
Semantics, languages and algorithms
for multicore programming

Luc MarangetAlbert Cohen Francesco Zappa Nardelli

1Tuesday 13 January 15

Vote: topics for my next lecture

1. The lwarx and stwcx Power instructions 3

2. Hunting compiler concurrency bugs 5

3. Operational and axiomatic formalisation of x86-TSO 4

4. Fence optimisations for x86-TSO 2

5. The Java memory model 5

6. The C11/C++11 memory model 9

7. Static and dynamic techniques for data-race detection 11

8. The Linux memory model (?!) 6

2Tuesday 13 January 15

1. The C++11 memory model
a good example of an axiomatic memory model

3Tuesday 13 January 15

The C++11 memory model

1300 page prose specification defined by the ISO.

The design is a detailed compromise:
hardware/compiler implementability
useful abstractions
broad spectrum of programmers

4Tuesday 13 January 15

The syntactic divide

// for regular programmers:
atomic_int x = 0;
x.store(1);
y = x.load();

// for experts:
x.store(2, memory_order);
y = x.load(memory_order);
atomic_thread_fence(memory_order);

where memory_order is one of the following:
 mo_seq_cst mo_release mo_acquire
 mo_acq_rel mo_consume mo_relaxed

5Tuesday 13 January 15

How may a program execute?

Two layer semantics:

1) a denotational semantics processes programs, identifying memory
actions, and constructs candidate executions (Eopsem);

 P E1, … , En

2) an axiomatic memory model judges Eopsem paired with a memory
ordering Xwitness

 Ei Xi1,...,Xim

3) searches the consistent executions for races and uncostrained reads

 is there an Xij with a race?

6Tuesday 13 January 15

Relations

An Eopsem part containing:
 sb sequenced before, program order
 asw additional synchronizes with, inter-thread ordering

An Xwitness part containing:
 rf relates a write to any reads that take its value
 sc a total order over mo_seq_cst and mutex actions
 mo modification order, per location total order of writes

From these, compute synchronise-with (sw) and happens-before (hb).

We ignore consume atomics, which enables us to live in a simplified model.
Full details in Batty et al., POPL 11.

7Tuesday 13 January 15

Formally

cpp_memory_model_opsem (p : program) =
 let pre_executions =
 {(Eopsem,Xwitness). opsem p Eopsem ∧
 consistent_execution (Eopsem, Xwitness)}
 in
 if ∃X ∈ pre_executions.
 (indeterminate_reads X = {}) ∨
 (unsequenced_races X = {}) ∨
 (data_races X = {})
 then NONE
 else SOME pre_executions

8Tuesday 13 January 15

A single-threaded example

int main() {
 int x = 2;
 int y = 0;
 y = (x==x);
 return 0;
}

1. sequenced before (sb) - given by opsem

9Tuesday 13 January 15

A single-threaded example

int main() {
 int x = 2;
 int y = 0;
 y = (x==x);
 return 0;
}

1. sequenced before (sb) - given by opsem
2. read-from (rf) - part of the witness

10Tuesday 13 January 15

int main() {
 int x = 2;
 int y = 0;
 y = (x==(x=3));
 return 0;
}

A single-threaded ex. with undefined behaviour

An unsequenced race.

11Tuesday 13 January 15

A simple concurrent program

We will omit asw arrows whenever
we are not interested in the initialisation.

12Tuesday 13 January 15

Locks and unlocks

1. the operational semantics defines
 the sb arrows

13Tuesday 13 January 15

Locks and unlocks

1. the operational semantics defines
 the sb arrows

2. guess an sc order on Unlock/Lock
 actions (part of the witness)

14Tuesday 13 January 15

Locks and unlocks

1. the operational semantics defines
 the sb arrows

2. guess an sc order on Unlock/Lock
 actions (part of the witness)

3. the sc order is included in the
 syncronised-with relation

15Tuesday 13 January 15

Locks and unlocks

1. the operational semantics defines
 the sb arrows
2. guess an sc order on Unlock/Lock
 actions (part of the witness)
3. the sc order is included in the
 syncronised-with relation

4. which in turn defines the
 happens-before relation...

16Tuesday 13 January 15

Happens before

The happens before relation is key to the model:

1. non-atomic loads read the most recent write in happens before.
 (This is unique in DRF programs)

2. the story is more complex for atomics, as we shall see.

3. data races are defined as an absence of happens before
 between conflicting actions.

17Tuesday 13 January 15

A data race

18Tuesday 13 January 15

A data race

Here we have two conflicting accesses
not related by happens-before.

19Tuesday 13 January 15

Data race definition

Programs with a data race have undefined behaviour (DRF model).

20Tuesday 13 January 15

Simple concurrency: Dekker's example and SC

Why is this behaviour forbidden?

21Tuesday 13 January 15

Simple concurrency, Dekker's example and SC

The sc relation must define a total order over unlocks/locks and
seq_cst accesses… sc is included in hb, an rf must respect hb.

22Tuesday 13 January 15

Expert concurrency: the release-acquire idiom

// sender
x = ...
y.store(1, release);

// receiver
while (0 == y.load(acquire));
r = x;

Here we have an rf arrow beetwen a pair of
release/acquire accesses.

23Tuesday 13 January 15

Expert concurrency: the release-acquire idiom

// sender
x = ...
y.store(1, release);

// receiver
while (0 == y.load(acquire));
r = x;

Here we have an rf arrow beetwen a pair of
release/acquire accesses.

The rf arrow beetwen release/acquire accesses
induces an sw arrow between those accesses.

24Tuesday 13 January 15

Expert concurrency: the release-acquire idiom

// sender
x = ...
y.store(1, release);

// receiver
while (0 == y.load(acquire));
r = x;

Here we have an rf arrow beetwen a pair of
release/acquire accesses.

The rf arrow beetwen release/acquire accesses
induces an sw arrow between those accesses.

And in turn defines an hb constraint.

25Tuesday 13 January 15

Relaxed writes

No data-races, no synchronisation cost, but weakly ordered.

26Tuesday 13 January 15

Relaxed writes, ctd.

Again, no data-races, no synchronisation cost, but weakly ordered (IRIW).

27Tuesday 13 January 15

Expert concurrency: fences avoid excess sync.

28Tuesday 13 January 15

Expert concurrency: fences avoid excess sync.

