Semantics, languages and algorithms
for multicore programming

Albert Cohen Luc Maranget Francesco Zappa Nardelli

Thursday, January 10, 13

Vote: topics for my this lecture

1. The Iwarx and stwcx Power instructions [4]

. Static and dynamic techniques for data-race detection |[3]

. The Linux memory model (?)) [7]

2. Hunting compiler concurrency bugs 3]

3. Operational and axiomatic formalisation of x86-TSO [3]
4. Fence optimisations for x86-TSO 2]
5. The Java memory model 3]
6. The C11/C++11 memory model 2]
5

8

9

. Compiler correctness statements (compile non-determinism?) [3]

Thursday, January 10, 13 2

Vote: topics for my this lecture

1. The Iwarx and stwcx Power instructions [4]

. Static and dynamic techniques for data-race detection |[3]

. The Linux memory model (?)) [7]

2. Hunting compiler concurrency bugs 3]

3. Operational and axiomatic formalisation of x86-TSO [3]
4. Fence optimisations for x86-TSO 2]
5. The Java memory model 3]
6. The C11/C++11 memory model 2]
5

8

9

. Compiler correctness statements (compile non-determinism?) [3]

Thursday, January 10, 13 2

1. The Linux memory model (ahem, kinda)

Thursday, January 10, 13

The Linux memory model

Facts:

- abstraction layer over hardware and compilers

- relied upon by kernel developers to write "portable kernel code”

- documented by a text file:

http://www.kernel.org/doc/Documentation/memory-barriers.txt

Thursday, January 10, 13

http://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www.kernel.org/doc/Documentation/memory-barriers.txt

The Linux memory model

Facts:

- abstraction layer over hardware and compilers

- relied upon by kernel developers to write "portable kernel code”

- documented by a text file:

http://www.kernel.org/doc/Documentation/memory-barriers.txt

More facts: ...some time ago...

[attempted to understand the doc, and exchanged a few email
with Paul Mc Kenney. However [don't understand much...

In the next hour, let's go over the documentation together and see
if we can make sense of it...

Thursday, January 10, 13

http://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www.kernel.org/doc/Documentation/memory-barriers.txt

The Linux memory model

Expected to account for all supported combinations of
compiler and hardware memory model...

Linux kernel

A A

compiler memory-model (gcc)

\4
Linux memory model Compiler
A

hardware memory-model

\ 4

\4
Hardware

Thursday, January 10, 13

alpha: Weak ordering. No dependency ordering. "Time does not go backwards" gives guarantees similar to Power/ARM A-cumulativity.
Possibly B-cumulativity as well. | am not aware of formalization of this architecture's memory ordering other than Gharachorloo's PhD.

arm: You know at least as much as | do about this one.
avr32. Uniprocessor-only, kernel build failure for SMP.

blackfin: Uniprocessor-only to the best of my knowledge. There are rumored to be some experimental SMP systems that lack cache
coherence, and are thus outside of the Linux kernel's remit. See for example: https://docs.blackfin.uclinux.org/doku.php?id=Ilinux-
kernel:smp-like The system.h file flushes cache when a memory barrier is encountered, which is consistent with an attempt to run the Linux
kernel on a non-cache-coherent system...

cris: Uniprocessor-only to the best of my knowledge. Though there appears to be recent addition of some SMP support. Its system.h file is
consistent with full sequential consistency. Or extreme optimism on the part of the cris developers.

frv. Uniprocessor-only to the best of my knowledge.

h8300: Uniprocessor-only to the best of my knowledge. There is code in system.h that appears to be intended for SMP, but it looks to me like
a (harmless) copy-paste error. Either that or SMP h8300 systems are sequentially consistent.

la64: Total order of all release operations, which include the "'mf" (memory fence) instruction. Memory fences cannot restore sequential
consistency.

m32r. Uniprocessor-only to the best of my knowledge. However, there does appear to be some recent multiprocessor support. This is quite
strange -- atomic instructions flush cache, but memory barriers are no-ops. Looks quite experimental.

m68k: Uniprocessor-only to the best of my knowledge.

microblaze: Uniprocessor-only to the best of my knowledge. At least one SMP attempt: http://microblazesmp.blogspot.com/ Its system.h file
looks uniprocessor-only.

mips: Multiprocessor. Old SGI MIPS systems were sequentially consistent. Newer systems used for network infrastructure are rumored to
have weak memory models similar to Power and ARM. And its system.h file is consistent with a weak memory model.

mn10300: Recent SMP support which | know little about. The system.h file looks uniprocessor only, and contains comments on Intel, so
copy-pasted from x86.

parisc: TSO, similar to x86.

powerpc: You know at least as much about this as | do.

$390. TSO, but with self-snooping of store buffer prohibited.

score: Uniprocessor-only to the best of my knowledge.

sh: Recent SMP support which | know little about. Its system.h file is consistent with weak memory ordering.
sparc: TSO, similar to x86. There is documentation about weaker memory models (PSO and RMO), but in practice the hardware is TSO.
tile: Recent SMP CPU which | know little about. Seems to be weakly ordered based on its system.h file.
um: Looks like an x86 knockoff judging by the system.h file.

unicore32: Uniprocessor-only to the best of my knowledge.

Xx86: You know this one at least as well as do |.

xtensa: Uniprocessor-only -- kernel build failure otherwise.

Thursday, January 10, 13

https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like
http://microblazesmp.blogspot.com/
http://microblazesmp.blogspot.com/

The Linux memory model

My intuition:

Annoying facts:

Thursday, January 10, 13

The Linux memory model

My intuition:

kinda of lowest common denominator between all hardware
memory models of architectures Linux can be compiled to, taking
into account also some common gcc optimisations, with some
weilrdnesses.

Annoying facts:

semantics of "read barriers" really weak, unclear how to formalise it

compilation of barriers on ltanium looks broken -- hardware might
exhibit behaviours prohibited by the MM.

Thursday, January 10, 13

...let's read the doc...

Thursday, January 10, 13

The Linux memory model: macros

on x86:

#define mb() asm volatile("mfence":::"memory")
#define rmb() asm volatile("lfence":::"memory")
#define wmb() asm volatile("sfence" ::: "memory")

as far as we know, Ifence and sfence are noop in x86TSO

on Power:

#define mb () ___asm volatile ("sync" : : : "memory")
#define rmb() asm volatile ("sync" : : : "memory")
#define wmb() asm volatile ("sync" : : : "memory")

#define read barrier depends() do { } while(0)

Thursday, January 10, 13

So | still stick with my earlier statements:

® smp_mb() provides transitivity, but is not guaranteed to

restore
0 Saglel
0 sMp;

Question:

And a few emails
exchanged last year...

Initially x=
Thread O:
nread 1:
nread 2:

to be forbi

Not forbidden. If thread 2 did smp_mb() instead of smp_rmb(), then
it would be forbidden.

Thursday, January 10, 13 10

So | still stick with my earlier statements:

® smp_mb() provides transitivity, but is not guaranteed to

restore sequential consistency.
0 smp_rmb() simply orders reads. It does not provide transitivity.
0 smp_wmb() simply orders writes. [t does not provide transitivity.

Question: is WRC+smp_mb+smp_rmb, i.e.

Initially x=0, y=0

Thread 0: WxA1

hread 1: Rx1; smp_mb(); Wy
nread 2: Ry1; smp_rmb();Rx0

to be forbidden or not?

Not forbidden. If thread 2 did smp_mb() instead of smp_rmb(), then
it would be forbidden.

Thursday, January 10, 13 10

On ltanium, both rmb and mb are compiled to ltanium's mf, so there
should be no difference in outcome.

However, looking at the [tanium memory model, | do not see how Iltanium
would forbid the bad outcome in WRC+mb+mb because mf only imposes
thread-local ordering, so thread 2 can see Wx1 much later (in

particular, after the read of x).

To make the example work, the Wx1 would have to be st.rel, no?

It this Is the case, | suspect that the Linux kernel has a few possible failure
modes when running on ltanium hardware. Which it might well have...

...It looks like you might need a significantly different linux mm to
the one you've sketched, with weaker barriers and with release/acquire
primitives, and to rewrite any WRC-like code using them, no?

Thursday, January 10, 13 11

Internship proposal:

Sort out what the

q

—AL Linux memory model is

[

Pros:
Challenging!

