| e bome

—— g
e

Semantics, languages and algorithms
for multicore programming

Albert Cohen Luc Maranget Francesco Zappa Nardelli

Concurrency, in theory

Fxamnle: 2-wav Riiffers

e GONCUIrency theory is fundamental

Buf_ —

Flow g Many of the concepts and techniques developed in 25 years of
study of concurrency theory are fundamental.

You will reuse them in your daily research.

LTS:
Just some examples:

Buf , (.y
"+ e Jabelled transition systems;

e simulation and bisimulation;

* contextual equivalences.

Concurrency, in practice

resousosen N practice
e (éocument
identifi
sequential code, interaction via shared memory, some OS calls.
1k (“;;;o; i

c1ient.c Libraries may provide some abstractions (e.g. message passing).

return;

} However, somebody must still implement these libraries. And...

') FPLXME: 1

. Programmlng IS hard:

1f (sameOrlc

ciient.c gyptle algorithms, awful corner cases.

return;

}

c1ient.cicre [€StING IS hard:
const char+ SOME behaviours are observed rarely and difficult to reproduce.

int len = st
client.didRe

Warm-up: let's implement a shared stack.

client.didFfi

LT VUL JLdDuvaQuvejy

excerpt from } }
WWW.javaconcurrencyinpractice.com

class ExpensiveOdbiject { }

response,

data)

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Setup

A program is composed by threads that communicate by writing and reading Iin
a shared memory. No assumptions about the relative speed of the threads.

In this example we will use a mild variant of the C programming language:
 local variables: x, v, ... (allocated on the stack, local to each thread)
e global variables: Top, H, ... (allocated on the heap, shared between threads)
e data structures: arrays H[i], records n = t->tl1, ...
e an atomic compare-and-swap operation (e.g. CMPXCHG on x86):
bool CAS (value_t *addr, value_t exp, value_t new) {
atomic {

1f (*addr == exp) then { *addr = new; return true; }
else return false;

I3,

A stack

We implement a stack using a list living in the heap:

* each entry of the stack is a record of two fields:

typedef struct entry { value hd; entry *tl } entry
* the top of the stack is pointed by Top.

Top —
—> —— —— .
pop (O { push (b) {
t = Top; b->tl = Top;
if (t !'= nil) Top = b;
Top = t->tl; return true;
return t; }

¥

A sequential stack: demo

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥
Top

N

A sequential stack: pop ()

pop () { push (b) 1
t = Top: b->tl = Top;
if Ct 1= nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥
Top

N
/

t

A sequential stack: pop ()

pop C) { push (b) {
t = Top; b->tl = Top;
if (t !'= nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥
Top

A sequential stack: pop ()

pop () { push (b) 1
t = Top: b->tl = Top;
if Ct 1= nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥
Top

A sequential stack: push (b)

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥
Top

N

b

N

A sequential stack: push (b)

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥
Top

N

A sequential stack: push (b)

pop C) {
t = Top;
1f (t !'= nil)
Top = t->tl;
return t;
¥
Top
b

/

N

/

push (b) {

¥

b->tl = Top;
Top = b;
return true;

A sequential stack: push (b)

pop C) {
t = Top;
1f (t !'= nil)
Top = t->tl;
return t;
¥
Top
b

/

N

/

push (b) {

¥

b->tl = Top;
Top = b;
return true;

A sequential stack in a concurrent world

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥

Imagine that two threads invoke pop() concurrently...

Top

N

A sequential stack in a concurrent world

pop () { push (b) {
t = Top, b->tl = TOp,
if (t != nil) Top = b;
Top = t->t1; return true;
return t; ¥
¥

Imagine that two threads invoke pop() concurrently...

A sequential stack in a concurrent world

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥

Imagine that two threads invoke pop() concurrently...

A sequential stack in a concurrent world

pop C D) { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥

Imagine that two threads invoke pop() concurrently...

A sequential stack in a concurrent world

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥

Imagine that two threads invoke pop() concurrently...

...the two threads might pop the same entry!

|[dea 1: validate the Top pointer using CAS

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks

|[dea 1: validate the Top pointer using CAS

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
by

Two concurrent pop() now work fine...

|[dea 1: validate the Top pointer using CAS

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
ks

Two concurrent pop() now work fine...

|[dea 1: validate the Top pointer using CAS

pop () { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;

return t;

¥

Two concurrent pop() now work fine...

¥
Top
The CAS of Th. 1 fails. \\\\\\\\\\\\i

1: n

The ABA problem

pop () { push (b) 1
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Th 1 starts popping...

