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Vote: topics for my next lecture

1. The lwarx and stwcx Power instructions 5

. Hunting compiler concurrency bugs 6

. Operational and axiomatic formalisation of x86-TSO
. Fence optimisations for x86-TSO 3

. The Java memory model 4

. The C11/C++11 memory model 6

. Static and dynamic techniques for data-race detection 4
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RISC-friendly synchronisation operations

| oad-reserve/Store-conditional
(aka LL/SC, larx/stcx and Iwarx/stwex, LDREX/STREX).

- can be used to implement CAS, atomic add, spinlocks, ...

- universal (like CAS) [Herlihy’93] (but no ABA problem)

Atomic Addition

Informally, stwcx succeeds only if no loop:
other write to the same address since
last Iwarx, setting a flag iff it succeeds.

lwarx r, Xx;
add F.S. X
BLWCX I, X;

bne loop;
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What I1s no write since...

- In machine time”?

(neither necessary, nor sufficient)

Informally, stwcx succeeds only if No
other write to the same address since

| last Iwarx, setting a flag iff it succeeds.

- Microarchitecturally: it cache-line ownership not lost since last Iwarx

(simplified, and we don’t want to model the microarchitecture)
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Modeling no lost since

- Abstractly: ownership chain modeled by building up coherence order

- Coherence: order relating stores to the same location (eventually linear)

A stwcx succeeds only if it is (or at least, if it can become)
coherence-next-to the write read from by lwarx,
and no other write can later come in between.

Isolate key concept: write reaching coherence point
coherence is linear below this write, and no new edges will be added
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Storage Thread .. Thread

Write request Write announce
Barrier request Barrier ack

Storage Subsystem

The storage keeps: ...
2. for each location, a partial order of coherence commitments

ldea 1: at the end of the execution, writes to each location are totally ordered.

ldea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: 1If a thread executes x=1 and then x=2, another thread cannot first
read 2 and then 1.
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Coherence by Fiat

Suppose the storage subsystem has seen 4 writes to x:

Wy Wy
w 1/\ ’ul)l/\\
w9y w3 Wy w3

Suppose just [w;] has propagated to tid and then tid reads x.

9

e b

it cannot be sent wq, as wq is coherence-before the w, write that (because it is in the
writes-propagated list) it might have read from;

it could re-read from w1, leaving the coherence constraint unchanged;

it could be sent w4, again leaving the coherence constraint unchanged, in which case w»
must be appended to the events propagated to tid; or

it could be sent w3, again appending this to the events propagated to tid, which moreover
entails committing to w3 being coherence-after wi, as in the coherence constraint on the
right above. Note that this still leaves the relative order of w2 and w3 unconstrained, so
another thread could be sent ws then ws or (in a different run) the other way around (or
indeed just one, or neither).

—H
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Coherence points and a successful stwcx

Atomic Additi
AR ik Coherence order for x:

1o0p: JIWarxE I; X; c:W x=4
add ¥.3.,1:
stwecx r, X;

W x=0— j;Wx=1
a:Wx=2—b:Wx=3

bne loop;

Suppose Iwarx reads from the a:W x=2. stwcx can succeed if this
becomes possible:

writes that have reached coherence point c:W x=4

W x=0—=j;W x=1 —=a:W x=2—=d:W* x=
b:W x=3

Warning: stwcx can fail spuriously.
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| oad-reserve/store-conditional and ordering

- Same-thread load-reserve/store-conditionals ordered by program order;
- if all memory accesses are |-r/s-c sequences, then only SC behaviour;

- but normal loads/stores (to different address) not ordered;
the |-r/s-c do not act as a barrier.

Contusion led to a Linux bug. bad barrier placement in atomic-add-retumn.

Synchronising C/C++ and POWER
Sarkar, Memarian, Owens, Batty, Sewell, Maranget, Alglave, Williams
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2. A word on technigues for data-race detection
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Recall; Data-race freedom

Definition |aata-race-freedom/. A program (traceset) is data-race free if
none of its executions has two adjacent contlicting actions from
different threads.

Equivalently, a program is data-race free if in all its executions all pairs of
conflicting actions are ordered by happens-before.

Two conflicting accesses

A racy program not related by happens before.
Thread 0 Thread 1 X\
xy = 1 if kx == 1 0:W[ly=1], 1:R[x=0], @:W[x=1]
*x =1 then print *y \/

PO

Monday, 9 January 17 12



Recall: Happens-before

Definition [porogram order]. program order, <po, IS a total order over the
actions of the same thread in an interleaving.

Definition [synchronises with]: in an interleaving /, index / synchronises-
with index |, i <sw j, if I <] and A(l) = U (unlock), A(l) = L (lock).

Definition [happens-beforel: Happens-before is the transitive closure of
program order and synchronises with.

Monday, 9 January 17
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hb

—xamples of happens before

SW

Thread O Thread 1
*y = 1 lock();
lock(); tmp = *x;
*x =1 unlock();

unlock();

if tmp = 1
then print *y

—

/N

Y

0:W[Ly=1], 0:L, @0:W[x=1], 0:U, 1: L, 1:R[x=1], 1:U, 1:R[Ly=1], 1:X(1)

PO

th/SK{\

Q:W[ly=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U

N W
:

Monday, 9 January 17
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Data race detection: dynamic approaches

Modern high-performance dynamic race detectors are based either on:

happens-before ordering lockset computation

records which locks protect

reconstruct happens-before order every memory access
INn the current execution report a race If intersection of all
report a race if two conflicting locksets for a variable is empty

accesses are not related by hb
popularised by Eraser (Savage et al.) ‘97

no false positives |
can detect races not observed In

| the execution being monitored
drawback: misses races

occurring on rare executions drawback: unsound (false positives)

Monday, 9 January 17
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—xamples of lockset computation

lock(b) lock(a)
lock(a) <=2
x=1 unlock(a)

unlock(a)
l:L(b);1l:L(a);l:Wx1;1:U(a);2:L(a);2:Wx2;2:U(a)
locks held: 1:b 1:b,a 2:a
C(x): Xs:a,b Xs:a

lockset for x non-empty at the end, no data-race

lock(b) lock(c)
lock(a) <=2
x=1 unlock(c)

unlock(a)
l:L(b);l:L(a);l:Wx1;1:U(a);2:L(c);2:Wx2;2:U(c)
C(x): X:a,b X:empty

lockset for x empty at the end, possible data-race
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lockset vs happens-before

y=1 lock(a)
lock(a) x=2

x=1 unlock(a)
unlock(a) y=2

Monday, 9 January 17
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lockset vs happens-before

y=1 lock(a)
lock(a) x=2

x=1 unlock(a)
unlock(a) y=2

Monday, 9 January 17
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lockset vs happens-before

§=1k lock(a)

ock(a) =

x=1 X=2 This program has a race on 'y
unlock(a)

unlock(a) y=2

If only the execution below is observed:
l:Wyl;1l:L(a);l:Wxl;1:U( ;2:Wx2;2:U(a);2:Wy2

happens-before computation does not report a race.

Lockset computation detects instead that accesses to y are unprotected and reports
a possible race.