Can have a huge impact!

Yes. Of course, if people come up with lots of
situations where the more-complex
programming model would help significantly,
then it might be worth revisiting this.

Collaboration with Paul Mc Kenney possible!

Thursday, January 10, 13

12

2. Load

Reserve / Store Conditional

BUILT ON

=
Ll
o
Ll
=
-
o
H

Thursday, January 10, 13

13

RISC-friendly synchronisation operations

| oad-reserve/Store-conditional
(aka LL/SC, larx/stcx and Iwarx/stwex, LDREX/STREX).

- can be used to implement CAS, atomic add, spinlocks, ...

- universal (like CAS) [Herlihy’93] (but no ABA problem)

Atomic Addition

Informally, stwcx succeeds only if no loop:
other write to the same address since
last lwarx, setting a flag iff it succeeds.

lwarx r, Xx;
add F:9. ¥
stwecx r, X;

bne loop;

Thursday, January 10, 13

14

What Is no write since...

- In machine time”?

(neither necessary, nor sufficient)

Informally, stwcx succeeds only if no
other write to the same address since
last lwarx, setting a flag iff it succeeds.

- Microarchitecturally: if cache-line ownership not lost since last Iwarx

(simplified, and we don’t want to model the microarchitecture)

Thursday, January 10, 13

15

Modeling no lost since

- Abstractly: ownership chain modeled by building up coherence order

- Coherence: order relating stores to the same location (eventually linear)

A stwcx succeeds only if it is (or at least, if it can become)
coherence-next-to the write read from by Iwarx,
and no other write can later come in between.

Isolate key concept: write reaching coherence point
coherence is linear below this write, and no new edges will be added

Thursday, January 10, 13

16

Storage Thread .. Thread

Write request Write announce
Barrier request Barrier ack

Storage Subsystem

The storage keeps: ...
2. for each location, a partial order of coherence commitments

[dea 1. at the end of the execution, writes to each location are totally ordered.

Idea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: it a thread executes x=1 and then x=2, another thread cannot first
read 2 and then 1.

Thursday, January 10, 13

17

Coherence by Fiat

Suppose the storage subsystem has seen 4 writes to x:

Wy Wo
'wl/\ ’ul}l/\\\
Wy w3 Wy w3

Suppose just [w;] has propagated to tid and then tid reads x.

o

e b

it cannot be sent wq, as wq is coherence-before the w, write that (because it is in the
writes-propagated list) it might have read from;

it could re-read from w1, leaving the coherence constraint unchanged;

it could be sent w4, again leaving the coherence constraint unchanged, in which case w»
must be appended to the events propagated to tid; or

it could be sent w3, again appending this to the events propagated to tid, which moreover
entails committing to w3 being coherence-after wi, as in the coherence constraint on the
right above. Note that this still leaves the relative order of wo and w3 unconstrained, so
another thread could be sent ws then ws or (in a different run) the other way around (or
indeed just one, or neither).

="l

Thursday, January 10, 13

18

Coherence points and a successful stwcx

Atomic Additi
SR Lk Coherence order for x:

loop: lwarx r, X; c:W x=4
aad ‘9.1
stwecx r, X;

W x=0— j;Wx=1

a:Wx=2—b:Wx=3
bne loop;

Suppose Iwarx reads from the a:W x=2. stwcx can succeed if this
becomes possible:

writes that have reached coherence point c:W x=4

VW X=0— ;W x=1 —=a;W x=2—+d:W* x=
b:W x=3

Warning: stwcx can fail spuriously.

Thursday, January 10, 13 19

| oad-reserve/store-conditional and ordering

- Same-thread load-reserve/store-conditionals ordered by program order;
- if all memory accesses are |-r/s-c sequences, then only SC behaviour;

- but normal loads/stores (to different address) not ordered;
the |-r/s-c do not act as a barrier.

Confusion led to a Linux bug. bad barrier placement in atomic-add-return.

Synchronising C/C++ and POWER
Sarkar, Memarian, Owens, Batty, Sewell, Maranget, Alglave, Williams

Thursday, January 10, 13 20

3. Sketch of an operational formalisation of x86-T1S0

...starting with a formalisation of SC

Thursday, January 10, 13 21

Separate language and memory semantics

class ArrayWrapper

public:
ArrayWrapper (n)
: p vals(new 1t n])
, Size(n)

{}

ArrayWrapper (const ArrayWrapper& other)
: p vals(new int[other. size])
, Size(other. size)

{
for (int i 0; 1 < size; ++i)
{

p vals[1] = other. p vals[1);

}
}
~ArrayWrapper ()

{

delete [] p vals;
}
private:
int * p vals;
int size;
program

semantics defined via an LTS

layng aylip
18)ng 8l

Lock Shared Memory

memory
semantics defined via an LTS

Wi[a]v : a write of value v to address a by thread t
[abels for interaction: Rialv : aread of v from a by t by thread t

+ other events for barriers and locked instructions

Thursday, January 10, 13

22

Separate language and memory semantics

class Arr

publi
A

Separate language and state semantics
proved to be a very good choice
) iNn many (unrelated) projects | worked on!

semantics defined via an LTS semantics defined via an LTS

Wi[a]v : a write of value v to address a by thread t
[abels for interaction: Rialv : aread of v from a by t by thread t
+ other events for barriers and locked instructions

Thursday, January 10, 13

22

A tiny language

location, z, m address (or pointer value)

integer, n
thread_id, t
k, 7

erpression, e

process, p

integer
thread id
= expression
n integer literal
* T read from pointer
T = € write to pointer
e; e sequential composition
e+ e plus
process

t:e thread

p|p’ parallel composition

Thursday, January 10, 13

23

What can a thread do in isolation?

l
! / / €1 — 6'
e — e e does [to become e 1 1
L PLUS_CONTEXT_1
€1 + €2 — €] + €3
READ
Rz=n
XL —— N Loy
62 —) 62
—— WRITE R i> — PLUS_CONTEXT_2
XL = N —n 1 2 1 2
e Ly of n = ny + ng
WRITE_CONTEXT PLUS

-
l ny+ne —n

Observe that we can read an

e1 — e} arbitrary value from the memory.
l SEQ_CONTEXT

. /.
€1, €2 — €1, €2

Thursday, January 10, 13 24

Lifting to processes

D P p does [; to become p’

e Ly o Actions are labelled by the
: THREAD thread that performed the
t:e — t:e action.
le
P1 — Pq

PAR_CONTEXT_LEFT

[
p1|p2 — pilp2 . .
Free interleaving.
L

py — -
2 PAR_CONTEXT_RIGHT

I ,
p1lp2 — p1|pg

Thursday, January 10, 13

A sequentially consistent memory

Take M to be a function from addresses to integers.

MY M| M does [to become M’

M(z)=n
g MREAD
M — M
vVp— MWRITE
M— M®(z—n)

Thursday, January 10, 13

SC semantics: whole system transitions

s — 8 s does [; to become s’
Rez=n_
p > P
M BRI
—— SREAD
(p, M) —— (p', M)
Wt =T /
p > D
AN V'
VY- SWRITE
<pa M> — ’<p,> Ml)
p - p/
STAU

(p, My = (p', M)

Synchronising between the
processes and the memory.

Thursday, January 10, 13

27

SC semantics, example

All threads read and write the shared memory. Threads execute

asynchronously,the semantics allows any interleaving of the thread transitions.

(t1:xx = 1|to:xx = 2, {x — 0})

(t1:1|te:xz = 2, {x > 1}) (ti:xx = 1|t2:2, {z — 2})
Wt2 (EZZl lwtl =1
(t1:1|t2:2, {z — 2}) (t1:1|t2:2, {z — 1})

Each interleaving has a linear order of reads and writes to memory.

Thursday, January 10, 13

28

...Nnow we just have to define a TSO memory...