The ABA problem

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
ks

Th 1 starts popping...

The ABA problem

pop () { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥
Th 2 pops...
Top
2 \\)
—— —— .

The ABA problem

pop () { push (b) 1
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Th 2 pops again...

The ABA problem

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Th 2 pushes a new node...

The ABA problem

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
= t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Th 2 pushes the old head of the stack...

Top \\\\\

/
//

The ABA problem

pop C) {
while (true) {

t = Top;

1f (t == nil) break;

n = t->tl;

1f CAS(&Top,t,n) break;
3

return t;

¥

Th 1 corrupts the stack...

push (b) {
while (true) {
t = Top;
b->tl = t;
1f CAS(&Top,t,b) break;
3

return true;

\4 ~

The hazard pointers methodology

Michael adds to the previous algorithm a global array H of hazard pointers:
* thread i alone is allowed to write to element H[i] of the array;

* any thread can read any entry of H.

The algorithm is then modified:

* before popping a cell, a thread puts its address into its own element of H.
This entry is cleared only if CAS succeeds or the stack is empty;

* before pushing a cell, a thread checks to see whether it is pointed to from any
element of H. If it is, push is delayed.

Michael’s algorithm, simplified

pop () { push (b) {
while (true) { for (n = 0; n < no_threads, n++)
atomic { t = Top; 1f (H[n] == b) return false;
H[tid] = t; }; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks

¥

Michael’s algorithm, simplified

pop () { push (b) 1
while (true) { for (n = @; n < no_threads, n++)
atomic { t = Top; 1f (H[n] == b) return false;
H[tid] = t; }; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; 1f CAS(&Top,t,b) break;
} h
H[tid] = nil; return true;
return t; 3
¥
To >
g N\
‘ N\
Th 2 cannot push the old
> ——> ——

head, because Th 1 has an HL1]
hazard pointer on it... / /

1: t
1: n

Key properties of Michael’s simplitfied algorithm

* A node can be added to the hazard array only if it is reachable through the
stack;

 a node that has been popped is not reachable through the stack;

+ a node that is unreachable in the stack and that is in the hazard array cannot
be added to the stack;

» while a node is reachable and in the hazard array, it has a constant tail.

These are a good example of the properties we might
want to state and prove about a concurrent algorithm.

The role of atomic

pop () { push (b) {
while (true) { for (n = @; n < no_threads, n++)
t = Top; 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks
¥
Top

Th 1 copies Top... /

The role of atomic

pop () { push (b) {
while (true) { for (n = @; n < no_threads, n++)
t = Top;: 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; 1f CAS(&Top,t,b) break;
1 ks
H[tid] = nil; return true;
return t; ks
¥
S
Top \\\\‘
Th 2 pops twice, and
——> ——

pushes a new node... /

The role of atomic

pop () { push (b) {
while (true) { for (n = 0; n < no_threads, n++)
t = Top;: 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; 1f CAS(&Top,t,b) break;
1 ks
H[tid] = nil; return true;
return t; ks
¥
S
Top \\\\‘
Th 2 starts pushing the old
—> —

head, and is halfway in the
for loop... /

The role of atomic

pop () { push (b) {
while (true) { for (n = 0; n < no_threads, n++)
t = Top; 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks
¥

AN
Th 1 sets its hazard Top — / o

pointer... but Th 2 might

not see the hazard pointer H1] — -
of Th 1! /

1ot 1: n

Michael shared stack

push (b) {

po£h§12 étrue) { for (n = 0; n < no_threads, n++)
t = Top; if (H[n] == b) return false;
if (t == nil) break; while gtreeD i
Htid] = t; E :tIOD,t.
if (£t 1=T break; - - -
; =(t_>t1.0p) o 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ¥
1 return true,
H[tid] = nil; 3
return t;
h

\get a correct algorithm.

Gust me: if we validate t against the
Top pointer before reading t->t1, we

f_~

Py -

Reaction 1.

— T4, S

A &
Lo
-~

That algorithm is insane... | will never s e £ 4
use it in my everyd S

...and ignoring parallelism is not
an option these days...

Yes, you willl Michael algorithms
are part of java.util.concurrent.

Reaction 2.

The course 2.36.1 gives some hints.

=
= Welcome to 2.37.1

CO
1. Relaxed-memory concurrency,
from hardware to programming languages

< 2. Runtime algorithms
and compilation of parallel programming languages

3. Modern concurrent algorithms

<Te|| us about the state of the art!