Monday, 9 January 17
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lockset vs happens-before (2)

y=1 lock(a)
lock(a) tmp=x

x=1 unlock(a)
unlock(a) if tmp ==

then print y

Monday, 9 January 17
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lockset vs happens-before (2)

y=1 lock(a)

lock(a) tmp=x

x=1 unlock(a) This program instead is DRF-.
unlock(a) if tmp ==

then print y

Monday, 9 January 17
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lockset vs happens-before (2)

y=1 lock(a)

lock(a) tmp=xXx | . .

x=1 unlock(a) This program instead is DRF-.
unlock(a) if tmp ==

then print y

Happens-before computation will not report a race
(no matter which execution is observed)

Since accesses to y are unprotected, locksets computation reports a false positive.
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Data race detection

Modern high-performance dynamic race detectors are based either on:

happens-before ordering lockset computation
reconstruct happens-before order records which locks protect
IN the current execution every memory access
report a race if intersection if two report a race if intersection of all
conflicting accesses are not related locksets for a variable is empty
by hb

popularised by Eraser (Savage et al.) ‘97

sound |
can detect races not observed In

| the execution being monitored
drawback: misses races

occurring on rare executions drawback: unsound (false positives)

Monday, 9 January 17
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Data race detection

M
Current state of the art:
hybrid approaches combining locksets and
red happens-before ordering + other dynamic annotations
Cger: Helgrind, Racefuzzer, ThreadSanitizer...

Impressive.

tolerable slowdown on large applications
found thousands races

Still not as reliable as the tool we dream of. Active area of research!
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Run a bunch of static analysis for

Data race detection: static approaches

CiL
CFG

Labeling and

inferring locksets. o™
Hard:

- aliasing on memory locations

- lock pointers

Linearky
Check

- must account all language features

Also done via fancy effect type-systems.

Monday, 9 January 17

Constraint Generation

Label Flow Constraints
(Points-to Analysis) Control Flow Graph

Lock State Analysis

Escaping
Check

Race
Detection

Fug | L LOCKSMI'TH an nitect ure
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3. The C

Monday, 9 January 17

11 memory model

a good example of an axiomatic memory model
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The C++11 memory model

1300 page prose specification defined by the |SO.

The design is a detailed compromise:
hardware/compiler implementability
useful abstractions
broad spectrum of programmers

Welcome to the official home of

180 JTC1/SC22/WG21 - The C++ Standards Committee

2011-09-15: standards | projects | papers | mailings | internals | meetings | contacts

News 2011-09-11: The new C++ standard - C++11 - is published!

Monday, 9 January 17
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The syntactic divide

// for regular programmers:
atomic int x = 0;
X.store(1l);

y = X.load();

// for experts:

X.store(2, memory order);

Yy = X.load(memory order);

atomic thread fence(memory order);

where memory order Is one of the following:

mo seq cst mo release mo acquilre
mo acq rel mo consume mo relaxed

Monday, 9 January 17
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How may a program execute?

Two layer semantics:

1) a denotational semantics processes programs, identifying memory
actions, and constructs candidate executions (Eopsem);

P—— k4, ..., En

2) an axiomatic memory model judges Eopsem paired with a memory
ordering Xwitness

Ei ——Xi1,...,Xim
3) searches the consistent executions for races and uncostrained reads

s there an Xj with a race?

Monday, 9 January 17
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Relations

AN Eopsem Part containing:
sb  seguenced before, program order
asw additional synchronizes with, inter-thread ordering

AN Xwitness Part containing:
1t relates a write to any reads that take its value
sc  atotal order over mo_seq_cst and mutex actions
mo  modification order, per location total order of writes

From these, compute synchronise-with (sw) and happens-before (hb).

We ignore consume atomics, which enables us to live in a simplified model.
Full details in Batty et al., POPL 11.

Monday, 9 January 17
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Formally

cpp memory model opsem (p : program) =
let pre executions =
{ (Eopsem, Xwitness) . Opsem P Eopsem A
consistent execution (Eopsem, Xwitness) }

in

if 3IX € pre executions.
(lndeterminate reads X = {}) V
(unsequenced races X = {}) V
(data races X = {})

then NoxEe
else SoME pre executions

Monday, 9 January 17
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A single-threaded example

1. sequenced before (sb) - given by opsem a:W,, x=2
sb
\/
int main() { b- —0
int x = 2; s
int y = 0; sb sb
= (x==X);
return 0; c:R,, x=2 d:R,, x=2

}
\sb /sb
A
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A single-threaded example

1. sequenced before (sb) - given by opsem
2. read-from (rf) - part of the witness W x=2

int main() { of W y=0

int x = 2;

int y = 0; b \b
y = (Xx==x); "
return 0; R x—2 R x—2
}
sb /b
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A single-threaded ex. with undefined behaviour

An unseqguenced race.

a:W,, x=2
sb
rf \/
int main() { D" Woy y=0
int x = 2; sb
int y = 0; sb
y = <X==(X 3)), v ~
return @; d:Rpa x=2 C:Wpa X=3
¥ sb sb
A A
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A simple concurrent program

We will omit asw arrows whenever

int y, X = 2;

X=3; ‘y: (X==3);
a:W,, x=2
asw w.rf
g

b:W,.,x=3 cR,;x=2

sb

we are not interested Iin the initialisation. \/

Monday, 9 January 17
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Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X,
m.unlock() :

1. the operational semantics defines
the sb arrows

Monday, 9 January 17

c:L mutex
sb ¢

d:W,, x=1
sb

f:U mutex

h:L mutex

1:R,, x=1
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Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X,
m.unlock() :

1. the operational semantics defines
the sb arrows

2. guess an sc order on Unlock/Lock
actions (part of the witness)

Monday, 9 January 17

c:L mutex
sb‘L

d:W,,x=1
sb

f:U mutex

h:L mutex

I:R,, x=1
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Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X,
m.unlock() :

1. the operational semantics defines
the sb arrows

2. guess an sc order on Unlock/Lock
actions (part of the witness)

3. the sc order is included in the
syncronised-with relation

Monday, 9 January 17

c:L mutex

.l

d:W,, x=1

iy

f:U mutex

h:L mutex
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I_OCKS and Uﬂ| O CKS simple—happens-before\ _

( sequenced-before

int x, r;

mutex m;

m.lock(); m.lock():
X = ... r = X,
m.unlock()

1. the operational semantics defines
the sb arrows

2. guess an sc order on Unlock/Lock
actions (part of the witness)

3. the sc order is included In the
syncronised-with relation

4. which In turn defines the
happens-before relation...

Monday, 9 January 17

synchronizes-wi th\

> U ») T

c:L mutex h:L mutex
sb¢ sb¢

d:W,, x=1 f 1R, x=1
sb¢ hb

f:U mutex
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Happens before

The happens before relation is key to the model:

1. non-atomic loads read the most recent write in happens before.
(This is unique in DRF programs)

2. the story is more complex for atomics, as we shall see.

3. data races are defined as an albsence of happens before
between conflicting actions.

c:L mutex h:L mutex

simple—happens—before\
4

synchronizes- with\

> U ») T

( sequenced-before

f:U mutex

Monday, 9 January 17
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A data race

int y, X = 2;

x=3; |y= (x==3);
a:W,, x=2
asw  dew,f

b:W,.,x=3 cR,;x=2

sb

d:W,,y=0
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A data race

Here we have two conflicting accesses
not related by happens-before.

Monday, 9 January 17

asw w.rf
s

b:W, ., x=3 cR,;x=2

sb

\/
d:W,,y=0
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Data race definition

let data_races actions hb =
{ (a, b) | V acactions beactions |
- (a=b) A
same_location a b A
(is_write a V is_write b) A
— (same_thread a b) A
- (is_atomic_action a A is_atomic_action b) A

- ((a, b) € hb \V (b, a) € hb) }

Programs with a data race have undefined behaviour (DRF model).

Monday, 9 January 17
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Simple concurrency: Dekker's example and SC

atomic_int x
atomic_int y

0;
0;

x.store(1l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst);

x.load(seq_cst);

c:W, y=1 e:W. . x=1
FORBIDDEN
sb sb
\/ \/
d:R.. x=0 f:Rsc y=0

Why is this behaviour forbidden”?