Thursday, January 10, 13

29

x86-1S0O abstract machine

A U U U U U U I | P (A ——— S

Thread eee Thread

(W N A

- ees e s G s) > E e e e e s s e e e - b - e - e - - - - - -

vy

Lock

Jayng ajIM

Events visible by each thread (aka. interface
between each thread and the memory system):

Wi[a]v : a write of value v to address a by thread t
Ri[a]v : aread of v from a by t by thread t
+ other events for barriers and locked instructions

Thursday, January 10, 13

30

X80-1s0: a formalisation using an LTS

The machine state s can be represented by a tuple (M, B, L):

M : address -> value option

B : tid -> (address * value) list
L : tid option

where:
M is the shared memory, mapping addresses to values
B gives the store bufter for each thread

L is the global machine lock indicating when a thread has exclusive
access to memory (omitted in these slides)

Thursday, January 10, 13

31

X80-1ts0 abstract machine; selected transition rules

t is not blocked in machine state s = (M,B,L) if [... or] the lock is not held.

In buffer B(t) there are no pending writes for address X if there are no
(X,V) elements in B(t).

RM: Read from memory
not_blocked(s, t)

s.M(z)=wv
no_pending(s.B(t), x)

R, z=v

S S

Thread ¢ can read v from memory at address z if ¢ IS
not blocked, the memory does contain v at z, and
there are no writes to z in t’s store buffer.

Thursday, January 10, 13

32

X80-1ts0 abstract machine; selected transition rules

RB: Read from write buffer
not_blocked(s, t)

b7 bs. S.B(t) = b -I-—f—[(.’]? ’U)] ++ by
no_pending(b,)

R, z=v

S S

Thread ¢ can read v from its store buffer for address z
If £ 1S not blocked and has v as the newest write to z
In its buffer:

Thursday, January 10, 13

33

X80-1ts0 abstract machine; selected transition rules

WB: Write to write buffer

s W, =Y s® (B:=s.B® (t— ([(z,v)] ++s.B(t))))

Thread t can write v to its store buffer for address z

at any time;
WM: Write from write buffer to memory

not_blocked(s, t)
s.B(t) = b++[(z, v)]

Tt x=v
S = =

sO(M:=s.M D (z— v))®(B:=5.BD(t— b))

If ¢ is not blocked, it can silently dequeue the oldest
write from its store buffer and place the value in
memory at the given address, without coordinating
with any hardware thread

Thursday, January 10, 13

34

4., Veryting fence elimination optimisations

aka reasoning on the x86TSO operational memory model
and compiler correctness

Thursday, January 10, 13

35

CompCert1SO

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l«

Cminor

instructionlselection

CminorSel

CFG generation

RTL

l const prop.

RTL

[o

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—) x86

[POPL 2011]

Thursday, January 10, 13

36

CompCert

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l,

Cminor

instruction\l:selection

CminorSel

CFG generation

RTL

»l« const prop.

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—)

x86

[SAS 2011]

Thursday, January 10, 13

37

Compilers are ideal for verification

Compiler
[source program (e.g., C) J —é [target program (e.g., x86) J

Compilers are:
— Basic computing infrastructure

— Generally reliable, but nevertheless contain many bugs
e.g., Yang et al. [PLDI 2011] found 79 gcc & 202 11vm bugs

— “Specifiable”: compiler correctness = preservation of behaviours
— Interesting: naturally higher-order, involve clever algorithms

— Big, but modular

Thursday, January 10, 13

38

Language semantics

The semantics of all the CompCertTSO languages is defined by:
— a type of programs, pryg

— a type of states, states

— a set of initial states for each program, init € prg — P(states)

- a transition relation, ~ — € P(states x(event)x states)

call, return, fail, oom, T

The visible behaviour of a program is defined by the external function
calls (call) and returns (return), errors (fail), and running out of
mMemory (oom).

Thursday, January 10, 13

39

raCes

— Finite sequences of call & return events ending with:
end: successful termination,
inftau: infinite execution that stops performing visible events
oom: execution runs out of memory

— Infinite sequences of call & return events;

traces(p) e {¢-end | ds € init(p). ds’. s PN A}
U{Z-tr|3ds € init(p). Is'. s i} s’}
U {£ - inftau | ds € init(p). ds’. s 5 8 A inftau(s’)}
U {¢-oom | ds € init(p). Is'. s 5 s’}
U {tr | ds € init(p). s can do the infinite trace ¢r}

NB: Erroneous computations become undefined after the first error.

Thursday, January 10, 13 40

Compiler correctness

Compiler
[source program (e.g., C) J ﬂ (target program (e.g., x86) J

traces(source_program) 2 traces(target_program)

1Pl

print “a” || print “b” =——————)p orint “ab”

*} orint “a” || print “b”

fail ey DIt “E0”

print “ab”

print “alb”

Thursday, January 10, 13

41

Store buffering

EAX

32

MOV [x] « 1
MOV EAX « [V]

MOV [y] « 1

MOV EBX « [X]

Thread Thread
Write Write
Buffer Buffer

!

Shared Memory

X : 0 y ¢ 0

EBX

47

Thursday, January 10, 13

Store buffering

—

MOV EAX « [V]

EAX

32

Thread

MOV [y] « 1

MOV EBX « [X]

Thread

!

Write
Buffer

!

Shared Memory

0 y ¢ 0

EBX

47

Thursday, January 10, 13

43

Store buffering

—

MOV EAX « [Vy] MOV EBX ¢ [X]
Thread . Thread
EAX : 32 i i EBX
Write Write
Buffer Buffer
x:1

Shared Memory

X : 0 y ¢ 0

Thursday, January 10, 13

Store buffering

EAX

MOV [x] « 1

_y [mov Eax 1y]

Thread

!

Write
Buffer

—

MOV [y] « 1

Thread

!

Write
Buffer

y:1l

!

Shared Memory

0

MOV EBX « [X]

EBX

47

Thursday, January 10, 13

45

Store buffering

EAX

—

MOV [x] « 1

MOV EAX « [V]

Thread

!

Write
Buffer

MOV [y] « 1

Thread

!

Write
Buffer

y:1l

!

Shared Memory

x: 0] y:o0

MOV EBX « [X]

EBX

Thursday, January 10, 13

46

Store buffering

EAX

MOV [x] « 1
MOV EAX « [V]

MOV [y] « 1

MOV EBX « [X]

Thread Thread
Write Write
Buffer Buffer

y:1l

!

Shared Memory

x 1] y:0

EBX

Thursday, January 10, 13

47

Store buffering

MOV [x] « 1 MOV [y] « 1
MOV EAX « [Vy] MOV EBX ¢ [X]
Thread . Thread
EAX : O i i EBX
Write Write
Buffer Buffer

! !

Shared Memory

x 1

Thursday, January 10, 13

Store buffering + fences

> MOV [x] +« 1 MOV [y] < 1
MFENCE MFENCE
MOV EAX + [vy] MOV EBX ¢ [x]
Thread .. Thread
EAX : 32 i i EBX : 47
Write Write
Buffer Buffer

! !

Shared Memory

X : 0 y ¢ 0

Thursday, January 10, 13

Store buffering + fences

EAX

32

MFENCE

MOV EAX « [V]

Thread

MOV [y] « 1
MFENCE

MOV EBX « [X]

Thread

!

Write
Buffer

!

Shared Memory

0 y ¢ 0

EBX

47

Thursday, January 10, 13

50

Store buffering + fences

—» MOV [x] < 1

MFENCE MFENCE
MOV EAX + [vy] MOV EBX ¢ [x]
Thread . Thread
EAX : 32 i i EBX : 47
Write Write
Buffer Buffer
xsl

Shared Memory

X : 0 y ¢ 0

Thursday, January 10, 13

Store buffering + fences

MOV [x] <« 1
MFENCE

MOV EAX « [V]

Thread

EAX : 32

!

Write
Buffer

MFENCE blocks until the
thread buffer is empty

MOV [y] « 1
MFENCE
MOV EBX « [X]

Thread

!

EBX : 47

Write
Buffer

y:1l

!

Shared Memory

x 1] y:0

Thursday, January 10, 13

52

Who inserts fences”?

1. The programmer, explicitly. Example: Fraser's lockfree-lib:

/ *
* IT. Memory barriers.
* MB(): All preceding memory accesses must commit before any later accesses.
*
* If the compiler does not observe these barriers (but any sane compiler
* will!), then VOLATILE should be defined as 'volatile'.
*/
#define MB() asm volatile ("lock; addl $0,0(%%esp)" : : : "memory")

2. The compiler, to implement a high-level memory model,
e.g. SEQ CST C++0x low-level atomics on x86:

Load SEQ CST: MFENCE; MOV
Store SEQ_CST: MOV; MFENCE

Thursday, January 10, 13

53

-ence Instructions

1. Fences are necessary

to iImplement locks & not fully-commutative linearizable objects
(e.g., stacks, queues, sets, maps).