Here we have an rf arrow beetwen a
release write and a relaxed write.

29Tuesday 13 January 15

Expert concurrency: fences avoid excess sync.

Here we have an rf arrow beetwen a
release write and a relaxed write.

The acquire fence follows the sb/rf relations
looking for the corresponding release write, adding
a sw arrow.

30Tuesday 13 January 15

Expert concurrency: fences avoid excess sync.

Here we have an rf arrow beetwen a
release write and a relaxed write.

The acquire fence follows the sb/rf relations
looking for the corresponding release write, adding
a sw arrow.

Happens-before follows as usual...
31Tuesday 13 January 15

Modification order

atomic_int x = 0;
x.store(1, relaxed); x.load(relaxed);
x.store(2, relaxed); x.load(relaxed);

Modification order is a total order over atomic writes of any memory order.

32Tuesday 13 January 15

Coherence and atomic reads

All forbidden:

Idea: atomics cannot read from later writes in happens-before.

33Tuesday 13 January 15

Coherence and atomic reads

All forbidden:

Idea: atomics cannot read from later writes in happens-before.

A pair Eopsem , Xwitness (a pre-execution)
 defines a consistent execution when it satisfies

the constraints we have sketched
on hb/rf/mo and is race-free.

33Tuesday 13 January 15

The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a ̸
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid) = aid) ∧
(action id of (Unlock aid) = aid) ∧
(action id of (Atomic load aid) = aid) ∧
(action id of (Atomic store aid) = aid) ∧
(action id of (Atomic rmw aid) = aid) ∧
(action id of (Load aid) = aid) ∧
(action id of (Store aid) = aid) ∧
(action id of (Fence aid) = aid)

(thread id of (Lock tid) = tid) ∧
(thread id of (Unlock tid) = tid) ∧
(thread id of (Atomic load tid) = tid) ∧
(thread id of (Atomic store tid) = tid) ∧
(thread id of (Atomic rmw tid) = tid) ∧
(thread id of (Load tid) = tid) ∧
(thread id of (Store tid) = tid) ∧
(thread id of (Fence tid) = tid)

(memory order (Atomic load mem ord) =
Some mem ord) ∧

(memory order (Atomic store mem ord) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l) = Some l) ∧
(location (Atomic store l) = Some l) ∧
(location (Atomic rmw l) = Some l) ∧
(location (Load l) = Some l) ∧
(location (Store l) = Some l) ∧
(location (Fence) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ∥ → F

is unlock a =
case a of Unlock → T ∥ → F

is atomic load a =
case a of Atomic load → T ∥ → F

is atomic store a =
case a of Atomic store → T ∥ → F

is atomic rmw a =
case a of Atomic rmw → T ∥ → F

is load a = case a of Load → T ∥ → F

is store a = case a of Store → T ∥ → F

is fence a = case a of Fence → T ∥ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

∥ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
∥ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
∥ Non atomic → is load or store a
∥ Atomic → is load or store a ∨ is atomic action a)

∥ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
∥ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

∥ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

∥ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

∥ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a ̸= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

∥ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c ̸= a) ∧ (c ̸= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ̸= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ̸= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc ̸= {})

then {}
else executions

34Tuesday 13 January 15

Is C++11 hopelessly complicated?
Programmers cannot be given this model.

However, with a formal definition, we can do proofs! For instance:

- Can we compile to x86?

- Can we compile to Power?

35Tuesday 13 January 15

Is C++11 hopelessly complicated?
Simplifications:

Full model: visible sequences of side effects are unneeded (HOL4)

Derivative models:

- without consume, happens-before is transitive

36Tuesday 13 January 15

The current state of the standard
Fixed:

- in some cases, happens-before was cyclic

- coherence

- seq_cst atomics were more broken

Not fixed:

- out of thin air reads (and self satisfying conditionals)

- seq_cst atomics do not guarantee SC

37Tuesday 13 January 15

2. The Linux memory model

38Tuesday 13 January 15

The Linux memory model

Facts:

- abstraction layer over hardware and compilers

- relied upon by kernel developers to write "portable kernel code"

- documented by a text file:
http://www.kernel.org/doc/Documentation/memory-barriers.txt

39Tuesday 13 January 15

http://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www.kernel.org/doc/Documentation/memory-barriers.txt

The Linux memory model

Facts:

- abstraction layer over hardware and compilers

- relied upon by kernel developers to write "portable kernel code"

- documented by a text file:
http://www.kernel.org/doc/Documentation/memory-barriers.txt

More facts: ...some time ago...

I attempted to understand the doc and exchanged a few email with
Paul Mc Kenney. However I didn’t understand much…

39Tuesday 13 January 15

http://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www.kernel.org/doc/Documentation/memory-barriers.txt

The Linux memory model

Expected to account for all supported combinations of
compiler and hardware memory model...

Hardware

hardware memory-model

Compiler

compiler memory-model (gcc)

