid) ∧
(action id of (Fence aid ) = aid)

(thread id of (Lock tid ) = tid) ∧
(thread id of (Unlock tid ) = tid) ∧
(thread id of (Atomic load tid ) = tid) ∧
(thread id of (Atomic store tid ) = tid) ∧
(thread id of (Atomic rmw tid ) = tid) ∧
(thread id of (Load tid ) = tid) ∧
(thread id of (Store tid ) = tid) ∧
(thread id of (Fence tid ) = tid)

(memory order (Atomic load mem ord ) =
Some mem ord) ∧

(memory order (Atomic store mem ord ) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord ) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l ) = Some l) ∧
(location (Atomic store l ) = Some l) ∧
(location (Atomic rmw l ) = Some l) ∧
(location (Load l ) = Some l) ∧
(location (Store l ) = Some l) ∧
(location (Fence ) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v ) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ∥ → F

is unlock a =
case a of Unlock → T ∥ → F

is atomic load a =
case a of Atomic load → T ∥ → F

is atomic store a =
case a of Atomic store → T ∥ → F

is atomic rmw a =
case a of Atomic rmw → T ∥ → F

is load a = case a of Load → T ∥ → F

is store a = case a of Store → T ∥ → F

is fence a = case a of Fence → T ∥ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

∥ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
∥ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
∥ Non atomic → is load or store a
∥ Atomic → is load or store a ∨ is atomic action a)

∥ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
∥ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

∥ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

∥ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

∥ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a ≠ b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

∥ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c ≠ a) ∧ (c ≠ b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a ≠ b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a ≠ b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ≠ {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ≠ {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc ≠ {})

then {}
else executions

We can reason about C concurrency!
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa 

This program is data-race free 
This program must print 42
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa 

This program is data-race free 
This program must print 42

This is a concurrency compiler bugcompiler bug
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa 

This program is data-race free 
This program must print 42

This is a concurrency compiler bugconcurrency compiler bug
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Compiler testing: state of the art   
    Yang, Chen, Eide, Regehr - PLDI 2011
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Compiler testing: state of the art   
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs 

on various versions of gcc, clang and other compilers
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Compiler testing: state of the art   
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs 

on various versions of gcc, clang and other compilers

Cannot catch 
concurrency compiler bugs
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Hunting concurrency compiler bugs?

How to deal with non-determinism? 

How to generate non-racy interesting programs? 

How to capture all the behaviours of concurrent programs? 

A compiler can optimise away behaviours:  
how to test for correctness? 

limit case: two compilers generate correct code with disjoint final states
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C/C++ compilers support separate compilation 
Functions can be called in arbitrary non-racy concurrent contexts 

C/C++ compilers can only apply transformations sound  
with respect to an arbitrary non-racy concurrent context 

Idea

Hunt concurrency compiler bugs  

= 
 search for transformations of sequential code  

not sound in an arbitrary non-racy context
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REFERENCE  
MEMORY  

TRACE
MEMORY  

TRACE

reference 
semantics

optimising 
compiler 

under test

EXECUTABLE

tracing

Check: only transformations sound 
in any concurrent non-racy context

SEQUENTIAL 
PROGRAM
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Soundness of compiler optimisations in 
the C11/C++11 memory model
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Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it 
correct to eliminate the first store?
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A same-thread release-acquire pair is a pair of  
a release action followed by an acquire action 

in program order. 

An action is a release if it is a possible source of a synchronisation 

 unlock mutex, release or seq_cst atomic write 

An action is an acquire if it is a possible target of a synchronisation  

lock mutex, acquire or seq_cst atomic read 
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Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

It is safe to eliminate the first store 
if there are:

no access to g

no st rel/acq pair
1. no intervening accesses to g
2. no intervening  
       same-thread release-acquire pair

98 lec2 - 1 February 2018



g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1
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candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1
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candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

same-thread release-acquire pair

Thread 1
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The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2
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The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync
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The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

The program should only print 1
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The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

If we perform overwritten write elimination it prints 0
The program should only print 1
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sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

while(f2.load(ACQUIRE)==0);
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sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2
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sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

If only a release (or acquire) is present, then  
all discriminating contexts are racy. 