Part 1.
Shared memory: an elusive abstraction

http://www.di.ens.fr/~zappa/projects/weakmemory

Based on work done by or with

Peter Sewell, Jaroslav Sevéik, Susmit Sarkar, Tom Ridge, Scott Owens,
Viktor Vafeiadis, Magnus O. Myreen, Kayvan Memarian, Luc Maranget,
Pankaj Pawan, Thomas Braibant, Mark Batty, Jade Alglave.

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

The golden age, 1945 - 1972

Memory = Array of Values

Properties

- no thread local reordering

) . _— e . e
Taken for granted by almost all
. ons of
* concurrency theorists
er, and

* program logics
* concurrent verification tools

Lame programmers

|

Shared RAM

The first shocking example

Consider the following x86 assembler code.
Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread O Thread 1

MOV [x] « 1 MOV [y] « 1

MOV EAX +« [y] | MOV EBX « [X]

Can you guess the final register values: EAX =? EBX = ?

The first shocking example

Consider the following x86 assembler code.
Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread O Thread 1
==

MOV [x] « 1 MOV [y] « 1
(Mov EBX < [X]

Can you guess the final register values: EAX =1 EBX =1

MOV EAX « [V]

The first shocking example

Consider the following x86 assembler code:
Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread O Thread 1
MOV [x] « 1 ’MOV [y] + 1‘(
MOV EAX ¢+ [y] | MOV EBX « [x]

Can you guess the final register values: EAX =1 EBX =1

The first shocking example

Consider the following x86 assembler code:
Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread O Thread 1
T

MOV [x] « 1 MOV [y] « 1
MOV EAX « [y] | MOV EBX « [xX]

—>

Can you guess the final register values: EAX =1 EBX =1

The first shocking example

Consider the following x86 assembler code:
Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread O Thread 1

MOV [X] + 1{ MOV [y] « 1
]

MOV EAX + [y OV EBX « [X]

Can you guess the final register values: EAX =1 EBX =1

The first shocking example

Consider the following x86 assembler code:
Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread O Thread 1
MOV [x] « 1 MOV [y] + 1‘(
MOV EAX +« [y]Y] MOV EBX « [x]

Can you guess the final register values: EAX =0 EBX =1

The first shocking example

Consider the following x86 assembler code:
Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread O Thread 1
MOV [x] « 1 MOV [y] + 1‘(
MOV EAX ¢+« [y] MOV EBX « [x]

Can you guess the final register values: EAX =1 EBX =0

The first shocking example

MOV

MOV

Let's see...

INn an IC

® EAX
® EAX
® EAX ~ -

VWe can observe

EAX =EBX =0

as well

MO
MOV|

The first shocking example

INn an

¢ EA
® EA
® E2

According to most programmers

Multip
threac
. Upshot:
Multip
only a relaxed (or weakly consistent)
(local § view of the memory.
These
° ungG

e sometimes observable by concurrent code.

Sk

Not new

Multiprocessors since 1964 (Univac 1108A)

Relaxed Memory since 1972 (IBM System 370/158MP)

Eclipsed for a long time (except in high-end) by advances in performance:

- transistor counts (continuing)
- clock speed (hit power dissipation limit)
- ILP (hit smartness limit?)

Mass-market multiprocessing, since 2005.

Programming multiprocessors no longer just for
specialists.

SBut 1t's hard!

1. F
2. F
Industrial processors and language specs

3. F are often flawed

We've looked at the specs of x86, Power, ARM, Java, and C++
Al
coc They all have problems
Mul
prOu U Al T 1Al TUUAUCT wi'AY wifl® wile —=\V VEC

ardware models

Architectures

Hardware manufacturers document architectures:

loose specifications

covering a wide range of past and future processor implementations.

Architectures should:
® reveal enough for effective programming;

e without unduly constraining future processor design.

Examples: Intel 64 and |A-32 Architectures SDM, AMD64 Architecture Programmer’s
Manual, Power ISA specification, ARM Architecture Reference Manual, ...

In practice (11 teD

Architectures described by informal prose:

In a multiprocessor system, maintenance of cache
consistency may, In rare circumstances, require intervention

by system software.
(Intel SDM, november 2006, vol3a, 10-5)

As we shall see, such descriptions are:

1) vague; 2) incomplete; 3) unsound.

Fundamental problem: prose specifications cannot be used to test
programs or to test processor implementations.

Intel 64/IA32 and AMD64 - before Aug. 2007

Era of Vagueness

A model called Processor Ordering, informal prose.

Example: Linux kernel mailing list, 20 nov. - 7 déc. 1999 (143 posts).
A one-instruction programming question, a microarchitecural debatel!

Keywords: speculation, ordering, causality, retire, cache...