Monday, 9 January 17
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Simple concurrency, Dekker's example and SC

atomic_int x
atomic_int y

0;
0;

x.store(l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst); x.load(seq_cst);
c:W. y=1 e:W. . x=1
d:R..x=0 f:Rscy=1

The sc relation must define a total order over unlocks/locks and

seq cst accesses...

Monday, 9 January 17

sc IS Included in hb, an r£ must respect hb.
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=Xpert concurrency: the release-acquire idiom

// sender

X = ...

y.store(l, release); 2 W, x=1
// receiver sbI

while (@ == y.load(acquire));

bZWre| =1
T \
rf

Here we have an rf arrow between a pair of c:Rycq y=1
release/acquire accesses. <h I

d:R,, x=1
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=Xpert concurrency: the release-acquire idiom

// sender

X = ...

y.store(1l, release); W x=1

// receiver Sbl'

while (0 == y.load(acquire)); Wge, y=1

r= X;

S

Here we have an rf arrow between a pair of Racqy=1
release/acquire accesses. lsb
The rf arrow between release/acquire accesses

. Rx=1
INnduces an sw arrow between those accesses.
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=Xpert concurrency: the release-acquire idiom

// sender
X = ... W x=1
y.store(l, release); h
S

. hb
// receiver WreL y=1
while (@ == y.load(acquire));
r= X; SW
Here we have an rf arrow between a pair of Racqy=1
release/acquire accesses. lsb
The rf arrow between release/acquire accesses R‘x:1

INduces an sw arrow between those accesses.

And In turn defines an hb constraint.  simple-happens-before

 —
, _

( sequenced-before synchronizes- with\

> U ») T
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Relaxed writes

x.load(relaxed) ;
y.store(1l, relaxed);

y.load(relaxed) ;
x.store(1l, relaxed);

c:Rrlx x=1 e:Rrlx y=1

o et

d:Wrlx y=1 f:Wrlx x=1

No data-races, no synchronisation cost, but weakly ordered.
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Relaxed writes, ctd.

atomic_int x = 0;
atomic_int y = 0;
x.load(relaxed) ;
y.load(relaxed) ;

y.load(relaxed) ;
x.load(relaxed) ;

x.store(1l, relaxed); | y.store(2, relaxed);

c:Wrlx x=1 \d:erx yi)ﬂ‘&rlx }le )g:erx y=1
rf sb#r t sb¢

f:Rrlx y=0 h:Rrlx x=0

Again, no data-races, no synchronisation cost, but weakly ordered (IRIW).
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(l, release); r = X
// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;

r = X;
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;
r = X;
Here we have an rf arrow between a c:Wha x=1 e:Rux y=1

release write and a relaxed write.

Monday, 9 January 17
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d .Wre| Y= 1 f Facq
sb

g:Rna x=1
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;
r = X;
c:W, ., x=1 e:Ryx y=1

Here we have an rf arrow between a of
release write and a relaxed write. sb ¢ / sb ¢
dWiy=1 —» fiF,q

The acquire fence follows the sb/rf relations W
looking for the corresponding release write, adding
a sw arrow. g:Rnax=1
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver

X = ... while (0 == y.load(relaxed));

y.store(l, release); fence(acquire) ;

r = X;
Here we have an rf arrow between a ¢ Wha X1 £ &R y=1
release write and a relaxed write. sb ¢ b sb ¢
d:W,e y=1 f:Facq

The acquire fence follows the sb/rf relations > sh
looking for the corresponding release write, adding
a sw arrow. g:Rna x=1

Happens-before follows as usual...
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Modification order (aka coherence)

atomic_int x = 0;
x.store(l, relaxed); X.load(relaxed);
x.store(2, relaxed); X.load(relaxed);

Wrixx=1 " Rgxx=1

rf
mo¢ sb¢

WRLX X=2 _f> RRLX X=2
I

Modification order is a total order over atomic writes of any memory ordet.
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Coherence and atomic reads

All forbidden:
: _ » ~Ry— _ _ : _
a.WTx 1 P c.Ri( 1 b.Wx-% c:W x=1
mo hb F~_hb y
b:W x=2 f > d:Rx=2 d:R x=2
r
W
CoRR CoWh
a:W x=1 a:Wx— > c:Rx=1
hb § mo \hbi
b:W x=2 d:W x=2
CoWW CoRW

|dea: atomics cannot read from later writes in happens-before.

Monday, 9 January 17
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Coherence and atomic reads

All forb

" A pair Eopsem , Xuitness (@ Pre-execution)

defines a consistent execution when It satisfies
b:] .
the constraints we have sketched

on hb/rf/mo and is race-free.

b:W x=2 d:W x=2
CoWW CoRW

|dea: atomics cannot read from later writes in happens-before.

Monday, 9 January 17
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The full model

abb=(ab)e

s fence 2= case 2 of Fexce___ 5T |_—F

=(ab)er

nent rs_head a =
same_thread a rs_head V is_atomic_rmw a

15.ele

ible fect set actions threads location-kind.
b < happens-before.let (a,b) = ab in
visible_side_effect actions threads location-kind. ab}

is_lock_or_unlock a = is_lock aV is_unlock a |

afb=(ab)¢ r

is_atomic_action 2=
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s C++11 hopelessly complicated”

Programmers cannot be given this model.

However, with a formal definition, we can do proofs! For instance:

Operation x86 Implementation
load(non-seq_cst) mov
| load(seq_cst) lock xadd(0)
- Can we compile to x867? store(non-seq_cst) mov
store(seq_cst) lock xchg
fence(non-seq_cst) no-op
C++40x Operation | POWER Implementation
Non-atomic Load | 1d
, _oad Relaxed 1d
- Can we compile to Power? L oad Consume 1d (and preserve dependency)
_oad Acquire 1d; cmp; bc; isync
Load Seq Cst sync; 1ld; cmp; bc; isync
Non-atomic Store | st
Store Relaxed st
Store Release lwsync; st
Store Seq Cst sync; st
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s C++11 hopelessly complicated”

Simplifications:
Full model: visible sequences of side effects are unneeded (HOLA4)

Derivative models:

- without consume, happens-before is transitive

Monday, 9 January 17
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The current state of the standard

Fixed:
- In some cases, happens-before was cyclic
- coherence

- seqg cst atomics were more broken

Not fixed:

- out of thin air reads (and self satisfying conditionals)

- seq_cst atomics do not guarantee SC

Monday, 9 January 17 55



Monday, 9 January 17

56



Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1t (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)
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Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

h Thread 1 returns without modifying b.
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Shared memory
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int b

for (b=0; b>=26; ++b)
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Thread 2
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s'=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

gcc 4.7 -O2

...sometimes we get @ on the screen
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int s;
for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

Monday, 9 January 17
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %edx # load a into edx
movl b(%rip), %eax # load b into eax
testl %edx, %edx # if al!=0

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store eax into b
store 0 into eax
return

movl %eax, b(%rip)
Xorl %eax, %eax
ret

H* H S
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

gcc 4.7 -O2
¥

The outer loop can be (and is) optimised away

movl b(%rip), %eax # load b into eax
testl %edx, %edx # if al!=0

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store eax into b
store 0 into eax
return

movl %eax, b(%rip)
Xorl %eax, %eax
ret

H* H S
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L2:
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store 0 into eax
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ret

H* H S
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H* H S
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H* H S
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %edx # load a into edx
movl b(%rip), %eax # load b into eax
testl %edx, %edx # if al!=0

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store eax i1nto b
store 0 into eax
return

movl %eax, b(%rip)
Xorl %eax, %eax
ret

H* H S
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %edx # load a into edx
movl b(%rip), %eax # load b into eax
testl %edx, %edx # if al!=0

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store eax into b
store 0 into eax
return

movl %eax, b(%rip)
Xorl %eax, %eax
ret

H* H %
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The compiled code saves and restores b

Correct in a sequential setting.