[Attiya et al., POPL 2011]

2. Fences can be expensive

Thursday, January 10, 13

54

Redundant fences (1)

If we have two consecutive fence instructions, we can remove the /atter:

MFENCE) MFENCE

MFENCE NOP

The buffer is already empty when the second fence is executed.

(Generalisation:
MFENCE MFENCE
NON-WRITE INSTR NON-WRITE INSTR
NON-WRITE INSTR NON-WRITE INSTR

MFENCE NOP

Thursday, January 10, 13

A fence is redundant If it always follows a previous
mm fence or locked instruction in program order,
— and Nno memory store instructions are in between.

A forward data-flow problem over

, T1(nop, &) =&
the boolean domain {1 T} T; (op(op, 7, 7), E) =
. , T:(load(k, addr, 7, 1), E) =
Associate to each program point: T1(store(k, addr, 7, src),E) =
. T:(call(sig, ros, args,res),E) =T
1 :along all execution paths there T (cond(cond, args), £) _£
IS an atomic instruction before the T1 (return(optaryg), £) =T
current program point, with T:(threadcreate(optarg),E) =T
no intervening writes; Ty (atomic(aop, 7,7), &) =1
T1 (fence, &) =1
T : otherwise.
T if predecessors(n) = ()

.7:81(72,) = <

L l—'pépredecessors(n) 11 (’l:'n,StT‘(p), F& (p)) otherwise

Thursday, January 10, 13 56

A fence is redundant If it always follows a previous
mm fence or locked instruction in program order,
— and Nno memory store instructions are in between.

A forward data-flow problem over T\ (nop, £) _ £
the bo[~ — = _ £
=&

ASSOC =T
.) =T

1 alo Implementation: _ £
sd 1. Use CompCert implementation of Kildall algorithm =T
Cur to solve the data-flow equations. ol

no ~ i

2. Replace MFENCES for which the analysis returns L
T : oth with NOP instructions.

I—'pépredecessors(n) T (instr(p), F€1(p)) otherwise

Thursday, January 10, 13 56

Redundant fences (2)

If we have two consecutive fence instructions, we can remove the former:
MFENCE) NOP
MFENCE MFENCE

Intuition: the visible effects initially published by the former fence, are now
published by the latter, and nobody can tell the difference.

(Generalisation:
MFENCE nNHo NOP
INSTRUCTION 1 ff ¢ INSTRUCTION 1
INSTRUCTION n INSTRUCTION n

MFENCE MFENCE

Thursday, January 10, 13 57

Redundant fences (2)

If there are reads In between the fences...

[x]=[y]=0

but

[x]=[y]=0

Thread O

Thread 1

MOV [x] « 1
MFENCE

MOV EAX +« [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX + [X]

Thread O

Thread 1

MOV [x] « 1
NOP

MOV EAX « [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX ¢+ [X]

EAX

forbidden

EAX

= EBX

= EBX
allowed

0

0

Thursday, January 10, 13

58

Redundant fences (2)

If there are reads In between the fences...

[x]=[y]=0

but

[x]=[y]=0

Thread O

Thread 1

MOV [x] « 1
MFENCE
MO\ _EAX < [~x71]

MOV [y] « 1
MFENCE

MF

If there are reads in between, the
optimisation is unsound.

MOV [x] « 1
NOP

MOV EAX « [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX ¢+ [X]

EAX

forbidden

EAX

= EBX

= EBX
allowed

0

0

Thursday, January 10, 13

58

Redundant fences (2)

Swapping a STORE and a MFENCE is sound:

MFENCE; STORE q STORE; MFENCE

1. transformed program’s behaviours & source program’s behaviours
(source program might leave pending write in its buffer)

2. There is the new intermediate state if the buffer was initially non-empty,
but this intermediate state is not observable.
(a local read is needed to access the local buffer)

Intuition: Iterate this swapping...

Thursday, January 10, 13 59

A fence is redundant if it always precedes a
later fence or locked instruction in program order,

= and Nno memory read instructions are in between.
A backward data-flow problem over T (nop, &) =&
the boolean domain {1 T} T>(op(op, 7,7), E) =&
T>(load(k, addr,7,1), &) =T
Associate to each program point: T>(store(k, addr, 7, src),E) =€&
T>(call(sig,ros, args,res),E) = T
1 : along all execution paths there T>(cond(cond, args), &) =&
s an atomic instruction after the T (return(optary), £) =T
current program point, with Ty (threadcreate(optary),£) =T
- . P 9 P ’ T>(atomic(aop, 7, 1),£) = |
no intervening reads; T, (fence, &) -1

T : otherwise.
T if successors(n) = ()

ng(n) = <

T5(instr(s), FE2(s)) otherwise

| LdsEsuccessors(n)

Thursday, January 10, 13 60

-E1 and FE2 are both useful

Removed by FE1 but not FE2:

Removed by FE2 but not FE1:

MFENCE
MOV EAX <- [Vv]
MFENCE
MOV EBX <- [Vv]

MOV [x] <- 1
MFENCE
MOV [x] <- 2
MFENCE

Thursday, January 10, 13

61

Informal correctness argument

Inturtion: FE2 can be thought as iterating

MFENCE; STORE —> STORE; MFENCE
MFENCE; non-mem —) non-mem; MFENCE
and then applying

MFENCE: MFENCE ===l NOP; MFENCE

This argument works for finite traces, but not for infinite traces as the later
fence might never be executed:

MFENCE; NOP;
STORE ; =—=3) STORE;
WHILE (1) ; WHILE (1) ;

MFENCE MFENCE

Thursday, January 10, 13

62

Basic simulations

A pair of relations
~¢€ P(src.states xtgt.states) >¢c P(tgt.states x tgt.states)

IS a basic simulation for compile : src.prg — tgt.prglif:
init(p’). ds € init(p). s ~ ¢

sim_init : Vpp'. compile(p) = p' = Vt &

sim-end : Vst. s~tAt A SR
er

sim_step : Vstt' ev. s~t At — t' A ev # oom =

¢ ST & - B b

(s = ——) s reaches a failure
— / T 4o €D , 1 .
V(3s'. s *—s'As ~) s does matching step sequence
Y I M - ! A !)] & = !l)
Vler =T AL ST N8 k). s stutters (only allowed if t > 1")

Exhibiting a basic simulation implies:
traces(compile(p)) \ {t-inftau | t trace} C traces(p)
“simulation can stutter forever”

Thursday, January 10, 13 63

Usual approach: measured simulations

Definition 2 (Measured sim.). A measured simulation is any basic simula-

tion (~,>) such that > is well-founded.

Thursday, January 10, 13

64

Simulation for FE2

s =it Iffthread/ of s and t have identical pc, local states and buffers

S ~; S'iff thread / of s can execute zero or more Nop, OP, STORE and
MFENCE Instructions and end in the state s’

S~t1t |ff
— t’s CFG is the optimised version of s’s CFG; and
— S and t have identical memories; and
— Vv thread J, either s =; t or

the analysis for /’s pc returned L and 3s', S ~js'and s' = t
“s Is some instructions behind and can catch up”

Stutter condition:
t>t" iff t—t' byathread executing a NOP, OP, STORE Of MFENCE
(and t’s buffer being non-empty)

Thursday, January 10, 13 65

Simulation for FE2

S E/t |ff thr / f AN 0 hV Iﬂ | | (J | | AES dNg O ﬁrS

S ~; S iff th But if (1) all threads have non-empty buffers, and
(2) are stuck executing infinite loops, and

(3) no writes are ever propagated to memory,
S ~t |ff then we can stutter forever.

MFE]

—t's CFG
—sandtl| (i.e., >is not well-founded.)
— Vv threag
e analy Ol DC retarnead L ano S ~arsranad s =it
‘s Is some Iinstructions behind and can catch up”
Stutter condition:

t>t" iff t—t' byathread executing a NOP, OP, STORE Of MFENCE
(and t’s buffer being non-empty)

Thursday, January 10, 13 65

Simulation for FE2

S E/t |ff thr / f AN 0 hV Iﬂ | | (J | | AES dNg O ﬁrS

S ~i S iff th But if (1) all threads have non-empty buffers, and

MFE]

(2) are stuck executing infinite loops, and
(3) no writes are ever propagated to memory,

s~t Iff then we can stutter forever.