It is sound to optimise the overwritten write.

data race

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2
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Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb
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Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb

Also correctness statements for 

reorderings, merging, and introductions of events.
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From theory to the Cmmtest tool
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REFERENCE  
MEMORY  

TRACE
MEMORY  

TRACE

reference 
semantics

optimising 
compiler 

under test

EXECUTABLE

tracing

SEQUENTIAL 
PROGRAM

Check: only transformations sound 
in any concurrent non-racy context
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REFERENCE  
MEMORY  

TRACE
MEMORY  

TRACE

optimising 
compiler 

under test

EXECUTABLE

tracing

SEQUENTIAL 
PROGRAM

CSmith  
extended with locks 

and atomics

binary  
instrumentation

EXECUTABLE

gcc/clang -O0

binary 
instrumentation

Check: only transformations sound 
in any concurrent non-racy context
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REFERENCE  
MEMORY  

TRACE
MEMORY  

TRACE

optimising 
compiler 

under test

EXECUTABLE

tracing

SEQUENTIAL 
PROGRAM

CSmith  
extended with locks 

and atomics

binary  
instrumentation

EXECUTABLE

gcc/clang -O0

binary 
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

OCaml tool 
 1. analyse the traces to detect eliminable actions 
 2. match reference and optimised traces
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

Start with a randomly generated well-defined program
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

Init g3 0
Init g4 1
Init g5 1
Init g6 6 
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    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
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}
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reference 
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Init g4 1
Init g5 1
Init g6 6 
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference 
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

Can match applying  
only correct eliminations and reorderings
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

If we focus on the miscompiled initial example...
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
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int a = 1;
int b = 0;
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

reference 
semantics

Load a 1
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory tracereference 
semantics

Load a 1
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory trace

     Cannot match some events           detect compiler bug

reference 
semantics

Load a 1

107-5 lec2 - 1 February 2018



Applications

2013 - 2015
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1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found  
in the latest version of GCC. 

Store introductions performed by loop invariant motion or  
if-conversion optimisations. 

Remark: these bugs break the Posix thread model too. 

All promptly fixed.
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2. Checking compiler invariants

Baked this invariant into the tool and found a counterexample...

GCC internal invariant: never reorder with an atomic access

atomic_uint a; 
int32_t g1, g2;

int main (int, char *[]) {
  a.load() & a.load ();
  g2 = g1 != 0; 
}

ALoad  a   0  4
ALoad  a   0  4
Load   g1  0  4
Store  g2  0  4

Load   g1  0  4
ALoad  a   0  4
ALoad  a   0  4
Store  g2  0  4

...not a bug, but fixed anyway
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3. Detecting unexpected behaviours

Correct or not?

uint16_t g

for (; g==0; g--); g=0;

uint16_t g
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3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context. 

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:
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3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context. 

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

False positives in Thread Sanitizer
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The formalisation of the C11 memory model 
enables compiler testing...  what else?
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Proving the correctness of mappings for atomics 
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
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Inform new optimisations 
e.g. the work by Robin Morisset on the Arm LLVM backend

  while (flag.load(acquire))
   {}

.loop
  ldr r0, [r1]
  dmb ish
  bnz .loop

.loop
  ldr r0, [r1]
  bnz .loop
  dmb ish
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A word on CompCertTSO

Idea: the programming language memory model faithfully mimics the 
processor model.

Intel processors implement the x86-TSO MM 

TSO
The C-TSO programming language: 
  a C-like language with a TSO semantics  
  for memory accesses.

A semantic preserving compiler, 
  CompCertTSO

Our we might want radically different  
programming languages! 

(Radically different language = radically different challenges?)
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Resources

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

Starting point: 

J. Sevcik

Safe Optimisations for Shared Memory Concurrent Programs


PLDI 2011


H. Bohem

Threads Cannot Be Implemented as a Library 

PLDI 2005
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Conclusion
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Syllabus

In these lectures we have covered the hardware models of 
two modern computer architectures (x86 and Power/ARM - at least for 
a large subset of their instruction set).   

We have seen how compiler optimisations can also break concurrent 
programs and the importance of defining the memory model of high-
level programming languages. 

We have also introduced some proof methods to reason about 
concurrency. 

After these lectures, you might have the feeling that multicore 
programming is a mess and things can't just work.   
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The memory models of modern 
hardware are better understood.

Programming languages attempt 
to specify and implement 
reasonable memory models.

Researchers and programmers 
are now interested in these 
problems.
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The memory models of modern 
hardware are better understood.

Programming languages attempt 
to specify and implement 
reasonable memory models.

Researchers and programmers 
are now interested in these 
problems.

Still, many open problems...
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The memory models of modern 
hardware are better understood.

Programming languages attempt 
to specify and implement 
reasonable memory models.

Researchers and programmers 
are now interested in these 
problems.

Still, many research opportunities!
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