1. spin_unlock() Optimization On Intel Note that I actually thought this was a legal optimization, and for a while I

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" had this in the kernel. It crashed. In random ways. P 11 ck()

Topic: BSD F BbD SMpP b()
11\’/[lpl : Lin valds,Jeff V. Merkey Erich Boleyn,Manfred Spraul ,Peter Samuelson,Ingo Note that the fact that it does not crash now is quite possibly because of either
olnar b()
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about b
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" Spin ll) ck();
inst.ruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed- we have a lot less contention on our spinlocks these days. That might hide the ;e wen b
Up j— 2 i — i
that]
prey
1t dj

«{" You report that Linus was convinced to do the spinlock optimization on

Intel but apparently someone has since changed his mind back. See <asm-
szfi?'1386/ spinlock.h> from 2.3.30pre5 and above:

Thq

.—

u
For
ha

stal

spi

/* Sadly, some early PPro chips require the locked

=|—'U

* access, otherwise we could just always simply do
A *
d* #define spin_unlock string \

* "movb S$0,%0"

| *

* Which i1s noticeably faster.
*/

#define spin unlock string \
"lock ; btrl $0,%0""

a

Niai

for

A Pentium ' ‘ — R Bl hing you need is to make sure there is
% - - ‘. b kind of true by the fact that you're ¢

wrt reads e BOEIIE £ vemrerc . < or ox <an v o en vaa A DG

observable on other processors

Intel 64/1A32 and AMD64 - Aug. 2007 / Oct. 2008

Intel publishes a white paper, defining 8 informal-prose principles, e.qg.

P1. Loads are not reordered with older loads.
P2. Stores are not reordered with older stores.

supported by 10 litmus test (illlustrating allowed or forbidden
behaviours), e.qg.:

Thread O Thread 1
MOV [x] +« 1 MOV EAX +« [y] (1)
MOV [y] « 1 MOV EBX + [x] (0)
Forbidden final state: EAX = 1 AEBX = 0

P3. Loads may be reordered with older stores to different locations
but not with older stores to the same location.

Thread O Thread 1
MOV [x] « 1 MOV [y] « 1
MOV EAX « [y] (0) MOV EBX « [x] (0)
Allowed final state: 0:EAX = 0 A1:EBX = 0

Thread R Thread

13}Jng SUM
18)ng SJUM -

{

L

Shared Memory

Litmus test 2.4: intra-processor forwarding is allowed

Thread O

Thread T

MOV [x] <« 1
MOV EAX < [x] (1)
MOV EBX <« [y] (0)

MOV [y] « 1

MOV ECX + [y] (1)
MOV EDX +« [x] (0)

Allowed final state: 0:EAX = 1 A 0:EBX = 0 A
1:ECX =1 A 1:EDX =1

Thread

o

alng SiUM

.

l

o

Shared Memory

Thread l

Jayng LM

\l

Thread O Thread 1 Thread 2 Thread 3

MOV [x] &« 1[(MOV [y] ¢« 1| MOV EAX ¢ [XJl)MOV ECX ¢+ [yi]ll)

MOV EDX ¢
[X(]o

MOV EBX ¢ [YJO)

Final state: 2:EAX = 1 A 2:EBX = 0A3:ECX =1 A 3:EDX =0

Thread Q0 | Thread 2 Thread 1 Thread 3
I ' i

[|

A

-

Microarchitecturally plausible? 1 .

Yes, with e.g. shared store buffers.

|

1ayng alLM

oyng 9luM T

Shared Memory

Ambiguity

P1-P4: ... may be reordered with ...

P5: In| S —
i.e. sl Ambiguity: r
CONSI¢

when are two stores casually related”

MOV [x] < 1 | MOV EAX + [x] |MOV EBX « [y] (1)

MOV [y] < 1 |MOV ECX « [x] (0)

Forbidden final state: 1:EAX = 1 A 2:EBX = 1 A2:ECX = 0

Unsoundness

Example from Paul Loewenstein:

he Intel White Paper specification

IS unsound

(and our POPL x86-CC paper too)

Obser
® “Sto

® “Storés 1o the same Tocation have a total order

Intel 64/1A32 and AMD64, Nov. 2008 - now

SDM rev 29-31.

® Not unsound In the previous sense

e Explicitly exclude IRIW, so not weak in that sense. New principle:

Any two stores are seen in a consistent order by
processors other than those performing the stores.

But... still ambiguous, and the view by those processors is left entirely
unspecified!