— t's CFG

—sandtl| (.
— VY threaq

—

Stutter conditia
t>t' iff t -
(an(

Solution 1: Assume this case never arises (fairness)

Solution 2: Do a case split. j t

— |If this case does not arise, we are done.

— If it does, use a different (weaker) simulation to
construct an infinite trace for the source

Thursday, January 10, 13

Weaktau simulation

Definition 3 (Weaktau sim.). A weaktau simulation consists of a basic sim-
ulation (~,>) with and an additional relation between source and target states,

~¢ P(src.states X tgt.states) satisfying the following properties:

sim_weaken : Vs, t. s~t — s>~t
sim_wstep :Vstt'. s~tAt St At>t =
T 4 fail :
(s — >) — s reaches a failure

4 (4

V(3s'.s * 5 s’ ANs' ~t') — s does a matching step sequence.

Theorem 2. If there exists a weaktau-simulation (~, >, ~) for the compilation
function compile, then for all programs p, traces(compile(p)) C traces(p).

Remarks:
— Once the simulation game moves from ~ to =, stuttering is forbidden;

— Can view difference between ~ and = as a boolean prophecy variable.

Thursday, January 10, 13 66

Weaktau simulation for FEZ2

S~t, t>t as before.

S =tiff
— t's CFG is the optimised version of s’s CFG; and
—V/, 38" sit. S ~;s' =t
(i.e., same as s ~ t except that the memories memories are unrelated.)

Thursday, January 10, 13

67

A closer look at the RTL

FENCE

Patterns like that on the left are common.

nop

f \ FE1 and FE2 do not optimise these patterns.

if

ifm . It would be nice to hoist those fences out of the loop.

nop nop

l

return

FENCE

Thursday, January 10, 13

68

A closer ook at the RTL

FENCE

nop

[\

if

l&o ifnot

nop nop

FENCE

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice——)
Do you perform PRE?

Qut of the loop.

il *
E1E Lo

" '||' o, v
v" 'l X i e .
T NS oA

(Oh nlll l'a .]

/ e b
am i

Thursday, January 10,

13

68

A closer ook at the RTL

FENCE

Patterns like that on the left are common.

nop

f \q FE1 and FE2 do not optimise these patterns.
if
lfso ifnot It would be nice— .

Do you perform PRE?

Qut of the loop.

nop nop

l

return

BTl

...adding a fence is always safe...

Thursday, January 10, 13 68

Partial redundancy elimination

FENCE FENCE nop

PRE FE? o

AR s

if if if

lfso ifnot

nop

lfso ifnot
nop

FENCE

l

return

return

nop

nop

FENCE

return

Thursday, January 10, 13

69

Partial redundancy elimination

- AT A: a backward analysis returning T if along
FENCE
B:?

some path after the current program point
there is an atomic instruction with no
intervening reads;

B: a forward analysis returning L if along all

paths to the current program point there is
a fence with no later reads or atomic
instructions.

Replace NOP with FENCE after conditionals If:
= - Breturns L

- A returns L
- A returns T on the other branch

return

Thursday, January 10, 13

70

B returns 1:

| a previous fence will be eliminated if we insert a fence
Partial redu at both branches of conditional nodes.

|A returns L.
the previous fence won't be removed by FE2.

g:_T A returns T on the other branch:

the other branch already makes the previous fence

/‘ S‘B:L partially redundant.

Ta orward analysis returning L it along a

paths to the current program point there is
a fence with no later reads or atomic

iInstructions.
— Replace NOP with FENCE after conditionals If:
= - B returns L
- A returns L

- A returns T on the other branch

Thursday, January 10, 13 70

—valuation of the optimisations

— Insert MFENCES before every read (br), or after every write (aw).

— Count the MFENCE instructions in the generated code.

br br+FE1 aw aw+FE2 | aw+PRE+FE2
Dekker 3 2 5 4 4
Bakery 10 2 4 3 3
Treiber 5 2 3 1 1
Fraser 32 18 19 12 11
TL2 166 95 101 68 68
Genome 133 79 62 41 41
Labyrinth 231 98 63 42 42
SSCA 1264 490 420 367 367

Thursday, January 10, 13

—valuation of the optimisations

— Insert MFENCES before every read (br), or after every write (aw).

— Cour

Important remark for your future work:

This is not a decent evaluation... we know nothing
about real code, and the number of fences is not a
good measure. But unclear how to do better.

http://evaluate.inf.usi.ch/

Labyrinth 231 98 63 42

Evaluation should be taken seriously by CS scientists!

42

SSCA 1264 490 420 367

367

Thursday, January 10, 13

71

Thursday, January 10, 13

72

Can you guess the output?

int g_1 = 1;
int g_2 = 0;
Thread 1
int func_1(void) {
int 1;
for (1=0; (1'=4); 1++) {
1f (g_1)
return 1;

for(g_2=0; (g_2>=206); ++g_2)

)

Thread 2

void func_2(void){

¥

g_2 = 42;
printf("%d", g_2);

Thursday, January 10, 13

73

Can you guess the output?

1nt g
1nt g
Thread 1
int func_1(void) {
int 1;
for (1=0; (1'=4); 1++) {
1f (g_1)
return 1;

21 =1,
2 = 0;
Thread 2
void func_2(void){
g_2 = 42;
printf("%d", g_2);

¥

for(g_2=0; (g_2>=206); ++g_2)

)

h _

nread 1 never updates g_2.

nis program can only print 42.

Thursday, January 10, 13

74

f we compile with gcc 4.7 -O2, sometimes...

int g_1 = 1;
int g_2 = 0;
Thread 1 Thread 2
int func_1(void) { volid func_2(void){
int 1; 9-2 = 42Z;
for (1=0; (1'=4); 1++) { printf("%d", g_2);
if (g_1) }

return 1;
for(g_2=0; (g_2>=206); ++g_2)

)

...we get @ on the screen.

Thursday, January 10, 13

75

int func_1(void) { func_1:

int 1; movl g_1(%rip),%edx
for (1=0; (1'=4); 1++) { movl g_2(%rip),%eax
1f (g_1) testl %edx, %edx
return 1; jne L2
for(g_2=0; (g_2>=26); ++g_2) movl $0, g_2(%rip)
; ret
} L2

movl %eax, g_2(%rip)
xorl %eax, %eax
ret

gce 4.7 -02

the compiled func_1 saves and restores g_2

Thursday, January 10, 13 76

func_1:
mov L
mov L
testl
jne
mov L
ret

L2:
mov L
xorl
ret

g_1(%rip),%edx
g_2(%rip),%eax
%edx, %edx

L2

$0, g_2(%rip)

%eax, g_2(%rip)
%eax, %eax

vold func_2(void){
g_2 = 42;
printf("%d", g_2);
3

- Read g_1.

Thursday, January 10, 13

77

func_1:
mov L
mov L
testl
jne
mov L
ret

L2:
mov L
xorl
ret

g_1(%rip),%edx
g_2(%rip),%eax
%edx, %edx

L2

$0, g_2(%rip)

%eax, g_2(%rip)
%eax, %eax

vold func_2(void){
g_2 = 42;
printf("%d", g_2);
3

- Read g_1.
- Read g_2: %eax =0

Thursday, January 10, 13

78

func_1:
mov L
mov L
testl
jne
mov L
ret

L2:
mov L
xorl
ret

g_1(%rip),%edx
g_2(%rip),%eax
%edx, %edx

L2

$0, g_2(%rip)

%eax, g_2(%rip)
%eax, %eax

vold func_2(void){
g_2 = 42;
printf("%d", g_2);
3

- Read g_1.
- Read g_2: %eax =0
- Write g_2: g_2 =42

Thursday, January 10, 13

79

func_1:
mov L
mov L
testl
jne
mov L
ret

L2:
mov L
xorl
ret

g_1(%rip),%edx
g_2(%rip),%eax
%edx, %edx

L2

$0, g_2(%rip)

%eax, g_2(%rip)
%eax, %eax

vold func_2(void){
g_2 = 42;
printf("%d", g_2);
3

- Read g_1.