Linux kernel

Linux memory model

40Tuesday 13 January 15

alpha: Weak ordering. No dependency ordering. "Time does not go backwards" gives guarantees similar to Power/ARM A-cumulativity.
Possibly B-cumulativity as well. I am not aware of formalization of this architecture's memory ordering other than Gharachorloo's PhD.
arm: You know at least as much as I do about this one.
avr32: Uniprocessor-only, kernel build failure for SMP.
blackfin: Uniprocessor-only to the best of my knowledge. There are rumored to be some experimental SMP systems that lack cache
coherence, and are thus outside of the Linux kernel's remit. See for example: https://docs.blackfin.uclinux.org/doku.php?id=linux-
kernel:smp-like The system.h file flushes cache when a memory barrier is encountered, which is consistent with an attempt to run the Linux
kernel on a non-cache-coherent system…
cris: Uniprocessor-only to the best of my knowledge. Though there appears to be recent addition of some SMP support. Its system.h file is
consistent with full sequential consistency. Or extreme optimism on the part of the cris developers.
frv: Uniprocessor-only to the best of my knowledge.
h8300: Uniprocessor-only to the best of my knowledge. There is code in system.h that appears to be intended for SMP, but it looks to me like
a (harmless) copy-paste error. Either that or SMP h8300 systems are sequentially consistent.
ia64: Total order of all release operations, which include the "mf" (memory fence) instruction. Memory fences cannot restore sequential
consistency.
m32r: Uniprocessor-only to the best of my knowledge. However, there does appear to be some recent multiprocessor support. This is quite
strange -- atomic instructions flush cache, but memory barriers are no-ops. Looks quite experimental.
m68k: Uniprocessor-only to the best of my knowledge.
microblaze: Uniprocessor-only to the best of my knowledge. At least one SMP attempt: http://microblazesmp.blogspot.com/ Its system.h file
looks uniprocessor-only.
mips: Multiprocessor. Old SGI MIPS systems were sequentially consistent. Newer systems used for network infrastructure are rumored to
have weak memory models similar to Power and ARM. And its system.h file is consistent with a weak memory model.
mn10300: Recent SMP support which I know little about. The system.h file looks uniprocessor only, and contains comments on Intel, so
copy-pasted from x86.
parisc: TSO, similar to x86.
powerpc: You know at least as much about this as I do.
s390: TSO, but with self-snooping of store buffer prohibited.
score: Uniprocessor-only to the best of my knowledge.
sh: Recent SMP support which I know little about. Its system.h file is consistent with weak memory ordering.
sparc: TSO, similar to x86. There is documentation about weaker memory models (PSO and RMO), but in practice the hardware is TSO.
tile: Recent SMP CPU which I know little about. Seems to be weakly ordered based on its system.h file.
um: Looks like an x86 knockoff judging by the system.h file.
unicore32: Uniprocessor-only to the best of my knowledge.
x86: You know this one at least as well as do I.
xtensa: Uniprocessor-only -- kernel build failure otherwise.

41Tuesday 13 January 15

https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
http://microblazesmp.blogspot.com/
http://microblazesmp.blogspot.com/

The Linux memory model

My intuition:

Annoying facts:

42Tuesday 13 January 15

The Linux memory model

My intuition:

Annoying facts:

kinda of lowest common denominator between all hardware
memory models of architectures Linux can be compiled to, taking
into account also some common gcc optimisations, with some
weirdnesses.

semantics of "read barriers" really weak, unclear how to formalise it

compilation of barriers on Itanium looks broken -- hardware might
exhibit behaviours prohibited by the MM.

42Tuesday 13 January 15

ACCESS_ONCE

Compilers can remove (or duplicate) accesses.

 for (;;) {
struct task_struct *owner;

owner = ACCESS_ONCE(lock->owner);
if (owner && !mutex_spin_on_owner(lock, owner))
break;
 # /* ... */

 owner = ACCESS_ONCE(lock->owner);
 for (;;) {
if (owner && !mutex_spin_on_owner(lock, owner))
break;

43Tuesday 13 January 15

ACCESS_ONCE

Compilers can remove (or duplicate) accesses.

 for (;;) {
struct task_struct *owner;

owner = ACCESS_ONCE(lock->owner);
if (owner && !mutex_spin_on_owner(lock, owner))
break;
 # /* ... */

 owner = ACCESS_ONCE(lock->owner);
 for (;;) {
if (owner && !mutex_spin_on_owner(lock, owner))
break;

ACCESS_ONCE prevents this optimisation

43Tuesday 13 January 15

...let's read the doc...

44Tuesday 13 January 15

The Linux memory model: macros

on x86:
#define mb() # asm volatile("mfence":::"memory")
#define rmb()# asm volatile("lfence":::"memory")
#define wmb()# asm volatile("sfence" ::: "memory")

on Power:
#define mb() __asm__ __volatile__ ("sync" : : : "memory")
#define rmb() __asm__ __volatile__ ("sync" : : : "memory")
#define wmb() __asm__ __volatile__ ("sync" : : : "memory")
#define read_barrier_depends() do { } while(0)

in x86TSO lfence is a noop and sfence is like mfence, but things
are different in kernel land, eg when performing dma accesses.

 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))

45Tuesday 13 January 15

...let's read the future doc...

46Tuesday 13 January 15

Challenging research direction:

Sort out what the REAL Linux memory model is

Yes. Of course, if people come up with lots of
situations where the more-complex programming
model would help significantly, then it might be
worth revisiting this.

Actually: how to design a high-level programming
language memory model that does not assign
undefined behaviour to racy programs?

47Tuesday 13 January 15

Out of thin-air reads

48Tuesday 13 January 15

Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE) r2 = y

x = y = 0

49Tuesday 13 January 15

Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE) r2 = y

Non-atomic loads must return the most recent write
in the happens-before order

x = y = 0

49Tuesday 13 January 15

Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y

x = y = 0

50Tuesday 13 January 15

Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y

DATA RACE

Two conflicting accesses not related by happens-before

x = y = 0

50Tuesday 13 January 15

Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

x = y = 0

51Tuesday 13 January 15

Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

 Allow a RELAXED load to see any store that:

 - does not happens-after it

 - is not hidden by an intervening store hb-ordered between them

x = y = 0

51Tuesday 13 January 15

Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

 Allow a RELAXED load to see any store that:

 - does not happens-after it

 - is not hidden by an intervening store hb-ordered between them

x = y = 0

Intuition
the compiler (or hardware) can reorder independent accesses

51Tuesday 13 January 15

Shorthand

 from now on, all the memory accesses are

atomic with MO_RELAXED semantics

52Tuesday 13 January 15

Out-of-thin-air

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

x = y = 0

53Tuesday 13 January 15

Out-of-thin-air

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

r1 = r2 = 42
is a valid execution.

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0

53Tuesday 13 January 15

Out-of-thin-air

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

r1 = r2 = 42
is a valid execution.

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

Intuition
the compiler (or hardware) can reorder independent accesses

x = y = 0

53Tuesday 13 January 15

Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

x = y = 0

54Tuesday 13 January 15

Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0

54Tuesday 13 January 15

Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

the value 42 appears out-of-thin-air

x = y = 0

54Tuesday 13 January 15

Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

55Tuesday 13 January 15

Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

It does not happen in practice... even if it might!

55Tuesday 13 January 15

Consequences of out-of-thin-air reads

56Tuesday 13 January 15

Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a;

a nextnext

57Tuesday 13 January 15

Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a;

a nextnext

57Tuesday 13 January 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

58Tuesday 13 January 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

If a and b initially reference disjoint data-structures
we expect a and b to remain disjoint

58Tuesday 13 January 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

59Tuesday 13 January 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

 If the compiler speculates r1=b and r2=a, then
 the store r1->next=a justifies r2=b->next assigning r2=a
 (and symmetrically to justify r1=b)

59Tuesday 13 January 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

 If the compiler speculates r1=b and r2=a, then
 the store r1->next=a justifies r2=b->next assigning r2=a
 (and symmetrically to justify r1=b)

59Tuesday 13 January 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

Break our basic intuitions
about memory and sharing!