What about concurrency?

movl a(%rip), %edx # load a into edx
movl b(%rip), %eax # load b into eax
testl %edx, %edx # if al!=0

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store eax into b
store 0 into eax
return

movl %eax, b(%rip)
Xorl %eax, %eax
ret

H* H S
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1t (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)
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Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

h Thread 1 returns without modifying b.

Since Thread 1 does not update b, program is data-race free (DRF)

Monday, 9 January 17

60



Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

h Thread 1 returns without modifying b.

Since Thread 1 does not update b, program is data-race free (DRF)

DRF programs must only exhibit sequentially consistent behaviours
C11/C++11 standard
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

h Thread 1 returns without modifying b.

Since Thread 1 does not update b, program is data-race free (DRF)

DRF programs must only exhibit sequentially consistent behaviours
C11/C++11 standard

This program MUST only print 42.
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1t (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)
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1;
9,

Thread 2

b = 42;
printf("%d\n", b);
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Monday, 9 January 17

Shared memory

a(%rip),%edx
b(%rip) ,%eax
%edx, %edx
L2

$0, b(%rip)

%eax, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n"

, b);
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Monday, 9 January 17

Shared memory

a(%rip),%edx
b(%rip) ,%eax
%edx, %edx
L2

$0, b(%rip)

%eax, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into edx
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Monday, 9 January 17

Shared memory

a(%rip),%edx
b(%rip) ,%eax
%edx, %edx
L2

$0, b(%rip)

%eax, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into edx
- Read b (0) into eax
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Monday, 9 January 17

Shared memory

a(%rip),%edx
b(%rip) ,%eax
%edx, %edx
L2

$0, b(%rip)

%eax, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into edx

- Read b (0) into eax
- Store 42 into b
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
movl a(%rip),%edx b = 42;
movl b(%rip),%eax printf("%d\n", b);
testl %edx, %edx
jne L2
movl  $0, b(%rip)
ret
L2: - Read a (1) into edx
movl  %eax, b(%rip) - Read b (Q) into eax
)r'((e)zl eax, ¥eax - Store 42 into b

- Store eax (0) into b
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Monday, 9 January 17

Shared memory

a(%rip),%edx
b(%rip),%eax
%edx, %edx
L2

$0, b(%rip)

%eax, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into edx

- Read b (0) into eax
- Store 42 into b

- Store eax (0) into b
- Print b... @ is printed
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The compiled code saves and restores b

Correct in a sequential setting

Introduces unexpected behaviours
In some concurrent context

ret

L2: - Read a (1) into edx
movl  %eax, b(%rip) - Read b (@) into eax
)r'((e)zl eax, %eax - Store 42 into b

- Store eax (0) into b
- Print b... @ is printed
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The compiled code saves and restores b

Correct in a sequential setting

Introduces unexpected behaviours
In some concurrent context

This is a concurrency compiler bug

- Read b (@) into eax

- Store 42 into b

- Store eax (0) into b
- Print b... @ is printed

xorl  %eax, %eax
ret
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Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random %
Generator

C prong\

clang -03

w)lts l

a e
ﬁ< — vote
majority

minority

Monday, 9 January 17 62



Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random @

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

vidllig “Vv vidilyg Vo ses

w)lts 1 /

a e
ﬁ< — vote
majority

minority
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Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random @

Reported hundreds of bugs

? S
Cannot catch
—
concurrency compiler bugs
g \\\
e vote|———— [}

majority minority

Monday, 9 January 17
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Hunting concurrency compiler bugs?

How to deal with nhon-determinism?

How to generate non-racy interesting programs¢

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:

how to test for correctness?
limit case: two compilers generate correct code with disjoint final states

Monday, 9 January 17
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ldea

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

\

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Hunt concurrency compiler bugs

search for transformations of sequential code
not sound in an arbitrary non-racy context

Monday, 9 January 17
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Random % _, SEQUENTIAL

Generator PROGRAM optimising

compiler
under test

reference
semantics

EXECUTABLE
tracing
REFERENCE
MEMORY MEMORY
TRACE : > TRACE

only transformations sound in any
concurrent non-racy context?

Monday, 9 January 17
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int a =
int b =

Monday, 9 January 17

reference
semantics

Load a 1

int s;
for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

gcc -O2 memory trace

Load a 1
Load b 0
Store b 0
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Cannot match some events — detect compiler bug

}
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
Load b 0

Store b 0

Monday, 9 January 17
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Contributions

Sound optimisations in the C11/C++11 memory model
extending Sevcik’s work on an idealised DRF model - PLDI 11

A tool to hunt concurrency bugs in C and C++ compilers

Interaction with GCC developers
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Sound Optimisations
in the C11/C++11 Memory Model
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Example: loop invariant code motion

Compiler Writer Semanticist

[

‘ u'
N | ’ i
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o |
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Example: loop invariant code motion

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

Monday, 9 January 17

| ’V
: »
% ‘ — —
N .
a b .

Semanticist
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Example: loop invariant code motion

Compiler Writer Semanticist

oe?;._ ;

Sophisticated program analyses - L N =3 .Sw

Fancy algorithms 1
Source code or IR

Operations on AST

for (int 1=0; 1<2; 1++) {
zZ = 1;
x[i] +=Y*+l ;

}
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Example: loop invariant code motion

Compiler Writer Semanticist

oe?;._ ;

Sophisticated program analyses - L N =3 .Sw

Fancy algorithms 1
Source code or IR

Operations on AST

tmp =y+1 ;
for (int 1=0; 1<2; 1++) {
zZ = 1;

x[1] +=tmp ;

}

Monday, 9 January 17



Example: loop invariant code motion

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

!l

Semanticist

i, ey

Flimination of run-time events
Reordering of run-time events

Operations on AST

tmp =y+1 ;
for (int 1=0; 1<2; 1++) {
zZ = 1;

X[1] +=tmp ;

}

Monday, 9 January 17

Operations on sets of events

ntroduction of run-time events
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Example: loop invariant code motion

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;
for (int 1=0; 1<2; 1++) {
zZ = 1;

X[1] +=tmp ;

}

Monday, 9 January 17

Semanticist
— '
Climination of run-time events

Reordering of run-time events
ntroduction of run-time events

Operations on sets of events

Store z 0
Load y 42
Store x[0] 43
Store z 1
Load y 42
Store x[1] 43
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Example: loop invariant code motion

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;
for (int 1=0; 1<2; 1++) {
zZ = 1;

X[1] +=tmp ;

}

Monday, 9 January 17

Semanticist
— '
Climination of run-time events

Reordering of run-time events
ntroduction of run-time events

Operations on sets of events

Load y 42
Store z 0

Store x[0] 43
Store z 1

Store x[1] 43
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Elimination of overwritten writes

b l Under which conditions is it
correct to eliminate the first store?