- Read g_2: eax =0

- Write g_2: g_2 =42

- Copy eaxintog_2: 9. 2=0

Thursday, January 10, 13

80

func_1:
mov L
mov L
testl
jne
mov L
ret

L2:
mov L
xorl
ret

g_1(%rip),%edx
g_2(%rip),%eax
%edx, %edx

L2

$0, g_2(%rip)

%eax, g_2(%rip)
%eax, %eax

vold func_2(void){
g_2 = 42;
printf("%d", g_2);
3

- Read g_1.

-Read g_2:eax =0

-Write g_2:g_2 =42

- Copy eaxintog_2: 9. 2=0
- Print O (?!)

Thursday, January 10, 13

81

s this a compiler bug”?

In the C11/C++11 memory model,

data-race free programs must have only

sequentially consistent behaviours.

1. Our program was data-race free.

2. Print O is not a sequentially consistent behaviour.

Thursday, January 10, 13

82

s this a compiler bug”?

We found a concurrency compiler bug.

Can we find more?

1. Our program was data-race free.

2. Print O is not a sequentially consistent behaviour.

Thursday, January 10, 13

82

Compiler testing: state of the art

Random %
Generator

C program

results

Regehr et al.

clang -00 clang -03 H

—

vote : -
ﬁ majority minority

u School of Computing
University of Utah

Thursday, Janua

ry 10, 13

83

Compiler testing: state of the art

Regehr et al.

Random
Generator

Reported more than 400 bugs

|~

fpe—————vote ——-—

majority minority

on various versions of gcc, clang and other complers.

u School of Computing
University of Utah

Thursday, January 10, 13

83

Generalise to concurrency compiler bugs?

How to deal with hon-determinism?

- How to generate random, non-racy, interesting, programs"?
- How to capture all the behaviours of concurrent programs”?

- A compiler can optimise away behaviours: how to test for correctness”?

(limit case: two compilers generate correct code with disjoint final states)

Thursday, January 10, 13

84

Our idea

C/C++ functions can be called in arbitrary (non-racy) concurrent contexts

C/C++ compilers can only apply transformations which are sound with
respect to an arbitrary (hon-racy) concurrent context.

Hunt concurrency compiler bugs

sl
_—

search for transformations of sequential code
not sound in an arbitrary context.

Thursday, January 10, 13 85

Random

Generator L
- optimising
compiler
under test
reference
semantics
EXECUTABLE
tracing
REFERENCE ?
MEMORY P A MEMORY
TRACE h u TRACE

Only transformations sound in any
concurrent (Momﬂr&tvj) conbkext?

Thursday, January 10, 13

86

— .
>
+

l—lo

>

Q
IN =
T
2R

reference
semantics

int func_1(void) {
int 1;
for (1=0; (1!'=4); 1l++) {
1t (g-1)
return 1;
for(g_2=0; (g_2>=26); ++g_2)

)

¥
¥
gcc -02 trace
Init g 1 1
11 Init g 2 O
2 0 Load g 1 1
11 Load g 2 0

Store g 2 0

Thursday, January 10, 13

87

reference
semantics

Cannot match some events -3 compiler bug!

gcc -02 trace

Init g 1 1
Init g 2 O
Load g 1 1
Load g 2 0

Store g 2 0

Thursday, January 10, 13

87

void func 1(void){

const unsigned int g 3 = 0UL;
long long g 4 = 0x1;

int g 6 = 6L;

volatile unsigned int g 5 = 1UL;

}

int *1 8 = &g 6;

int 1 36 = O0xX5E9D070FL;

unsigned int 1 107 = OxAA37C3ACL;

g_4 &= g_3;

g 5++;

int *1 102 = &l 36;

for (g 6 = 4; g6 < (-3); g6 +=1);

1 102 = &g 6;

*1 102 = ((*1 8) && (1 107 << 7)*(*1 .102));

reference

semantics / gce -0O2 trace
Load g 4 1
Store g 4 0
Load g 5 1 Load g 5 1

Store g 5 2
Store g 6 4
Load g 6 4
Load g 6 4
Load g 6 4
Store g 6 1
Load g 4 0

Store g 4 0
Store g 6 1
Store g 5 2
Load g 4 0

Thursday, January 10, 13

88

void func 1(void){
int x1 Q — Cox (oo

< b Q

Can match applying only correct eliminations and reorderings

: - -
referen_ce / \ gcc -O2 trace
semantics

Load g 4 1

Store g 4 0

Load g 5 1 Load g_>5 1

Store g 5 2 Store g_4 0
Store g 6 4 Store g_6 1
Load g 6 4 Store g 5 2
Load g 6 4 Load g_4 0

Load g 6 4

Store g 6 1
Load g 4 0

Thursday, January 10, 13

88

void func 1(void){
int x1 Q — Cox (oo

< b Q

Can match applying only correct eliminations and reorderings

: _ -
referen_ce / \ gcc -O2 trace
semantics

RaW* Load g 4 1
Store g 4 0

RaWw* Load g 5 1 Load g 5 1
Store g 5 2 Store g_4 0
OW* Store g 6 4 Store g 6 1
RaWw* Load g 6 4 Store g > 2
RaR* Load g 6 4 Load g 4 0

RaR* Load g 6 4
Store g 6 1
RaW* Load g 4 O

Thursday, January 10, 13

void func 1(void){
1n+t *] Q — Cox (oo

B Q

v

Can match applying only correct eliminations and reorderings

—— -
referen_ce / \ gcc -O2 trace
semantics

—RaW*—TLoad—g—4—1
Store g 4 0 ‘>

RaW* Load g 5 1 Load g 5 1

Store g 5 2 Store g 4 0

_ Store g 6 1

—RaW*TLoadg—6—4 Store g_> 2

RaR*Load—g—6—4 Load g_4 0
RaR* Load g 64—

Store 3_6 1
RaW* Load g 4 0

Thursday, January 10, 13 88

void func 1(void){

1int+ x1 Q — C o Lo

B Q

v

Can match applying only correct eliminations and reorderings

— _ - -
refereng;e / \ gcc -0O2 trace
semantics

Need a theory of sound optimisations
in the C11/C++11 memory model

Store g 5 2
Load g 4 0

RaR* TLeoad g 64—
Store g 6 1

RaW* Load g 4 0

Thursday, January 10, 13 88

void func 1(void){

1n+t *] Q — Cox (oo

< b Q

Can match applying only correct eliminations and reorderings

— _ - -
referen_ce / \ gcc -0O2 trace
semantics

Need a theory of sound optimisations
in the C11/C++11 memory model

http://www.di.ens.fr/~zappa/projects/cmmtest/gcc-bugs.html

for a few subtle concurrency compiler bugs catched with this method.

RaW* Load g_Z 0

Thursday, January 10, 13

88

http://www.di.ens.fr/~zappa/projects/cmmtest/gcc-bugs.html
http://www.di.ens.fr/~zappa/projects/cmmtest/gcc-bugs.html

Conclusion

Thursday, January 10, 13

89

Syllabus 55>
. A
. ; ' : -7‘_1_
/ -_ & ;,,,-.
2

In these lectures we have covered the hardware models of
two modern computer architectures (x86 and Power/ARM - at least for
a large subset of their instruction set).

We have seen how compiler optimisations can also break concurrent
programs and the importance of defining the memory model of high-
level programming languages.

We have also introduced some proof methods to reason about
concurrency.

After these lectures, you might have the feeling that multicore
programming is a mess and things can't just work.

Thursday, January 10, 13 90

The memory models of modern
hardware are better understood.

Programming languages attempt
to specity and implement
reasonable memory models.

Researchers and programmers
are now Iinterested in these
problems.

Thursday, January 10, 13

91

The memory models of modern
hardware are better understood.

s Still, many open problems... s.

A problems.

Thursday, January 10, 13

91

The memory models of modern
hardware are better understood.

il problems.

Thursday, January 10, 13

91

All these lectures are based
on work done with/by my
colleagues. Thank you!

Thursday, January 10, 13 92

And thank you all for
attending these lectures!

Please, fill the course evaluation form, that's
Important to make a better course next year.

Thursday, January 10, 13 93

The C++11 memory model

1300 page prose specitication defined by the 1SO.