 If the compiler speculates r1=b and r2=a, then
 the store r1->next=a justifies r2=b->next assigning r2=a
 (and symmetrically to justify r1=b)

59Tuesday 13 January 15

Common compiler optimisations
are unsound in C11

Breaking news

60Tuesday 13 January 15

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

x = y = a = 0

61Tuesday 13 January 15

x = y = a = 0

Remark 1

This code is not racy!

There is no consistent execution in which
the read of a occurs.

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

62Tuesday 13 January 15

x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

63Tuesday 13 January 15

x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

Consider sequentialisation:
C || D ⟹ C ; D

(ought to be correct)

63Tuesday 13 January 15

x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

64Tuesday 13 January 15

x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

64Tuesday 13 January 15

a = 1
x = y = 42
is also possible

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

x = y = a = 0

65Tuesday 13 January 15

a = 1
x = y = 42
is also possible

Break common source-to-source
(or LLVM IR - to - LLVM IR)

compiler optimisations
including expression linearisation and roach-motel reorderings

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

x = y = a = 0

65Tuesday 13 January 15

Are there any solutions?

66Tuesday 13 January 15

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

67Tuesday 13 January 15

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

r1 = r2 = 42. Can you spot the difference?

67Tuesday 13 January 15

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

r1 = r2 = 42. Can you spot the difference?
The “bad” example has a cycle of dependencies.

67Tuesday 13 January 15

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

r1 = r2 = 42. Can you spot the difference?
The “bad” example has a cycle of dependencies.

Solution 1.
Prohibit executions with dependency cycles

67Tuesday 13 January 15

Compiler writers
do not want to track all dependencies

68Tuesday 13 January 15

if (x)
 a[i++] = 1;
else
 a[i++] = 2;

Does the store to i depend on the load of x?

Compiler writers
do not want to track all dependencies

68Tuesday 13 January 15

Solution 2. Brute force

Disallow cycles altogether

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

69Tuesday 13 January 15

Solution 2. Brute force

Disallow cycles altogether

Allows all source-to-source optimisations

(except for r/w reordering on atomics)

but expensive on ARM and GPUs

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

69Tuesday 13 January 15

Solution 3. less brute force

Allow cycles but make this racy
by allowing a to read 1

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

70Tuesday 13 January 15

Solution 3. less brute force

Allow cycles but make this racy
by allowing a to read 1

Efficient implementation of atomics on ARM/GPUs

but all R/W reorderings are unsound

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

70Tuesday 13 January 15

State of the art

“Implementations should ensure
that no “out-of-thin-air” values are
computed that circularly depend

on their own computation.”
Current proposal for C14

71Tuesday 13 January 15

3. A word on techniques for data-race detection

72Tuesday 13 January 15

Data race detection: dynamic approaches
Modern high-performance dynamic race detectors are based either on:

happens-before ordering lockset computation

popularised by Eraser (Savage et al.) ’97

can detect races not observed in
the execution being monitored

drawback: unsound (false positives)

records which locks protect
every memory access

report a race if intersection of all
locksets for a variable is empty

no false positives

reconstruct happens-before order
in the current execution

report a race if intersection if two
conflicting accesses are not related

by hb

drawback: misses races
occurring on rare executions

73Tuesday 13 January 15

Examples of lockset computation
lock(b)
lock(a)
x=1
unlock(a)

lock(a)
x=2
unlock(a)

1:L(b);1:L(a);1:Wx1;1:U(a);2:L(a);2:Wx2;2:U(a)

locks held: 1:b 1:b,a 2:a

lockset for x non-empty at the end, no data-race

lock(b)
lock(a)
x=1
unlock(a)

lock(c)
x=2
unlock(c)

1:L(b);1:L(a);1:Wx1;1:U(a);2:L(c);2:Wx2;2:U(c)

C(x): x:a,b x:empty

lockset for x empty at the end, possible data-race

C(x): x:a,b x:a

74Tuesday 13 January 15

lockset vs happens-before
y=1
lock(a)
x=1
unlock(a)

lock(a)
x=2
unlock(a)
y=2

1:Wy1;1:L(a);1:Wx1;1:U(a);2:L(a);2:Wx2;2:U(a);2:Wy2

This program has a race on y

If only the execution below is observed:

po po po sw po po po

hb

happens-before computation does not report a race.

Lockset computation detects instead that accesses to y are unprotected and reports
a possible race.

75Tuesday 13 January 15

lockset vs happens-before (2)
y=1
lock(a)
x=1
unlock(a)

lock(a)
tmp=x
unlock(a)
if tmp == 1
 then print y

This program instead is DRF.

Happens-before computation will not report a race
 (no matter which execution is observed)

Since accesses to y are unprotected, locksets computation reports a false positive.

76Tuesday 13 January 15

Data race detection
Modern high-performance dynamic race detectors are based either on:

happens-before ordering lockset computation

popularised by Eraser (Savage et al.) ’97

can detect races not observed in
the execution being monitored

drawback: unsound (false positives)

records which locks protect
every memory access

report a race if intersection of all
locksets for a variable is empty

sound

reconstruct happens-before order
in the current execution

report a race if intersection if two
conflicting accesses are not related

by hb

drawback: misses races
occurring on rare executions

77Tuesday 13 January 15

Data race detection
Modern high-performance dynamic race detectors are based either on:

happens-before ordering lockset computation

popularised by Eraser (Savage et al.) ’97

can detect races not observed in
the execution being monitored

drawback: unsound (false positives)

records which locks protect
every memory access

report a race if intersection of all
locksets for a variable is empty

sound

reconstruct happens-before order
in the current execution

report a race if intersection if two
conflicting accesses are not related

by hb

drawback: misses races
occurring on rare executions

Current state of the art:

hybrid approaches combining locksets and
happens-before ordering + other dynamic annotations

Helgrind, RaceFuzzer, ThreadSanitizer...

Impressive:
tolerable slowdown on large applications

found thousands races

Still not as reliable as the tool we dream of...

77Tuesday 13 January 15

Data race detection: static approaches
Run a bunch of static analysis for

inferring locksets.