Store g 2

Monday, 9 January 17
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Elimination of overwritten writes

Store g 1
b l Under which conditions is it
correct to eliminate the first store?
What is the semantics of
sb l C11/C++11 concurrent code?
Store g 2
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The C11/C++11 memory model

C11/C++11 are based on the DRF approach:

— racy code is undefined

— race-free code must exhibit only sequentially
consistent behaviours

— main synchronisation mechanism: lock/unlock

Escape mechanism for experts, low-level atomics:

— races allowed
— attributes on accesses specify their semantics:

MO SEQ CST MO RELEASE/MO ACQUIRE MO RELAXED

Monday, 9 January 17
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MO_RELEASE / MO_ACQUIRE

g = 0; atomic f = 0;

Thread 1

g = 4Z;
f.store(1,MO_RELEASE);

Monday, 9 January 17

Thread 2

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)
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MO_RELEASE / MO_ACQUIRE

g = 0; atomic f = 0;

Thread 1

g = 4Z;
f.store(1,MO_RELEASE);

Monday, 9 January 17

Thread 2

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)
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MO_RELEASE / MO_ACQUIRE

g = 0; atomic f = 0;

Thread 1

g = 4;
f.store(1,MO_RELEASE);

Monday, 9 January 17

Thread 2

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)
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MO_RELEASE / MO_ACQUIRE

g = 0; atomic f = 0;

Thread 1

g = 4;
f.store(1,MO_RELEASE);

Monday, 9 January 17

Thread 2

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)
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MO_RELEASE / MO_ACQUIRE

g = 0;

Thread 1

g = 42;
f.store(1,MO_RELEASE);

Monday, 9 January 17

atomic f = 0;

Thread 2

0C while (f.load(MO_ACQUIRE)==0);
7 printf (“%d”, g)
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MO_RELEASE / MO_ACQUIRE

g = 0; atomic f = 0;

)

Thread 1 Thread 2
g = 42; S while (f.load(MO_ACQUIRE)==0);
f.store(1,MO_RELEASE); printf (“%d”,qg)

The release/acquire synchronisation guarantees that:
— the program is DRF
— 42 is printed at the end of the execution

Remark: unlock = release, lock = acquire.

Monday, 9 January 17 72



Same-thread release/acquire pairs

A same-thread release-acquire pair is a pair of
a release action followed by an acquire action
in program order.

An action is a release if it is a possible source of a synchronisation

unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read
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Elimination of overwritten writes

Store g 1 It is safe to eliminate the first store
sb l if there are:

no access to g
1. no Intervening accesses to g

2. no intervening
" l same-thread release-acquire pairs

no st rel/acq pair

Store g 2

Monday, 9 January 17
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The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1

g=1;
fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);
g = 2;

Monday, 9 January 17
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The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 candidate overwritten write

g=1;
fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);
g = 2;

Monday, 9 January 17
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The soundness cond

ition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 candidate overwritten write

g =1;
fl.store(1,RELEASE); <

while(f2.load(ACQUIRE)=
g = 2,

Monday, 9 January 17

0. = same-thread release-acquire pair
=4);
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1

g=1;
fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);
g = 2;

Monday, 9 January 17

Thread 2

while(fl.1load(ACQUIRE)==0);
printf(“%d”, g);
fZ2.store(1,RELEASE);
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1

g = 1; sync
fl.store(1,RELEASE);

Thread 2

while(fl.1load(ACQUIRE)==0);
printf(“%d”, g);
fZ2.store(1,RELEASE);

Thread 2 is non-racy

Monday, 9 January 17
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1

g = 1; sync
fl.store(1,RELEASE);

Thread 2
while(fl.load(ACQUIRE)==0);

f2.store(1,RELEASE);

Thread 2 is non-racy
The program should only print 1

Monday, 9 January 17
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g=1; synS_, while(f1.1load(ACQUIRE)==0):

fl.StOFG(l,RELEASE); printf(“%d” g).

Thread 2 is non-racy
The program should only print 1

If we perform overwritten write elimination it prints @

Monday, 9 January 17
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The soundness condition

g =0,

Thread 1

g =1;
fl.store(1,RELEASE);

while(f2.1load(ACQUIRE)==0);

g = 2;

Monday, 9 January 17

Shared memory

atomic fl1l = f2 = 0;

Thread 2

sy while(fl.load(ACQUIRE)==0);

printf(“%d”, g);
fZ2.store(1,RELEASE);
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° / ) ,
fl.StOFG(l,RELEASE), printf(“%d”, g);

, f2.store(1,RELEASE);
g = ¢,
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° / ) ,
fl.StOFG(l,RELEASE), printf(“%d”, g);

2 Jata race f2.store(1,RELEASE);
g = 2;

If only a release (or acquire) is present, then
all discriminating contexts are racy.
It is sound to optimise the overwritten write.
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Eliminations: bestiary

Store g w1 Store g v Read g v Store g vi
sb l sbl sbl Sbl

no access to g no access fo g no access to g no access fo g no access fo g

no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair
sb l sbl Sbl Sbl Sbl

Store g vz Read g v Read g v Store g v Store g vi

Overwritten-Write Read-after-Read Read-after-Write Write-after-Read \Write-after-Write

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).
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Cleo . L | L

Theorem

Soundness proved w.r.t. Batty et al. formalisation
of the C11/C++11 memory model popL 11)

NO dcCess 10 g

no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair

| .| .| .| .

Store g vz Read g v Read g v Store g v Store g w1

Overwritten-Write Read-after-Read Read-after-Write Write-after-Read \Write-after-Write

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).
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Reorderings and introductions

Correctness criterion for reordering events:
— different addresses
— no synchronisations in-between

Roach-motel reordering (reordering across locks) not observed in practice

Read introductions observed in practice (gcc, clang).

ntroduction of eliminable reads proved correct.
ntroduction of irrelevant reads does not introduce new
pehaviours, but cannot be proved correct in a DRF model.
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The CMMTEST Tool
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Random % _, SEQUENTIAL

Generator PROGRAM optimising

compiler
under test

reference
semantics

EXECUTABLE
tracing
REFERENCE
MEMORY MEMORY
TRACE : > TRACE

only transformations sound in any
concurrent (non-racy) context¢
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Monday, 9 January 17

CSmith
extended with locks |3

and atomics

SEQUENTIAL

PROGRAM o
optimising

compiler
under test

reference
semantics

EXECUTABLE

tracing

REFERENCE
MEMORY b > MEMORY
TRACE TRACE

only transformations sound in any
concurrent (non-racy) context¢
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extend((;(Ster\jJiTh locks SEQUENTIAL
: PROGRAM o
and atomics optimising
compiler

under test
reference

semantics

EXECUTABLE

binary
Instrumentation
REFERENCE

MEMORY G MEMORY
TRACE TRACE

only transformations sound in any
concurrent (non-racy) context¢
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CSmith
. SEQUENTIAL
extended Wlth locks  |m—p PROGRAM o
and atomics optimising
compiler

under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary . |
instrumentation | binary |
INnstrumentation
REFERENCE
MEMORY MEMORY
TRACE E ’ TRACE

only transformations sound in any
concurrent (non-racy) context¢
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CSmith
. SEQUENTIAL
extended WIth locks  |m—p PROGRAM o
and atomics optimising
compiler

under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary . |
instrumentation , blnary .
INnstrumentation

REFERENCE

MEMORY MEMORY

M
TRACE TRACE
OCaml tool

1. analyse the traces to detect eliminable actions
2. match reference and optimised traces
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CSmith
extended with locks |3

and atomics

SEQUENTIAL
PROGRAM

optimising
/\ compiler

- dependencies between eliminable events

Subtleties:

- some optimisations (e.g. merging of accesses) cannot be expressed

N in the C11/C++11 formalisation

- the tool also ensures that the compilation of atomic accesses is
preserved by the optimiser

OCaml tool
1. analyse the traces to detect eliminable actions
2. match reference and optimised traces

Monday, 9 January 17
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Interaction with GCC developers

Monday, 9 January 17
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1. Some GCC bugs

Some concurrency compiler bugs found

In the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.

All promptly fixed.

Remark: these bugs break the Posix thread model too.