The design is a detailed compromise:
hardware/compiler implementability
useful abstractions
broad spectrum of programmers

Welcome to the official home of

JTC1/SC22/WG21 - The C++ Standards Committee

2011-09-15: standards | projects | papers | mailings | internals | meetings | contacts

News 2011-09-11: The new C++ standard - C++11 - is published!

Thursday, January 10, 13

94

The syntactic divide

// for regular programmers:
atomic int x = 0;
X.store(1l);

y = X.load();

// for experts:

X.store(2, memory order);

Yy = X.load(memory order);

atomic thread fence(memory order);

where memory order Is one of the following:

mo seq cst mo release mo acquilre
mo acq rel mo consume mo relaxed

Thursday, January 10, 13

95

How may a program execute?

Two layer semantics:

1) an operational semantics processes programs, identifying memory
actions, and constructs candidate executions (Eopsem);

P—— k4, ..., En

2) an axiomatic memory model judges Eopsem paired with a memory
ordering Xwitness

Ei ——Xi1,...,Xim
3) searches the consistent executions for races and uncostrained reads

s there an Xj with a race?

Thursday, January 10, 13

96

Relations

AN Eopsem part containing:
sb sequenced before, program order
asw additional synchronizes with, inter-thread ordering

An Xuitness part containing:
1t relates a write to any reads that take its value
sc atotal order over mo_seq_cst and mutex actions
mo modification order, per location total order of writes

From these, compute synchronise-with (sw) and happens-before (hb).

We ignore consume atomics, which enables us to live in a simplified model.
Full details in Batty et al., POPL 11.

Thursday, January 10, 13

97

Formally

cpp memory model opsem (p : program) =
let pre executions =
{ (Eopsem, Xwitness) . OpsSem P Eopsem A
consistent execution (Eopsem, Xwitness) }

in

if 3IX € pre executions.
(lndeterminate reads X = {}) V
(unsequenced races X = {}) V
(data races X = {})

then NoxEe
else SoME pre executions

Thursday, January 10, 13

98

A single-threaded example

1. sequenced before (sb) - given by opsem a: W, x=2
sb
\/
int main() { b:W... y=0
int x = 2;
int y = 0; sb sb
= (x==X);
return 0; c:R,, x=2 d:R,, x=2

}
\sb /sb
A

Thursday, January 10, 13 99

A single-threaded example

1. sequenced before (sb) - given by opsem
2. read-from (rf) - part of the witness W x=2

int main() { of W y=0

int x = 2;

int y = 0; b \b
y = (Xx==x); "
return 0; R x—2 R x—2
}
sb /s(b

Thursday, January 10, 13

A single-threaded ex. with undefined behaviour

An unseqguenced race.

a:W,, x=2
sb
rf \/
int main() { D" Woy y=0
int x = 2; sb
int y = 0; sb
return 0; d:Rna X=2 C:Wha X=3
) sb — sb
N A

Thursday, January 10, 13 101

A simple concurrent program

We will omit asw arrows whenever

int y, X = 2;
x = 3; |y = (x==3):

a:W,, x=2

asw w.rf

4
b:W,.,x=3 cR,;x=2

sb

we are not interested Iin the initialisation. \/

d:W,,y=0

Thursday, January 10, 13

102

Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X;
m.unlock() :

1. the operational semantics defines
the sb arrows

c:L mutex
sb ¢

d:W,, x=1
sb

f:U mutex

h:L mutex

1:R,, x=1

Thursday, January 10, 13

103

Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X,
m.unlock() :

1. the operational semantics defines
the sb arrows

2. guess an sc order on Unlock/Lock
actions (part of the witness)

c:L mutex
sb ¢

d:W,, x=1
sb

f:U mutex

h:L mutex

I:R,, x=1

Thursday, January 10, 13

104

Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X,
m.unlock() :

1. the operational semantics defines

the sb arrows c:L mutex h:L mutex
2. guess an sc order on Unlock/Lock sb ¢
actions (part of the witness) d:W . x=1
3. the sc order is included in the i
. . . sb
syncronised-with relation

f:U mutex

Thursday, January 10, 13 105

I_OCKS and Uﬂ| O CKS simple—happens—before\ _

(sequenced—before>) synchronizes—with>)+
int x, r;
mutex m;
m.lock(); m.lock();
X = ... r = X,
m.unlock() ;

1. the operational semantics defines c:L mutex h:L mutex

the sb arrows sb ¢ sb ¢
2. guess an sc order on Unlock/Lock R x—1

actions (part of the witness)

3. the sc order is included in the sb ¢
syncronised-with relation

d:W,, x=1
hb

f:U mutex

4. which In turn defines the
happens-before relation...

Thursday, January 10, 13 106

Happens before

The happens before relation is key to the model:

1. non-atomic loads read the most recent write in happens before.
(This is unique in DRF programs)

2. the story is more complex for atomics, as we shall see.

3. data races are defined as an albsence of happens before
between conflicting actions.

c:L mutex h:L mutex

simple—happens—before\
4

synchronizes- with\

> U ») T

(sequenced-before

f:U mutex

Thursday, January 10, 13 107

A data race

int y, X = 2;

X = 3; 'y
a:W,, x=2
asw w,rf
b:W,,x=3

c:Rp;

sb

==3) :

x=2

d:W,,y=0

Thursday, January 10, 13

108

A data race

int y, X = 2;

a:W,,x=2

dSW w’rf

b:W,,x=3

Here we have two conflicting accesses
not related by happens-before.

c:R,; x=2
sb
\J

d:W,, y=0

Thursday, January 10, 13

109

Data race definition

let data_races actions hb =
{ (a, b) | V acactions beactions |
- (a=b) A
same_location a b A
(is_write a V is_write b) A
— (same_thread a b) A

- (is_atomic_action a A is_atomic_action b) A
- ((a, b) € hb Vv (b, a) € hb) }

Programs with a data race have undefined behaviour (DRF model).

Thursday, January 10, 13 110

Simple concurrency: Dekker's example and SC

atomic_int x
atomic_int y

0;
0;

x.store(1l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst);

x.load(seq_cst);

c:W, y=1 e:W. . x=1
FORBIDDEN
sb sb
\/ \/
d:R.. x=0 f:Rsc y=0

Why is this behaviour forbidden”?

Thursday, January 10, 13

111

Simple concurrency, Dekker's example and SC

0;
0;

atomic_int x
atomic_int y

x.store(l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst); x.load(seq_cst);
c:W. y=1 e:W. . x=1
d:R..x=0 f:Rscy=1

The sc relation must define a total order over unlocks/locks and
seq cst accesses... sc isincluded in hb, an rf must respect hb.

Thursday, January 10, 13 112

=Xpert concurrency: the release-acquire idiom

// sender

X = ...

y.store(l, release); 2 W, x=1
// receiver sbI

while (@ == y.load(acquire));

bZWre| =1
T y\
rf

Here we have an rf arrow beetwen a pair of c:Rycq y=1
release/acquire accesses. <h I

d:R,, x=1

Thursday, January 10, 13 113

=Xpert concurrency: the release-acquire idiom

// sender

X = ...

y.store(1l, release); W x=1

// receiver sbl'

while (0 == y.load(acquire)); Wge, y=1

r= X;

S

Here we have an rf arrow beetwen a pair of Racqy=1
release/acquire accesses. lsb
The rf arrow beetwen release/acquire accesses

. Rx=1
INnduces an sw arrow between those accesses.

Thursday, January 10, 13 114

=Xpert concurrency: the release-acquire idiom

// sender
X = ... W x=1
y.store(l, release); h
S

. hb
// receiver WreL y=1
while (@ == y.load(acquire));
r= X; SW
Here we have an rf arrow beetwen a pair of Racqy=1
release/acquire accesses. lsb
The rf arrow beetwen release/acquire accesses R‘x:1

INduces an sw arrow between those accesses.

And In turn defines an hb constraint. simple-happens-before

 —
, _

(sequenced-before synchronizes-with .) +
4

> U

Thursday, January 10, 13 115

Relaxed writes

x.load(relaxed) ;
y.store(1l, relaxed);

y.load(relaxed) ;
x.store(1l, relaxed);

c:Rrlx x=1 e:Rrlx y=1

o]

d:Wrlx y=1 f:Wrlx x=1

No data-races, no synchronisation cost, but weakly ordered.

Thursday, January 10, 13 116

Relaxed writes, ctd.