Hard:

- aliasing on memory locations

- lock pointers

- must account all language features

78Tuesday 13 January 15

4. Sketch of an operational formalisation of x86-TSO

...starting with a formalisation of SC

79Tuesday 13 January 15

Separate language and memory semantics

memory
semantics defined via an LTS

program
semantics defined via an LTS

Wt[a]v : a write of value v to address a by thread t
Rt[a]v : a read of v from a by t by thread t
+ other events for barriers and locked instructions

Labels for interaction:

80Tuesday 13 January 15

Separate language and memory semantics

memory
semantics defined via an LTS

program
semantics defined via an LTS

Wt[a]v : a write of value v to address a by thread t
Rt[a]v : a read of v from a by t by thread t
+ other events for barriers and locked instructions

Labels for interaction:

Separate language and state semantics
proved to be a very good choice

in many (unrelated) projects I worked on!

80Tuesday 13 January 15

A tiny language

81Tuesday 13 January 15

What can a thread do in isolation?

Observe that we can read an
arbitrary value from the memory.

82Tuesday 13 January 15

Example

Show that the expression:

can perform the following trace:

83Tuesday 13 January 15

Lifting to processes

Actions are labelled by the
thread that performed the
action.

Free interleaving.

84Tuesday 13 January 15

A sequentially consistent memory

Take M to be a function from addresses to integers.

85Tuesday 13 January 15

SC semantics: whole system transitions

Synchronising between the
processes and the memory.

86Tuesday 13 January 15

SC semantics, example

All threads read and write the shared memory. Threads execute
asynchronously,the semantics allows any interleaving of the thread transitions.

Each interleaving has a linear order of reads and writes to memory.

87Tuesday 13 January 15

...now we just have to define a TSO memory...

88Tuesday 13 January 15

A sequentially consistent memory

Take M to be a function from addresses to integers.

 M M if M(x) = n
R x = n

 M M’ where M’(x) = n and M’(y) = M(y) for y = x
W x = n

89Tuesday 13 January 15

x86-TSO abstract machine

Wt[a]v Rt[a]v

Text

Events visible by each thread (aka. interface
between each thread and the memory system):

Wt[a]v : a write of value v to address a by thread t
Rt[a]v : a read of v from a by t by thread t
+ other events for barriers and locked instructions

90Tuesday 13 January 15

x86-TSO abstract machine

Shared memory
maps addresses to valuesa Store-Buffer per thread

a Global Lock
to indicate when a thread has
exclusive access to memory

• The store buffers are FIFO. A reading thread must read its most
recent buffered write, if there is one, to that address; otherwise
reads are satisfied from shared memory.

• To execute a LOCK’d instruction, a thread must first obtain the
global lock. At the end of the instruction, it flushes its store buffer
and relinquishes the lock. While the lock is held by one thread, no
other thread can read.

• A buffered write from a thread can propagate to the shared
memory at any time except when some other thread holds the
lock.

91Tuesday 13 January 15

x86-tso: a formalisation using an LTS

The machine state s can be represented by a tuple (M,B,L):

 M : address -> value option
 B : tid -> (address * value) list
 L : tid option

where:

 M is the shared memory, mapping addresses to values

 B gives the store buffer for each thread

 L is the global machine lock indicating when a thread has exclusive
access to memory (omitted in these slides)

92Tuesday 13 January 15

x86-tso abstract machine: selected transition rules
t is not blocked in machine state s = (M,B,L) if [… or] the lock is not held.

In buffer B(t) there are no pending writes for address x if there are no
(x,v) elements in B(t).

93Tuesday 13 January 15

x86-tso abstract machine: selected transition rules

94Tuesday 13 January 15

x86-tso abstract machine: selected transition rules

95Tuesday 13 January 15

5. Veryfing fence elimination optimisations
aka reasoning on the x86TSO operational memory model

and compiler correctness

96Tuesday 13 January 15

CompCertTSO

[POPL 2011]

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction selection

CFG generation

97Tuesday 13 January 15

CompCertTSO + fence optimisations

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

FE1

PRE

FE2

RTL

RTL

RTL

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction selection

CFG generation
[SAS 2011]

98Tuesday 13 January 15

Compilers are ideal for verification

Compilers are:

— Basic computing infrastructure

— Generally reliable, but nevertheless contain many bugs
 e.g., Yang et al. [PLDI 2011] found 79 gcc & 202 llvm bugs

— “Specifiable”: compiler correctness = preservation of behaviours

— Interesting: naturally higher-order, involve clever algorithms

— Big, but modular

source program (e.g., C) target program (e.g., x86)
Compiler

99Tuesday 13 January 15

Language semantics

The semantics of all the CompCertTSO languages is defined by:

– a type of programs,

– a type of states,

– a set of initial states for each program,

– a transition relation,

The visible behaviour of a program is defined by the external function
calls (call) and returns (return), errors (fail), and running out of
memory (oom).

call, return, fail, oom, τ

100Tuesday 13 January 15

Traces

– Finite sequences of call & return events ending with:
 end: successful termination,
 inftau: infinite execution that stops performing visible events
 oom: execution runs out of memory

– Infinite sequences of call & return events;

NB: Erroneous computations become undefined after the first error.

101Tuesday 13 January 15

Compiler correctness

 traces(source_program) ⊇ traces(target_program)

 print “a” || print “b” print “ab”

 print “ab” print “a” || print “b”

 fail print “ab”

 print “ab” fail

source program (e.g., C) target program (e.g., x86)
Compiler

102Tuesday 13 January 15

Fence instructions prevent hardware reorderings

E.g., on x86-TSO:

Thread 0 Thread 1
 MOV [x]←1 MOV [y]←1

 MOV EAX←[y] MOV EBX←[x]

EAX = EBX = 0
allowed[x]=[y]=0

EAX = EBX = 0
forbidden

Thread 0 Thread 1

 MOV [x]←1 MOV [y]←1

 MFENCE MFENCE

 MOV EAX←[y] MOV EBX←[x]

[x]=[y]=0

103Tuesday 13 January 15

Who inserts fences?