Monday, 9 January 17
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2. Checking compiler invariants

GCC internal invariant: never reorder with an atomic access

Baked this invariant into the tool and found a counterexample...

atomic_uint a;

int32_t gl, gZ;

AlL.oad
AlL.oad
Load

Store

Monday, 9 January 17

a
a
gl
g2

o O O O

...not a bug, but fixed anyway

int main (int, char *[]) {
a.load() & a.load Q);

g2 =gl '= 0;
ks
O--___ _ _o Load gl O
O“jﬁ?’j§‘~o Al.oad a 0
- ~T=--0 Aload a 0
O-——==—=== -0 Store g2 O
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3. Detecting unexpected behaviours

uintlo_t g

for (; g==0; g--); ——> g=0;

If g is initialised with @, a load gets replaced by a store:

f)
Load g O :

/

( Store g O

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

Monday, 9 January 17
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Conclusion

Monday, 9 January 17
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Syllabus

In these lectures we have covered the hardware models of //
two modern computer architectures (x86 and Power/ARM - at least for
a large subset of their instruction set).

We have seen how compiler optimisations can also break concurrent
programs and the importance of defining the memory model of high-
level programming languages.

We have also introduced some proof methods to reason about
concurrency.

Alter these lectures, you might have the feeling that multicore
programming Is a mess and things can't just work,
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The memory models of modern
hardware are better understood.

Programming languages attempt
to specity and implement
reasonable memory models.

Researchers and programmers
are now Iinterested in these
problems.
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The memory models of modern
hardware are better understood.

4 Still, many open problems... s.

B problems.

Monday, 9 January 17
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The memory models of modern
hardware are better understood.

il problems.
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All these lectures are based
on work done with/by my
colleagues. Thank you!
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And thank you all for
attending these lectures!

Please, fill the course evaluation form, that's
Important to make a better course next year.
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4. Sketch of an operational formalisation of x86-TS0O

...starting with a formalisation of SC
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Separate language and memory semantics

class ArrayWrapper

public:
ArrayWrapper | n)
: p vals( new int[ n ] )
, S8Size( n )

{}

ArrayWrapper (const ArrayWrapper& other)
: p vals( new [ other. size ] )
, Size( other. size )

{

for ( i: i 0; 1 € size; ++i )

{

p vals| 1 ] = other. p vals[ 1 );

}
}
~ArrayWrapper ()

{

delete [] p vals;
}
private:
! * p vals;
_;i;e;
program

semantics defined via an LTS

194ng SILIM
18)ng 8l

Lock Shared Memory

memory
semantics defined via an LTS

Wi[a]v : a write of value v to address a by thread t
[abels for interaction: Rialv : aread of v from a by t by thread t

+ other events for barriers and locked instructions

Monday, 9 January 17
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Separate language and memory semantics

class Arr

publi
A

Separate language and state semantics
proved to be a very good choice
) iNn many (unrelated) projects | worked on!

semantics defined via an LTS semantics defined via an LTS

Wi[a]v : a write of value v to address a by thread t
[abels for interaction: Rialv : aread of v from a by t by thread t
+ other events for barriers and locked instructions

Monday, 9 January 17
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A tiny language

location, z, m address (or pointer value)

integer, n iInteger

thread_id, t thread id

k, 1,9

expression, € = expression
n integer literal
* T read from pointer
T = € write to pointer
e; e sequential composition
e+ e plus

pProcess, p Process
t:e thread

p|p’ parallel composition
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What can a thread do in isolation?

l
! / / €1 — 6'
e — e e does [ to become e 1 1
L PLUS_CONTEXT_1
€1 + €2 — €] + €
READ
Rz=n
XL —— N -y
e WRITE N i> - v PLUS_CONTEXT_2
T = N — N L= L™
e Ly of n = ny + ng
WRITE_CONTEXT PLUS

-
! n +no —n

SEQ

Observe that we can read an

e1 — e arbitrary value from the memory.
SEQ_CONTEXT

Lo s
€1; €2 — €75 €2
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—Xample

Show that the expression:

(xx = *y); *T

can perform the following trace:

Ry=7 Wz=7 7 Rz=9
(xx = *xy); *x > >— >

Monday, 9 January 17
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Lifting to processes

p — p'| pdoesl; to become p’

e Ly o Actions are labelled by the
: THREAD thread that performed the
t:e — t:e action.
le
P1 — Pq

PAR_CONTEXT_LEFT

[
p1|p2 — pi|p2 . .
Free interleaving.
L

py — -
2 PAR_CONTEXT_RIGHT

I ,
p1lp2 — p1|p;
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A sequentially consistent memory

Take M to be a function from addresses to integers.

MY M'| M does I to become M’

M(z)=n
g MREAD
M — M
vVp— MWRITE
M— M®(z—n)
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SC semantics: whole system transitions

s does [; to become s’

(p, M)

Monday, 9 January 17

Synchronising between the
processes and the memory.
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SC semantics, example

All threads read and write the shared memory. Threads execute
asynchronously,the semantics allows any interleaving of the thread transitions.

<t1:*£l? = 1|t2:*LL‘ = 2, {117 > O}>

(t1:1|tg:xx = 2, {x > 1}) (ti:xx = 1|t2:2, {z — 2})
Wt2 a::2l lwtl =1
(t1:1]t2:2, {z — 2}) (t1:1]t2:2, {z — 1})

Each interleaving has a linear order of reads and writes to memory.
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...Nnow we just have to define a TSO memory...
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A sequentially consistent memory

Take M to be a function from addresses to integers.

MY M| M does I to become M’

M(x)=n

—— MREAD
M — M

MWRITE

M Wm:n)M@(z»—) n)
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x86-1S0O abstract machine

Thread e Thread

A A N A

P e e o e o e o e e e e o . ] e e e e o e e e e o o e e o e e e e e e o e e e o e e e e e e - e e e o e - - - - - b e e e e e o o - -

' Y
S Text 4 o6 S
=
W
S Events visible by each thread (aka. interface
= between each thread and the memory system):
Wi[a]v : a write of value v to address a by thread t
e ' Ri[a]v : aread of v from a by t by thread t
Lock + other events for barriers and locked instructions

Monday, 9 January 17 103



x86-1S0O abstract machine

® The store buffers are FIFO. A reading thread must read its most
recent buffered write, if there is one, to that address; otherwise
reads are satisfied from shared memory.

® o execute a LOCK’d instruction, a thread must first obtain the
global lock. At the end of the instruction, it flushes its store buffer
and relinquishes the lock. While the lock is held by one thread, no
other thread can read.

® A buffered write from a thread can propagate to the shared
memory at any time except when some other thread holds the
lock.
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X80-1s0: a formalisation using an LTS

The machine state s can be represented by a tuple (M, B, L):

M : address -> value option

B : tid -> (address * value) list
L : tid option

where:
M is the shared memory, mapping addresses to values
B gives the store bufter for each thread

L is the global machine lock indicating when a thread has exclusive
access to memory (omitted in these slides)
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X80-1ts0 abstract machine; selected transition rules

t is not blocked in machine state s = (M,B,L) if [... or] the lock is not held.

In buffer B(t) there are no pending writes for address X if there are no
(X,V) elements in B(t).

RM: Read from memory
not_blocked(s, t)

s.M(z)=wv
no_pending(s.B(t), x)

R, z=v

S S

Thread ¢ can read v from memory at address z if ¢ IS
not blocked, the memory does contain v at z, and
there are no writes to z in t’s store buffer.
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X80-1ts0 abstract machine; selected transition rules

RB: Read from write buffer
not_blocked(s, t)

367 by. S.B(t) = b -|-+[(£II ’U)] ++ by
no_pending(b, )

R, z=v
S »

S

Thread ¢ can read v from its store buffer for address z

If £ 1S not blocked and has v as the newest write to z
In its buffer:
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X80-1ts0 abstract machine; selected transition rules

WB: Write to write buffer

s Wez=v, s@® (B:=s.B®(t— ([(z,v)] ++s.B(t))))

Thread ¢ can write v to its store buffer for address z

at any time;
WM: Write from write buffer to memory

not_blocked(s, t)
s.B(t) = b ++[(z,v)]

Tt z=v
S —— e — >

sO(M:=s.M D (z— v))®(B:=5.BD(t— b))

If ¢ is not blocked, it can silently dequeue the oldest
write from its store buffer and place the value in
memory at the given address, without coordinating
with any hardware thread
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5. Veryfing fence elimination optimisations

aka reasoning on the x86TSO operational memory model
and compiler correctness
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CompCert1SO

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l«

Cminor

instructionlselection

CminorSel

CFG generation
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RTL

l const prop.