Thread O Thread 1

MOV [x] « 1 MOV [X] « 2
MOV EAX « [x] (2) |MOV EBX « [x] (1)
0:EAX = 2 A 1:EBX =1

<||| :

Power ISA 2.06 and ARM v7

Key concept: actions being performed.

A load by a processor (P1) is performed with respect to any

"all that horrible horribly incomprehensible and

U confusing [...] text that no-one can parse or
] reason with — not even the people who wrote it"

— Anonymous Processor Architect, 2011

ATmemory moaerl snould adermne T a parucular executon 1s anowea.
It is is awkward to make a definition that explicitly quantifies over all
hypothetical variant executions.

Why all these problems”?

Recall
looS

COVE

Archite
® reve

® \With

There is a big tension between these,
with internal politics and inertia.

Compounded by the informal-prose specification style.

ardware models:
iInventing a usable albstraction for x86

Requirements

e Unambiguous

® Sound w.r.t. experience

® Fasy to understand

e Consistent with what we know of vendor intentions
® Consistent with expert-programmer reasoning

Key facts for x86

® Store buffering (with forwarding) is observable

® |[RIW is not observable and forbidden by recent docs

® \/arious other reorderings are not observable and are forbidden
These suggests that x86 is, in practice, like Sparc TSO.

Instructions and events

nitially [x] = 0.

Thread O Thread 1

INC [x] INC [x]

Are we guaranteed that [x] = 2 at the end of the execution”
No: [x] = 1 is possible.

The instruction INC [x] IS composed by two atomic events:
e read the content of the memory location [x];

e write the new content of the memory location [x].

| ocked Instructions

Thread O Thread 1 , _
[x] = 1 Is possible
INC [x] INC [x]
Thread O Thread 1

[x] = 1 Is forbidden
Lock; INC [x] Lock; INC [x]

Also, Lock's ADD, SUB, XCHG, etc., and CMPXCHG

x86-1S0O abstract machine

1. Separate instruction semantics and memory model
2. The memory model is defined over events rather than instructions
3. Define the memory model in two (provably equivalent) styles:

® an abstract machine (or operational model)

® an axiomatic model

x86-1S0O abstract machine

Thread e Thread

——

a Global Lock

to indicate when a thread has
exclusive access to memory

1ayng SIIM

Shared memory
maps addresses to values

a Store-Buffer per thread

Lock Shared Memory ‘

x86-1S0O abstract machine

® The store buffers are FIFO. A reading thread must read its most
recent buffered write, if there is one, to that address; otherwise
reads are satisfied from shared memory.

® o execute a LOCK’d instruction, a thread must first obtain the
global lock. At the end of the instruction, it flushes its store buffer
and relinquishes the lock. While the lock is held by one thread, no
other thread can read.

® A buffered write from a thread can propagate to the shared
memory at any time except when some other thread holds the
lock.

The not-so shocking first example

[x] < 1 [y] < 1
EAX & [V] EBX & [X]
EAX : 32 . Threﬁd cec vThread

\ l WY
| : Y .
: a a0

iang SllM
la)jng 91

Lock Shared Memory ‘

x : 0 y ¢+ 0

The not-so shocking first example

[x] < 1 [y] < 1
EAX & [V] EBX & [X]
EAX : 32 . Threﬁd cec vThread

\ l WY
| : Y .
: a a0

Jang a1
Jang o1IM

Lock Shared Memory ‘

x : 0 y ¢+ 0

The not-so shocking first example

[x] < 1 [y] < 1
EAX & [V] EBX & [X]
EAX : 32 . Threﬁfj l vThrea‘«“j
: g X:]. s e e § y:l
D o |
uy) wy)
=1 =1
| Lock Shared Memory ‘

x : 0 y ¢+ 0

The not-so shocking first example

[x] < 1 [y] < 1
EAX & [V] EBX & [X]
EAX : 0 i Threid e l 'Threa‘«“j
: § X:]. s e e § y:l
@ @ |
uy) oy
= =

Lock Shared Memory ‘

x : 0 y 0

The not-so shocking first example

[x] < 1 [y] < 1
EAX & [V] EBX & [X]
EAX : 0 i Threid e l 'Threa‘«“j
: § X:]. s e e § y:l
@ @ |
uy) oy
= =

Lock Shared Memory ‘

x : 0 y ¢+ 0

The not-so shocking first example

[x] < 1 [yl <« 1
EAX + [V] EBX + [X]