1. The programmer, explicitly. Example: Fraser's lockfree-lib:
/*
 * II. Memory barriers.
 * MB(): All preceding memory accesses must commit before any later accesses.
 *
 * If the compiler does not observe these barriers (but any sane compiler
 * will!), then VOLATILE should be defined as 'volatile'.
 */
#define MB() __asm__ __volatile__ ("lock; addl $0,0(%%esp)" : : : "memory")

2. The compiler, to implement a high-level memory model,
 e.g. SEQ_CST C++0x low-level atomics on x86:

Load SEQ_CST: MFENCE; MOV
Store SEQ_CST: MOV; MFENCE

104Tuesday 13 January 15

Fence instructions

1. Fences are necessary

 to implement locks & not fully-commutative linearizable objects
 (e.g., stacks, queues, sets, maps).

2. Fences can be expensive

[Attiya et al., POPL 2011]

105Tuesday 13 January 15

Redundant fences (1)

If we have two consecutive fence instructions, we can remove the latter:

The buffer is already empty when the second fence is executed.

MFENCE
MFENCE

MFENCE
NOP

Generalisation:
MFENCE
NON-WRITE INSTR
…
NON-WRITE INSTR
MFENCE

MFENCE
NON-WRITE INSTR
…
NON-WRITE INSTR
NOP

106Tuesday 13 January 15

FE1

A forward data-flow problem over
the boolean domain .

Associate to each program point:

⊥ : along all execution paths there
 is an atomic instruction before the
 current program point, with
 no intervening writes;

⊤ : otherwise.

A fence is redundant if it always follows a previous
 fence or locked instruction in program order,

and no memory store instructions are in between.

107Tuesday 13 January 15

FE1

A forward data-flow problem over
the boolean domain .

Associate to each program point:

⊥ : along all execution paths there
 is an atomic instruction before the
 current program point, with
 no intervening writes;

⊤ : otherwise.

A fence is redundant if it always follows a previous
 fence or locked instruction in program order,

and no memory store instructions are in between.

Implementation:
1. Use CompCert implementation of Kildall algorithm
 to solve the data-flow equations.

2. Replace MFENCEs for which the analysis returns ⊥
 with NOP instructions.

107Tuesday 13 January 15

Redundant fences (2)

If we have two consecutive fence instructions, we can remove the former:

Intuition: the visible effects initially published by the former fence, are now
published by the latter, and nobody can tell the difference.

MFENCE
MFENCE

NOP
MFENCE

Generalisation:

MFENCE
INSTRUCTION 1
…
INSTRUCTION n
MFENCE

NOP
INSTRUCTION 1
…
INSTRUCTION n
MFENCE

???

108Tuesday 13 January 15

Redundant fences (2)

If there are reads in between the fences…

but

EAX = EBX = 0
forbidden

Thread 0 Thread 1

MOV [x] ← 1
MFENCE
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0

EAX = EBX = 0
allowed

Thread 0 Thread 1

MOV [x] ← 1
NOP
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0

109Tuesday 13 January 15

Redundant fences (2)

If there are reads in between the fences…

but

EAX = EBX = 0
forbidden

Thread 0 Thread 1

MOV [x] ← 1
MFENCE
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0

EAX = EBX = 0
allowed

Thread 0 Thread 1

MOV [x] ← 1
NOP
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0

If there are reads in between, the
optimisation is unsound.

109Tuesday 13 January 15

Redundant fences (2)

Swapping a STORE and a MFENCE is sound:

1. transformed program’s behaviours ⊆ source program’s behaviours
 (source program might leave pending write in its buffer)

2. There is the new intermediate state if the buffer was initially non-empty,
but this intermediate state is not observable.
 (a local read is needed to access the local buffer)

Intuition: Iterate this swapping...

STORE; MFENCEMFENCE; STORE

110Tuesday 13 January 15

FE2

A backward data-flow problem over
the boolean domain .

Associate to each program point:

⊥ : along all execution paths there
 is an atomic instruction after the
 current program point, with
 no intervening reads;

⊤ : otherwise.

A fence is redundant if it always precedes a
later fence or locked instruction in program order,
and no memory read instructions are in between.

111Tuesday 13 January 15

FE1 and FE2 are both useful

Removed by FE1 but not FE2:

Removed by FE2 but not FE1:

MFENCE
MOV EAX <- [y]
MFENCE
MOV EBX <- [y]

MOV [x] <- 1
MFENCE
MOV [x] <- 2
MFENCE

112Tuesday 13 January 15

Informal correctness argument

Intuition: FE2 can be thought as iterating

and then applying

This argument works for finite traces, but not for infinite traces as the later
fence might never be executed:

STORE; MFENCEMFENCE; STORE

MFENCE;
STORE;
WHILE(1);
MFENCE

NOP;
STORE;
WHILE(1);
MFENCE

NOP; MFENCEMFENCE; MFENCE

non-mem; MFENCEMFENCE; non-mem

113Tuesday 13 January 15

Basic simulations

A pair of relations

is a basic simulation for if:

Exhibiting a basic simulation implies:
 traces(compile(p)) \ {t·inftau | t trace} ⊆ traces(p)
 “simulation can stutter forever”

114Tuesday 13 January 15

Usual approach: measured simulations

115Tuesday 13 January 15

Simulation for FE2

s ≡i t iff thread i of s and t have identical pc, local states and buffers

s ↝i s' iff thread i of s can execute zero or more NOP, OP, STORE and
 MFENCE instructions and end in the state s'

s ~ t iff
 – t’s CFG is the optimised version of s’s CFG; and
 – s and t have identical memories; and
 – ∀ thread i, either s ≡i t or
 the analysis for i’s pc returned ⊥ and ∃s', s ↝i s' and s' ≡i t
 “s is some instructions behind and can catch up”

Stutter condition:
 t > t' iff t → t' by a thread executing a NOP, OP, STORE or MFENCE
 (and t’s buffer being non-empty)

116Tuesday 13 January 15

Simulation for FE2

s ≡i t iff thread i of s and t have identical pc, local states and buffers

s ↝i s' iff thread i of s can execute zero or more NOP, OP, STORE and
 MFENCE instructions and end in the state s'

s ~ t iff
 – t’s CFG is the optimised version of s’s CFG; and
 – s and t have identical memories; and
 – ∀ thread i, either s ≡i t or
 the analysis for i’s pc returned ⊥ and ∃s', s ↝i s' and s' ≡i t
 “s is some instructions behind and can catch up”

Stutter condition:
 t > t' iff t → t' by a thread executing a NOP, OP, STORE or MFENCE
 (and t’s buffer being non-empty)

But if (1) all threads have non-empty buffers, and
 (2) are stuck executing infinite loops, and
 (3) no writes are ever propagated to memory,
then we can stutter forever.