RTL

[ o

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—) x86

[POPL 2011]

110



CompCert

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l,

Cminor

instruction\l:selection

CminorSel

CFG generation
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RTL

»l« const prop.

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—)

x86

[SAS 2011]
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Compilers are ideal for verification

Compiler
[SOUFCG program (e.g., C) J —é [ target program (e.g., x86) J

Compilers are:
— Basic computing infrastructure

— Generally reliable, but nevertheless contain many bugs
e.g., Yang et al. [PLDI 2011] found 79 gcc & 202 11vm bugs

— “Specifiable”: compiler correctness = preservation of behaviours
— Interesting: naturally higher-order, involve clever algorithms

— Big, but modular
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Language semantics

The semantics of all the CompCertTSO languages is defined by:
— a type of programs, pryg

— a type of states, states

— a set of initial states for each program, init € prg — P(states)

- a transition relation, ~ — € P(states x(event)x states)

call, return, fail, oom, T

The visible behaviour of a program is defined by the external function
calls (call) and returns (return), errors (fail), and running out of
mMemory (oom).
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raCes

— Finite sequences of call & return events ending with:
end: successful termination,

inftau: infinite execution that stops performing visible events
oom: execution runs out of memory

— Infinite sequences of call & return events;

traces(p) f {¢-end | ds € init(p). ds’. s PN A}
U{Z-tr|3ds € init(p). Is'. s i} s’}
U {£ - inftau | ds € init(p). 3s’. s 5 8 A inftau(s’)}
U {¢-oom | ds € init(p). Is'. s 5 s’}
U {tr | ds € init(p). s can do the infinite trace ¢r}

NB: Erroneous computations become undefined after the first error.
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Compiler correctness

Compiler
[ source program (e.g., C) J ﬂ ( target program (e.g., x86) J

traces(source_program) 2 traces(target_program)

1Pl

print “a” || print “b”  =——————)p orint “ab”

*} orint “a” || print “b”

fail ey DNt “G0"
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E.g., on x86-TS0:

Thread O Thread 1
[x]=[y]=0 MOV [x]+1 MOV [y]+1
MOV EAX+[V] MOV EBX+ [X]
Thread O Thread 1
[x]=[y]=0 MOV [x]¢1 MOV [y]«1
MFENCE MFENCE

MOV EAX+ [V]

MOV EBX+ [X]

Monday, 9 January 17

EAX

EAX

-ence Instructions prevent hardware reorderings

= EBX
allowed

= EBX
forbidden

0

0
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Who inserts fences”?

1. The programmer, explicitly. Example: Fraser's lockfree-lib:

/ *
* IT. Memory barriers.
* MB(): All preceding memory accesses must commit before any later accesses.
*
* If the compiler does not observe these barriers (but any sane compiler
* will!), then VOLATILE should be defined as 'volatile'.
*/
#define MB()  asm  volatile  ("lock; addl $0,0(%%esp)" : : : "memory")

2. The compiler, to implement a high-level memory model,
e.g. SEQ CST C++0x low-level atomics on x86:

Load SEQ CST: MFENCE; MOV
Store SEQ_CST: MOV; MFENCE
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-ence Instructions

1. Fences are necessary

to iImplement locks & not fully-commutative linearizable objects
(e.g., stacks, queues, sets, maps).

[Attiya et al., POPL 2011]

2. Fences can be expensive
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Redundant fences (1)

If we have two consecutive fence instructions, we can remove the latter:

MFENCE )

MFENCE

MFENCE
NOP

The buffer is already empty when the second fence is executed.

(zeneralisation:

MFENCE
NON-WRITE INSTR

NON-WRITE INSTR
MFENCE

Monday, 9 January 17

MFENCE
NON-WRITE INSTR

NON-WRITE INSTR
NOP
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A fence is redundant If it always follows a previous
mm fence or locked instruction in program order,
— and Nno memory store instructions are in between.

A forward data-flow problem over

, T1(nop, &) =&
the boolean domain {1 T} T: (op(op, 7, 7), €) =£
. , T:(load(k, addr, 7, 1), E) =
Associate to each program point: T1(store(k, addr, 7, src),E) =
. T:(call(sig, ros, args,res),E) =T
1 :along all execution paths there T (cond(cond, args), £) _£
IS an atomic instruction before the T} (return(optarg), £) =T
current program point, with T:(threadcreate(optarg),E) =T
no intervening writes; Ty (atomic(aop, 7,r7), &) =1
T1(fence, &) = 1
T : otherwise.
T if predecessors(n) = ()

FSl(n) = <

L I—'pépredecessors(n) 11 (in‘StT(p)a Fé& (p)) otherwise
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A fence is redundant If it always follows a previous
mm fence or locked instruction in program order,
— and Nno memory store instructions are in between.

A forward data-flow problem over

171 (nop, £ = £

the b — _£
=&

ASSOC =T
. ) =T

1 alo Implementation: _¢
S g 1. Use CompCert implementation of Kildall algorithm =T
cur to solve the data-flow equations. =1

no f i

2. Replace MFENCES for which the analysis returns L
T : oth with NOP instructions.

Llpépredecessors(n) T (instr(p), FE€1(p)) otherwise

Monday, 9 January 17 120



Redundant fences (2)

If we have two consecutive fence instructions, we can remove the former:

MFENCE ) NOP

MFENCE MFENCE

Intuition. the visible effects initially published by the former fence, are now
published by the latter, and nobody can tell the difference.

(zeneralisation.

MFENCE NN NOP
INSTRUCTION 1 - INSTRUCTION 1
INSTRUCTION n INSTRUCTION n
MFENCE MFENCE
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Redundant fences (2)

If there are reads In between the fences...

[x]=[y]=0

but

[x]=[y]=0

Monday, 9 January 17

Thread O

Thread 1

MOV [x] « 1
MFENCE

MOV EAX +« [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX + [X]

Thread O

Thread 1

MOV [x] « 1
NOP

MOV EAX « [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX ¢+ [X]

EAX

forbidden

EAX

= EBX

= EBX
allowed

0

0
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Redundant fences (2)

If there are reads In between the fences...

[x]=[y]=0

but

[x]=[y]=0
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Thread O

Thread 1

MOV [x] « 1
MFENCE
MO\ _EAX ¢ [~x7]

MOV [y] « 1
MFENCE

MF

If there are reads in between, the
optimisation is unsound.

MOV [x] « 1
NOP

MOV EAX « [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX ¢+ [X]

EAX

forbidden

EAX

= EBX

= EBX
allowed

0

0
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Redundant fences (2)

Swapping a STORE and a MFENCE is sound:

MFENCE; STORE q STORE; MFENCE

1. transformed program’s behaviours & source program’s behaviours
(source program might leave pending write in its buffer)

2. There is the new intermediate state if the buffer was initially non-empty,
but this intermediate state is not observable.
(a local read is needed to access the local buffer)

Intuition. Iterate this swapping...