EAX : 0 i Threﬁd vThread

\ l WY
| : Y .
: a a0

y:1l

iang SllM
la)jng 91

Lock Shared Memory ‘

X ¢ 1 y ¢ 0

The not-so shocking first example

[x] < 1 [y] < 1
EAX & [V] EBX & [X]
EAX : 0 i Threﬁd ce 'Thread

\ l WY
| : Y .
: a a0

iang SllM
la)jng 91

Lock Shared Memory ‘

X ¢ 1 y ¢ 1

The not-so shocking first example

[x] < 1 [y] < 1
EAX <« [vy] EBX + [X]
EAX : 0 i Threﬁd “e 'Thread

\ | WY
| : Y .
: a a0

iang SllM
la)jng 91

Lock Shared Memory ‘

Linux Spinlock Optimisation

On entry the address ol spinlock is in register EAX
and the spinlock is unlocked iff its value is 1
acquire: LOCK;DEC [EAX] ; LOCK’d decrement of [EAX]
JNS enter ; branch if [EAX] was > 1
spin: CMP [EAX],0 ; test [EAX
JLE spin > branch if [EAX] was <0
JMP acquire ; try again
enter: ; the critical section starts here
release: MOV [EAX]«-1
Sample properties:

1. only one thread can acquire the spinlock at a time;

2. all writes performed inside a critical section must have been propagated
to main memory before another thread can acquire the spinlock.

NB: this Is an abstract machine

A tool to specify exactly and only the programmer-visible behaviour, not
a description of the implementation internals.

Thread eoe Thread ‘

; § ' ces g ‘ L
5 5 be
@ 2
; h

| Shared Memory ‘

Force: of the the internal optimizations of processors, only per-thread
FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic unbuffering,
arbitrary interleaving

Read from memory
rot.blocked s p A (8. M a = SOME v) A no_pending (.5 pla

EvT p (Access R (LLOCATION_MEM a)v)
& &

Read from write bulfer
not_blocked s p A (3b; b,.(s.B p = b, ++[(a, v)] ++5b;) A no_pending &, a)

EvT p (Access R (LOCATION_MEM a)v)
& &

reads_from_map_candidates =
V(ew, er) € rfmap.(er € reads E)A(ew € writes E) A
(loc ew = loc er) A (value_of ew = value_of er)
check_rfmap_written =
V(ew, er) € (X.rfmap).
if cw € mem_accesses £ then
ew € maximal_elements (previous_writes E er X .memory_order U
previous_writes E er (po_lico E))
X.memory_order
else

Read from register

(s&RHpr

EvT p (AccEss R

s

Write to write buffer
1
Evr p (AccEss W

s @(B:=s.8Ba(p

Write from write buﬂ’c;l
not_bloc

(po_iico E))(po_iico E)

_atate [)) A

Mathematics (in HOL4)

A

T oo rather than informal prose.

Write to register

Evr p (AcceEss W

s
s @(R:=sRa(p—

Barrier
(b = MFENCE) = |
EvT p (BARRIER

s 3
Lock
(s.L=NONE)A(s.Bp=]])
—t. s & (L:=Some p)
Unlock

(s.L=Some p)A(s.Bp=])

UNLOCK p v
—————— 3 @ (L:=Noxg)

e) € po_lico £ =
E =
€ (mfences F).

(ew, er) € X.memory_order) A
(Ver e2 € (mem_aoccesses F).Ves € (E.atomicity).
(61 € esV e € es)A (e, 92) € po_lico E
——
(e1.e2) € X.memory_order) A\
(Ves € (E.atomicity).¥e € (mem_acoesses E \ es).
(Ve' € (es M mem_gaccesses E).(e.¢') € X.memory_order) V
(Ve' € (es M mem_accesses E).(¢',e) € X.memory_order)) A
X.rfmap € reads_from_map_candidates E A
check_rfmap_written £ X A
check_rfmap_initial £ X

POWERG"™
BUILT ON

=)
LU
o
L
=
o
o
H

ardware models:
inventing a usable abstraction for Power/ARM

Disclaimer:
1. ARM MM is analogous to Power MM... all this is your phone!

2. The model | will present is (as far as we know) accurate for ARM if

barriers weaker than DMB are not used.
...but ARM chips seem to have bugs - ask Luc for details.

Power: much more relaxed than x86

Thread O

a: W[x|=1
po
b: Wly]=1

Thread O

Thread 1

x =1
y =1

while (y==0) {};

r

X

Observable behaviour: r = 0

Thread 1

c: Rly]=1

Forbidden on SC and x86-TSO

Allowed and observed on Power

Power: much more relaxed than x86

Three pos

Power has all three!