(i.e., > is not well-founded.)

116Tuesday 13 January 15

Simulation for FE2

s ≡i t iff thread i of s and t have identical pc, local states and buffers

s ↝i s' iff thread i of s can execute zero or more NOP, OP, STORE and
 MFENCE instructions and end in the state s'

s ~ t iff
 – t’s CFG is the optimised version of s’s CFG; and
 – s and t have identical memories; and
 – ∀ thread i, either s ≡i t or
 the analysis for i’s pc returned ⊥ and ∃s', s ↝i s' and s' ≡i t
 “s is some instructions behind and can catch up”

Stutter condition:
 t > t' iff t → t' by a thread executing a NOP, OP, STORE or MFENCE
 (and t’s buffer being non-empty)

But if (1) all threads have non-empty buffers, and
 (2) are stuck executing infinite loops, and
 (3) no writes are ever propagated to memory,
then we can stutter forever.

(i.e., > is not well-founded.)Solution 1: Assume this case never arises (fairness)

Solution 2: Do a case split.
— If this case does not arise, we are done.
— If it does, use a different (weaker) simulation to
 construct an infinite trace for the source

116Tuesday 13 January 15

Weaktau simulation

Remarks:
— Once the simulation game moves from ~ to ≃, stuttering is forbidden;
— Can view difference between ~ and ≃ as a boolean prophecy variable.

117Tuesday 13 January 15

Weaktau simulation for FE2

s ~ t , t > t' as before.

s ≃ t iff
 – t’s CFG is the optimised version of s’s CFG; and
 – ∀i, ∃s' s.t. s ↝i s' ≡i t.
 (i.e., same as s ~ t except that the memories memories are unrelated.)

118Tuesday 13 January 15

A closer look at the RTL

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice to hoist those fences out of the loop.

119Tuesday 13 January 15

A closer look at the RTL

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice to hoist those fences out of the loop.
Do you perform PRE?

119Tuesday 13 January 15

A closer look at the RTL

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice to hoist those fences out of the loop.
Do you perform PRE?

...adding a fence is always safe...

119Tuesday 13 January 15

Partial redundancy elimination

PRE FE2

120Tuesday 13 January 15

– Insert MFENCEs before every read (br), or after every write (aw).

– Count the MFENCE instructions in the generated code.

Evaluation of the optimisations

br br+FE1 aw aw+FE2 aw+PRE+FE2

Dekker 3 2 5 4 4

Bakery 10 2 4 3 3

Treiber 5 2 3 1 1

Fraser 32 18 19 12 11

TL2 166 95 101 68 68

Genome 133 79 62 41 41

Labyrinth 231 98 63 42 42

SSCA 1264 490 420 367 367

121Tuesday 13 January 15

– Insert MFENCEs before every read (br), or after every write (aw).

– Count the MFENCE instructions in the generated code.

Evaluation of the optimisations

br br+FE1 aw aw+FE2 aw+PRE+FE2

Dekker 3 2 5 4 4

Bakery 10 2 4 3 3

Treiber 5 2 3 1 1

Fraser 32 18 19 12 11

TL2 166 95 101 68 68

Genome 133 79 62 41 41

Labyrinth 231 98 63 42 42

SSCA 1264 490 420 367 367

Important remark for your future work:
..this is not a proper evaluation: we know nothing about
real code, and the number of fences is not a good
measure. But unclear how to do better...

http://evaluate.inf.usi.ch/

121Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 1 returns without modifying b.

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Since Thread 1 does not update b, program is data-race free (DRF)

Thread 1 returns without modifying b.

122Tuesday 13 January 15

 DRF programs must only exhibit sequentially consistent behaviours
C11/C++11 standard

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Since Thread 1 does not update b, program is data-race free (DRF)

Thread 1 returns without modifying b.

122Tuesday 13 January 15

 DRF programs must only exhibit sequentially consistent behaviours
C11/C++11 standard

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Since Thread 1 does not update b, program is data-race free (DRF)

This program only prints 42.

Thread 1 returns without modifying b.

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

122Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

123Tuesday 13 January 15

...sometimes we get 0 on the screen

gcc 4.7 -O2

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

123Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

The outer loop can be (and is) optimised away

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

124Tuesday 13 January 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

The compiled code saves and restores b

Correct in a sequential setting, but...

124Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

125Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

125Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax

125Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b

125Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b
- Store eax (0) into b

125Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b
- Store eax (0) into b
- Print b... 0 is printed

125Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b
- Store eax (0) into b
- Print b... 0 is printed

The compiled code saves and restores b

Correct in a sequential setting

Introduces unexpected behaviours
in some concurrent context

125Tuesday 13 January 15

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b
- Store eax (0) into b
- Print b... 0 is printed

The compiled code saves and restores b

Correct in a sequential setting

Introduces unexpected behaviours
in some concurrent context

This is a concurrency compiler bug

125Tuesday 13 January 15

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

126Tuesday 13 January 15

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

126Tuesday 13 January 15

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Cannot catch
concurrency compiler bugs

126Tuesday 13 January 15

Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs?

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:
how to test for correctness?

limit case: two compilers generate correct code with disjoint final states

127Tuesday 13 January 15

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Idea

Hunt concurrency compiler bugs

=
 search for transformations of sequential code

not sound in an arbitrary non-racy context

128Tuesday 13 January 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent non-racy context?

SEQUENTIAL
PROGRAM

129Tuesday 13 January 15

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

reference
semantics

Load a 1

int a = 1;
int b = 0;

Load a 1
Load b 0
Store b 0

gcc -O2 memory trace

130Tuesday 13 January 15

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

reference
semantics

Load a 1

int a = 1;
int b = 0;

Load a 1
Load b 0
Store b 0

gcc -O2 memory trace

 Cannot match some events detect compiler bug

130Tuesday 13 January 15

Sound optimisations in the C11/C++11 memory model
extending Sevcik’s work on an idealised DRF model - PLDI 11

A tool to hunt concurrency bugs in C and C++ compilers

Interaction with GCC developers

Contributions

131Tuesday 13 January 15

Sound Optimisations
in the C11/C++11 Memory Model

132Tuesday 13 January 15

Example: loop invariant code motion

Compiler Writer Semanticist

133Tuesday 13 January 15

Example: loop invariant code motion

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

133Tuesday 13 January 15

Example: loop invariant code motion

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

133Tuesday 13 January 15

tmp

Example: loop invariant code motion

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

133Tuesday 13 January 15

tmp

Example: loop invariant code motion

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

133Tuesday 13 January 15

tmp

Example: loop invariant code motion

...assuming initially y=42...