Monday, 9 January 17 123



A fence is redundant if it always precedes a
later fence or locked instruction in program order,

= and Nno memory read instructions are in between.
A backward data-flow problem over T (nop, &) =&
the boolean domain {1, T} T>(op(op, 7,7),E) =€
T>(load(k, addr,7,1), &) =T
Associate to each program point: T>(store(k, addr, 7, src),E) =&
T>(call(sig,ros, args,res),E) = T
1 : along all execution paths there T>(cond(cond, args), &) =&
is an atomic instruction after the T (return(optary), £) =T
current program point, with Ty(threadcreate(optarg),£) =T
. P 9 P ’ T>(atomic(aop, 7, 1),£) = |
no intervening reads; T, (fence, &) -1

T : otherwise.
T if successors(n) = ()

.FSQ(TL) = 4

T5(instr(s), FE2(s)) otherwise

| LdsEsuccessors(n)
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-E1 and FE2 are both useful

Removed by FE1 but not FE2:

Removed by FE2 but not FE1:

Monday, 9 January 17

MFENCE
MOV EAX <- [Vv]
MFENCE
MOV EBX <- [Vv]

MOV [x] <- 1
MFENCE
MOV [x] <- 2
MFENCE
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Informal correctness argument

Intuition: FE2 can be thought as iterating

MFENCE; STORE ===  STORE; MFENCE
MFENCE; non-mem —) non-mem; MFENCE

and then applying

MFENCE: MFENCE ===l  NOP; MFENCE

This argument works for finite traces, but not for infinite traces as the later
fence might never be executed:

MFENCE; NOP;
STORE ; =—=3)  STORE;
WHILE (1) ; WHILE (1) ;

MFENCE MFENCE
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Basic simulations

A pair of relations
~¢€ P(src.statesxtgt.states) >¢c P(tgt.states x tgt.states)

IS a basic simulation for ~ compile : src.prg — tgt.prgf:

sim_init : Ypp'. compile(p) = p' == ¥Vt € init(p’). ds € init(p). s ~ ¢

sim-end : Vst. s~tAt A = s 5
e

sim_step : Vst t'ev. s~tAt —t' A ev # oom

T o Iail

(s =* —= ) s reaches a failure
7 { / LI TN SR ey A can oo gty :
V(ds'.s =2 "—s As ~ 1) s does matching step sequence
s [ " - ! A I\ . ¥ . . & - .’ \
Vet =r Nt S N ST s stutters (only allowed if t > 1)

Exhibiting a basic simulation implies:
traces(compile(p)) \ {t - inftau |  trace} C traces(p)
“simulation can stutter forever”

Monday, 9 January 17 127



Usual approach: measured simulations

Definition 2 (Measured sim.). A measured simulation is any basic simula-

tion (~,>) such that > is well-founded.

Theorem 1. If there exists a measured simulation for the compilation function
compile, then for all programs p, traces(compile(p)) C traces(p).
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Simulation for FE2

S

it Iff thread / of s and t have identical pc, local states and buffers

S ~; S'iff thread / of s can execute zero or more NopP, 0P, STORE and
MFENCE Instructions and end in the state s’

S~t |ff
— t’s CFG is the optimised version of s’s CFG; and
— S and t have identical memories; and
— Vv thread J, either s =; t or

the analysis for /’s pc returned L and 3s', S ~js'and s' = t
'S IS some instructions behind and can catch up”

Stutter condition:
t>t" iff t—t' byathread executing a NOP, OP, STORE Of MFENCE
(and t’s buffer being non-empty)
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Simulation for FE2

S E/'Z- |ﬁ thr /’ f AN 0 Z—hV Iﬂ | I (J | | AlES ANg DO fer

S i S iff th But if (1) all threads have non-empty buffers, ana
(2) are stuck executing infinite loops, and

(3) no writes are ever propagated to memory,
S~t |ff then we can stutter forever.

MFE]

—t's CFG
—sandtl| (i.e., >is not well-founded.)
— Vv thread
e analy Ol DC retarnead L ano S ~arsranad s =it
'S IS some Instructions behind and can catch up”
Stutter condition:

t>t" iff t—t' byathread executing a NOP, OP, STORE Of MFENCE
(and t’s buffer being non-empty)
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Simulation for FE2

S E/'Z- |ﬂ: thr /’ f AN 0 Z—hV Iﬂ | I (J | I AlES ANg DO fer

S i S iff th But if (1) all threads have non-empty buffers, ana
(2) are stuck executing infinite loops, and

(3) no writes are ever propagated to memory,
S~t |ff then we can stutter forever.

—t's CFG

-sandt| (. Solution 1: Assume this case never arises (fairness)
— VY threaq

MFE]

— 1 Solution 2: Do a case split. j t

— |If this case does not arise, we are done.

— If it does, use a different (weaker) simulation to
construct an infinite trace for the source

Stutter conditic
[>t iff t—
(an(
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Weaktau simulation

Definition 3 (Weaktau sim.). A weaktau simulation consists of a basic sim-
ulation (~,>) with and an additional relation between source and target states,

~¢ P(src.states X tgt.states) satisfying the following properties:

sim_weaken : Vs, t. s~t — s>~t
sim_wstep :Vstt'. s~tAt St At>t =
T 4 fail :
(s — > _) — s reaches a failure

4 (4

V(3. s * s As' ~t) — s does a matching step sequence.

Theorem 2. If there exists a weaktau-simulation (~, >, ~) for the compilation
function compile, then for all programs p, traces(compile(p)) C traces(p).

Remarks:
— Once the simulation game moves from ~ to =, stuttering is forbidden;

— Can view difference between ~ and = as a boolean prophecy variable.
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Weaktau simulation for FEZ2

S~t, t>t as before.

S =t Iff

— t's CFG is the optimised version of s’s CFG; and
—V/, 3S' S.t. S ~;S =it
(.e., same as s ~ t except that the memories memories are unrelated.)
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A closer look at the RTL

FENCE

nop

[\

if

nop

lf'so ifnot

nop

Monday, 9 January 17

l

return

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice to hoist those fences out of the loop.
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A closer look at the R

FENCE

nop

F

if

lfso ifnot

nop

nop

store

FENCE
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l

return

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be

1
(s - =

Do you perform PRE?

Qyt of the loop.

132



A closer ook at the RTL

FENCE

Patterns like that on the left are common.

nop
/‘ \ FE1 and FE2 do not optimise these patterns.
if
J'fm . It would be nice— ~=_ayt of the loop.
Do you perform PRE?
nop nop

l

return

‘l

}',‘)' ||‘|,

. addlﬂg a fence is a|WayS safe... \‘A\Il‘ Ju’l./.“”ui ('lnf‘}if'h’h:w.
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Partial redundancy elimination

FENCE

nop

AN

if

PRE

e

lfso ifnot
nop nop

FENCE

Monday, 9 January 17

l

return

FENCE

nop

nop

return

[\

if

nop

nop

l&o ifnot

FENCE

return
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—valuation of the optimisations

— Insert MFENCES before every read (br), or after every write (aw).

— Count the MFENCE instructions in the generated code.

br br+FE1 aw aw+FE2 | aw+PRE+FE2
Dekker 3 2 5 4 4
Bakery 10 2 4 3 3
Treiber 5 2 3 1 1
Fraser 32 18 19 12 11
TL2 166 95 101 68 68
Genome 133 79 62 41 41
Labyrinth 231 98 63 42 42
SSCA 1264 490 420 367 367
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—valuation of the optimisations

— Insert MFENCES before every read (br), or after every write (aw).

— Cour

Labyrinth

Important remark for your future work:

..this is not a proper evaluation: we know nothing about
real code, and the number of fences is not a good
measure. But unclear how to do better...

http://evaluate.inf.usi.ch/

231 98 63 42 42

SSCA

1264 490 420 367 367
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