1. the two writes are performed in opposite order
reordering store buffers

2. the two reads are perfomed in opposite order
load reorder buffers / speculation

3. propagation of writes ignores order in which they are presented
interconnects partitioned by address (cache lines)

The model overall structure

Thread s Thread
Write request Read request/Write announce
Barrier request Barrier ack
Y \ 4

Storage Subsystem

Some aspects are thread-only, some storage-only, some both.

Threads and storage subsystem are abstract state machines.

Specu

ative execution in Threads; topology-independent Storage.

Much mwore aampii«:a&a& Ehain x¥&-TS0.
Are you, re.adv%’

‘ Thread '

oo e ’[:1——> ’1,2—> ’I,3—> Z,l—

16— 17

i8—>i9<

110— 11— 112

113

Each thread loads its code, instructions instances are initially marked in-flight.
In-flight instructions can lbe committed, not necessarily in program order.
When a branch is committed, the un-taken alternatives are discarded.
Instructions that follow an uncommitted branch cannot be committed.

In-flight instructions can e processed even before being committed (e.g. to
speculate reads from memory, perform computation, ...).

‘ Storage I Thread

Write request
Barrier request

Write announce
Barrier ack

Thread

| |

Storage Subsystem

The storage keeps (among other things):
1. for each thread, a list of the events propagated to the thread.

When recelving a write request, the storage adds the write event to

the list of the events propagated to the thread who issued the request.

The storage can propagate an observed event to a thread list at any time
(unless barriers / coherence /... conditions).

Threads can commit writes at any time
(Unless dependency / synch / pending /... conditions).

‘ Storage ' Thread Thread
VT 1
Simulation: 1. write_propagation
Th Thread 0 Thread 1 Thread 2
1.7 x =1 X = 2
y =1

W

th

Thestorage oropagate an ObServed event to a u at any 1

(unless barriers / coherence /... conditions).

Threads can commit writes at any time
(Unless dependency / synch / pending /... conditions).

‘ Storage I Thread Thread

Write request Write announce
Barrier request Barrier ack

Storage Subsystem

The storage keeps: ...
2. for each location, a partial order of coherence commitments

[dea 1. at the end of the execution, writes to each location are totally ordered.

Idea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: it a thread executes x=1 and then x=2, another thread cannot first
read 2 and then 1.

L_umm i

Simulation: 2. coherence_propagation

Thread O Thread 1
x =1
X = 2

Intuition: it a thread executes x=1 and then x=2, another thread cannot first
read 2 and then 1.

‘ Storage + Thread l Thread Thread

Write request l I Read request/Write announce l]

Barrier request Barrier ack

Storage Subsystem

Threads can issue read-requests at any time (unless dependency / synch / ...).
Issuing a read-request and committing a read are different actions.

Storage can accept a read-request by a thread at any time, and reply with the
most recent write to the same address that has been propagated to the thread.

Remark: receiving a write-announce is not enough to commit a read instruction.

Write-announces can be invalidated, and read-requests can be re-issued.

‘ Storage + Thread ' Thread

Write request
Rarrior reaiioct

v

|

Read request/Write announce
Barrier ack

Thread

|

Simulation: 3. read_satisfy

Thread O Thread 1
x =1 r = X
X = 2

Simulation: 4. invalidate read

Thread 0O Thread 1
x =1 rl = x
r2 = x

Remarks: loads can be speculated; difference between read/write transitions

Nalve message passing

Thread O

a: W[x|=1
po
b: Wly]=1

Thread O Thread 1
x =1 while (y==0) {};
y =1 r = X

Observable behaviour:r=0

Thread 1

Allowed and observed on Power

Simulation: 5. message_passing

L.oad buffering

Thread 0 Thread 1
rl = Xx r2 =y
y =1 x =1

Observable behaviour: r1 = r2

Thread 0

a: Rly|=1

rf

h: Wix]=1

rf

Thread 1

¢: Rx]=1

d: Wly|=1

Test LB (d1): Allowed (basic data)

Forbidden on SC and x86-750

Allowed

Simulation: 6. load_buffering

and observed on Power

Power ISA 2.06 and ARM v7

Visible behaviour much weaker and subtle than x86.
Basically, program order is not preserved unless:
® writes to the same memory location (coherence)

® there Is an address dependency between two loads

data-flow path through registers and arith/logical operations from the value of the first
load to the address of the second

® there Is an address or data or control dependency between a load
and a store

as above, or to the value store, or data flow to the test of an intermediate conditional
branch

® \OU USe a synchronisation instruction (ptesync, hwsync, lwsync, eieio,
mbar, isync).