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ; Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

133Tuesday 13 January 15

tmp

Example: loop invariant code motion

...assuming initially y=42...

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

133Tuesday 13 January 15

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it
correct to eliminate the first store?

134Tuesday 13 January 15

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it
correct to eliminate the first store?

What is the semantics of
C11/C++11 concurrent code?

134Tuesday 13 January 15

The C11/C++11 memory model

C11/C++11 are based on the DRF approach:

 racy code is undefined
 race-free code must exhibit only sequentially

 consistent behaviours
 main synchronisation mechanism: lock/unlock

Escape mechanism for experts, low-level atomics:

 races allowed
 attributes on accesses specify their semantics:

MO_SEQ_CST MO_RELAXEDMO_RELEASE/MO_ACQUIRE

135Tuesday 13 January 15

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

136Tuesday 13 January 15

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

136Tuesday 13 January 15

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

136Tuesday 13 January 15

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

136Tuesday 13 January 15

MO_RELEASE / MO_ACQUIRE

sync

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

136Tuesday 13 January 15

MO_RELEASE / MO_ACQUIRE

The release/acquire synchronisation guarantees that:
 the program is DRF
 42 is printed at the end of the execution

Remark: unlock ≃ release, lock ≃ acquire.

sync

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

136Tuesday 13 January 15

Same-thread release/acquire pairs

A same-thread release-acquire pair is a pair of
a release action followed by an acquire action

in program order.

An action is a release if it is a possible source of a synchronisation

 unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read

137Tuesday 13 January 15

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

It is safe to eliminate the first store
if there are:

no access to g

no st rel/acq pair
1. no intervening accesses to g
2. no intervening
 same-thread release-acquire pairs

138Tuesday 13 January 15

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

139Tuesday 13 January 15

candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

139Tuesday 13 January 15

candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

same-thread release-acquire pair

Thread 1

139Tuesday 13 January 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

140Tuesday 13 January 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

140Tuesday 13 January 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

The program should only print 1

140Tuesday 13 January 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

If we perform overwritten write elimination it prints 0
The program should only print 1

140Tuesday 13 January 15

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

while(f2.load(ACQUIRE)==0);

141Tuesday 13 January 15

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

141Tuesday 13 January 15

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

If only a release (or acquire) is present, then
all discriminating contexts are racy.

It is sound to optimise the overwritten write.

data race

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

141Tuesday 13 January 15

Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sb
sb

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

sb

142Tuesday 13 January 15

Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sb
sb

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

sb

Theorem

Soundness proved w.r.t. Batty et al. formalisation
of the C11/C++11 memory model (POPL 11)

142Tuesday 13 January 15

Reorderings and introductions

Correctness criterion for reordering events:
 different addresses
 no synchronisations in-between

Roach-motel reordering (reordering across locks) not observed in practice

Read introductions observed in practice (gcc, clang).

Introduction of eliminable reads proved correct.
Introduction of irrelevant reads does not introduce new
behaviours, but cannot be proved correct in a DRF model.

143Tuesday 13 January 15

The CMMTEST Tool

144Tuesday 13 January 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

145Tuesday 13 January 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

145Tuesday 13 January 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

145Tuesday 13 January 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

146Tuesday 13 January 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

146Tuesday 13 January 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

 Subtleties:
 - dependencies between eliminable events

 - some optimisations (e.g. merging of accesses) cannot be expressed
 in the C11/C++11 formalisation

 - the tool also ensures that the compilation of atomic accesses is
 preserved by the optimiser

146Tuesday 13 January 15

Interaction with GCC developers

147Tuesday 13 January 15

1. Some GCC bugs

Some concurrency compiler bugs found

in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.

All promptly fixed.

Remark: these bugs break the Posix thread model too.

148Tuesday 13 January 15

2. Checking compiler invariants

Baked this invariant into the tool and found a counterexample...

GCC internal invariant: never reorder with an atomic access

atomic_uint a;
int32_t g1, g2;

int main (int, char *[]) {
 a.load() & a.load ();
 g2 = g1 != 0;
}

ALoad a 0 4
ALoad a 0 4
Load g1 0 4
Store g2 0 4

Load g1 0 4
ALoad a 0 4
ALoad a 0 4
Store g2 0 4

...not a bug, but fixed anyway

149Tuesday 13 January 15

ALoad a 0 4
Load g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

ALoad a 0 4
Store g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

?

3. Detecting unexpected behaviours

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

uint16_t g

for (; g==0; g--); g=0;

If g is initialised with 0, a load gets replaced by a store:

150Tuesday 13 January 15

Conclusion

151Tuesday 13 January 15

Syllabus

In these lectures we have covered the hardware models of
two modern computer architectures (x86 and Power/ARM - at least for
a large subset of their instruction set).

We have seen how compiler optimisations can also break concurrent
programs and the importance of defining the memory model of high-
level programming languages.

We have also introduced some proof methods to reason about
concurrency.

After these lectures, you might have the feeling that multicore
programming is a mess and things can't just work.

152Tuesday 13 January 15

The memory models of modern
hardware are better understood.

Programming languages attempt
to specify and implement
reasonable memory models.

Researchers and programmers
are now interested in these
problems.

153Tuesday 13 January 15

The memory models of modern
hardware are better understood.

Programming languages attempt
to specify and implement
reasonable memory models.

Researchers and programmers
are now interested in these
problems.

Still, many open problems...

153Tuesday 13 January 15

The memory models of modern
hardware are better understood.

Programming languages attempt
to specify and implement
reasonable memory models.

Researchers and programmers
are now interested in these
problems.

Still, many research opportunities!

153Tuesday 13 January 15

All these lectures are based
on work done with/by my
colleagues. Thank you!

154Tuesday 13 January 15

And thank you all for
attending these lectures!

Please, fill the course evaluation form, that's
important to make a better course next year.

155Tuesday 13 January 15