Load buffering with dependencies

LB+deps ARM
| Thread 0 Thread 1
' LDR R2, [R5] LDR R2, [R4]

AND R3, R2, #0 AND R3, R2, #0

STR R1, [R3,R4] STR R1, [R3,R5]

Initial state: 0:R1=1 A 0:R4=x A 0:R5=y
A 1:R1=1 A 1:R4=x A 1:R5=y
~ Forbidden: 0:R2=1 A 1:R2=1

Thrcad0 | med1 | Simulation: 7. load_buffering_data_deps
a: Rly|=1 ¢: R[x|]=1 o . :
Similarly with control dependencies, e.g.:
| r r | Play with examples in the LB directory
h: Wv:x]=1 d: \’Vv:y]=1

.
.

Test LB+deps (d9): Forbidden (basic data)

However dependencies might not be enough

I Thread 0 ‘ Thread 1 ‘ | Thread 2

a: Wx|=1 : > b: Rlx]=1 d: Rly|=2
;
s 5 I
\ — v
c: Wly|=2 rf e: R[x|=0

Test WRC+deps (isalv2): Allowed (basic data)

Exercise: WRC/WRC+addrs

Memory bat

Power: ptesync, hy

ARM: DSB, DMB

For each | ‘es that a;
will be pe xchanism,
to the exté¢ rence Re-
quired att) that pro-
Cessor or
®» Ain - y such
- Caution -
resg d.
* 27 Mind your head 2V 5"
proc ar a Load
Instr Inism has
returned the value stored by a store that is in B.

HWSYNC and LWSYNC

Thread . Thread

Write request Read request/Write announce
Barrier request Barrier ack

Storage Subsystem

ne storage accepts a barrier request (HWSYNC) from a thread.

ne barrier request is added to the list of event propagated to that thread.

ne thread cannot execute instructions following the barrier instructions without
first receiving the barrier ack.

The storage sends the barrier ack only once all the preceding events have
been propagated to all other threads.

RWC with HWSYNC

‘ Thread 0 Thread 1 Thread 2

a: Wix|=1 b Rx/=1 d: Rly|=1

T 4

rf
SYIIC SYIIC

— v actually,la dependency
c: Wy|=1 f e Rix|=0 here is enough...

\{

WRC/WRC+sync+addr

Test WRC+syncs (m3s): Forbidden (basic data)

Simulation: WRC/WRC+syncs

f you want more...

Go to http://www.cl.cam.ac.uk/~pes20/ppcmem/

For each test, either find a trace that leads to the final state, or convince
yourself that such trace does not exists. Some tests are complicated...

‘ Threed 0 ‘ ‘ Threed 1 Thread 2 Thresd 0 Thread 1 ’
ar R[v]—2 w Rly|=2
» "
L. > Wz=2 2 W=l)| e: Wigl=1
- * i ,,f”'ﬂ -]
.) 4| T e~
rt b R .):] 1 //,x - I R _x]~l’l
P . Siale 1
- S
~
e Rlx|=1 f e Blx|]=0
" 1
I f Wy]—2 1l o Wlv]=2
~— " —~— v
I d: Rz]=0 [d R[z]=0

Test. RDW ‘ppoidl: Fornidden (hasic datz) ‘Test REW (ppol): Allowed (basic date)
JPaa) | . PP :)

http://moscova.inria.fr/~zappa/work/ppcmem/

Summary

y .
Concurrent programming gramming
IS hard! |

Concurrent programming Is even harder than

what | was taught at university!

We can’t ignore it anymore:
we’ll see that precise semantics, formal methods, S

appropriate language design, clever algorithms,

are needed to put concurrent programming on solid basis.

1st year, Introduction to programmin |
Y PIoY J 4th year, Advanced programming languages

2.37.1 Plan

- Hardware makes programming hard: let’s use DSL/runtimes

- Shared-memory parallel programming models and runtime systems

- Data parallelism, programming and implementation, focus on OpenMP
- Task parallelism, programming and implementation, focus on Cilk

- Functional parallelism and asynchronous /O with futures and streams
- Dependent task parallelism, focus on OMPSs, OpenMP, OpenStream
- GPU programming models

- Cool, but what about general purpose languages”?

- Data-race freedom and Posix threads, locks, conditional barriers
- Lock-free programming, CAS, the memory model and the programming practice
- Axiomatic approach to memory models

Resources

Articles &
Resources

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, M. Myreen
x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors
Communications of the ACM, Vol. 53, 2010

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, D. Williams
Understanding POWER multiprocessors PLDI 2011

L. Maranget, S. Sarkar, P. Sewell
A tutorial introduction to the ARM and POWER relaxed memory model
Draft: http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test/.pdf

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html
http://cacm.acm.org/
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