0;
0;

x.store(1l, relaxed); | y.store(2, relaxed);

atomic_int x
atomic_int y

x.load(relaxed) ;
y.load(relaxed) ;

y.load(relaxed) ;
x.load(relaxed) ;

c:Wrlx x=1 \d:erx yzﬂl_/—/y e:Rrlx }le)g:erx y=1
rf sb¢r t sb¢

f:Rrlx y=0 h:Rrlx x=0

Again, no data-races, no synchronisation cost, but weakly ordered (IRIW).

Thursday, January 10, 13 117

—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(l, release); r = X;
// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;

r = X;

Thursday, January 10, 13 118

—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;
r = X;
Here we have an rf arrow beetwen a c:Wha x=1 e:Rux y=1

release write and a relaxed write.

NEEEA

d -Wrel Y= 1 f Facq
sb

g:Rna x=1

Thursday, January 10, 13

119

—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;
r = X;
C Wna X— e erx y 1

Here we have an rf arrow beetwen a
release write and a relaxed write. sb ¢ / sb ¢
d:W,e y—l — f: Facq

The acquire fence follows the sb/rf relations W
looking for the corresponding release write, adding
a sw arrow. g:Rnax=1

Thursday, January 10, 13 120

—Xpert concurrency: fences avoid excess sync.

// sender // receiver

X = ... while (0 == y.load(relaxed));

y.store(l, release); fence(acquire) ;

r = X;
Here we have an rf arrow beetwen a ¢ Wha X1 £ &R y=1
release write and a relaxed write. sb ¢ b sb ¢
d:W,e y=1 f:Facq

The acquire fence follows the sb/rf relations > sh
looking for the corresponding release write, adding
a sw arrow. g:Rna x=1

Happens-before follows as usual...

Thursday, January 10, 13 121

Modification order

atomic_int x = 0;
x.store(l, relaxed); X.load(relaxed);
x.store(2, relaxed); X.load(relaxed);

Wrixx=1 " Rgxx=1

rf
mo¢ sb¢

WRLX X=2 T RRLX X=2
I

Modification order is a total order over atomic writes of any memory ordet.

Thursday, January 10, 13 122

Coherence and atomic reads

All forbidden:
: _ » ~Ry— _ _ : _
a.WTx 1 P c.Rr 1 b.Wx-% c:W x=1
mo hb F—hb {
b:W x=2 f > d:Rx=2 d:R x=2
r
CoRR CoWR
a:W x=1 a:Wx— > c:Rx=1
hb § mo \hw
b:W x=2 d:W x=2
CoWW CoRW

|dea: atomics cannot read from later writes in happens-before.

Thursday, January 10, 13 123

Coherence and atomic reads

All forb

o A pair Eopsem . Xwimess (& pre-execution)
g defines a consistent execution when it satisfies
| the constraints we have sketched

on hb/rf/mo and is race-free.

b:W x=2 d:W x=2
CoWW CoRW

|dea: atomics cannot read from later writes in happens-before.

Thursday, January 10, 13 123

The full model

. \

xstore 3= case 3 of Srone
[oob-wne I [i sttt set actions theends locaton find h B
| iscfence o= case o of Fenci___ 5T F [ctement re_peasa— b < happens before. let (2,5
‘ e I | same_thread a rs_head v is_atomic_rmw Vbl st acsions thicads location-kind ab}
e |
‘ .] B — e s visible_sequence_of_side_cffects_tail = visible_sequence_of_side_cffects_tail vsse_head b=
apb=(b)¢r \i is_at_atomic_| lm -ation b A {c. vsse_head edetiomerder, o
xatomic action 3= e e,
1 i 4 3V i atomic_store 2V is at a (b= au) v e A A ———
B=r J (rncloment s b\ 3y PSEtERE, (s vssehesd i, ¢
N mocationonter, _ mendfction order, = (b 2 5)}
(Ve agy mobcstion o, . modiestionorder, 1, _,

A ———

[is_load_or_store a = is_load aV is_store a
|

myimage s ={y. 3x € 5. (y = x)}

!
s read 2= ditional- -
ensesequence actions threads focation kin . visible_sequences.of_side_effects = visible_scquences._of_sideeffects =
| release_seq tions threads location-kind y b} Mvese_heod. &)
‘ Sla=rel 0 (s x 5) H is-aite 2 = | is_at_atomic_location b then
is_atomic_store 2V is_atomic_rmw 2V is_store 2 hypothetical rlease-sequence, {vsse_hea
‘\ ‘ hypok/rlelvca/ re!e‘ase)eﬂuince = g ypothetical relesse sequence, visible_sequence_of side_effects_tail vsse_head b
[wneen ‘ atomicocation b (b
is_ncquire 2 = modcstion rdes, L]
case memory_order a of (rs_clement 2 b A “ b
~order modcstionorder, _ modicstion e
‘ = rel 0 (s x) ‘ SoME mem_ord —+ (Ve.a ™ e b —
mem_ord & rsclement a c))) visible_sequences_of _side_effects_set actions threads location-kind =
{Mo_scquie, Mo_acqns l myimage (visiblesequences_of_side_effects actions threads location-kind s
[omnes | oy ‘
(*29.8:5 states that consume fences are acquire fences. *) hypothetical_release_sequence _set actions threads location-kind -
((mem_ord = Mo_CONSUME) A is_fence a) consistent_reads_from_mapping = consistent tcads._fron_mapping
. | NOXE — is-lock) hypothetical_release_sequence actions threads location-kind b ab) (¥ (is-read b A is-at_non_atomic_location b)
‘ strict_preorder ord = irreflexive ord A trans ord ! } 7 lion-aton
(i (3ause- 2use
[consume 2 synchronizes_with = 2 27T, | then (32, 3, RS S b A2 5)
totaboner sord = H is_read 2 (memory_order 2 = SOME Mo_CONSUME) (* - additianal synchronization, from thread create etc. — *) etse ~(3a.2 5 B))) A
o ar o 2o, y
(x € s.¥y € s.x % yvy D xv | a (¥b. (is_read b A s at_atomic_location b) —>
| (i (3(b, vsse) € wsrh/ sequences-of-side-effects. (b' = b))
s release o= (someJocation b3 sctons /b & actons . (then (3(5/, vise) ¢ visile.sequences-of side-effcts
(case memory_order a of (* — mutex synchronization — b e e oy
strict_total_order_over s ord = Soue mem.ord —» (s-umlock an s dodk bra S 6)v w=pn (,L vsse. ¢ %)
strict_preorder ord A totaLover s ord mem_ord € {MO_RELEASE. MO_ACQ_REL, MO_SEQ-CST) A else ~(3a. 2 % b)) A
(iswrite 2V is_fence 3) (* - release/acauire synchronization — .
o 1 | NoxE — is_unlock) (is_release a A is_acquire b A ~same_thread a b A (¥(x,a) € 5.
XSy = o | (0. o e, A Vo8 e 5
pred x f x =5 y A (3z. pred z A x ==z Z y) I < o Tappenbetore
| nsea-cst 2 = (memory-order 2 = Some Mo.seq-cst) E'ernce srhverization =) , same_location 2 b A is_at_atomic_location b
- 1 s fonce a A is_selease 2 A is_fenco b A is_acquire b A e)y oSt
Xy = (3x. 3y. same_location x y A . = K=V "
Xy A (32 M 2 7 y) location-kind = i _atomicaction x A is_atomic-action y A is-write X A (CnewCOWR ™) e
rEx et e (¥(a.b) & Pt
[Now o Pl A
e 2. <2y L
| (fnfonce 2 A lnelease 2 iswrite 3 A same_lacation 3 b A is_at_atomic_location b
) - is_atomic.action b A is_acquire b\ X — (c=a)y g DT,)
‘ pebbrey action.id - suing ‘ actons.epectIocton Kinds = cions.respec Joaton inds ey Coowcorw "
e location of Sou | Somicactin </ e </ (ab) T,
(case location-kind | P
‘ type-abbrev thread_id : string ‘ MUTEX — is_lock_or_unlock 2 (@2 ptt e e, z 5BV cSan
| NoN_aToMIC - is_load_or_store a iswrite b A same_location 2 b A is_at_atomic_location 3
|| ATOMIC — i Joad_or_store 2V is_atomic_action) (atomicacton 3 inslese 31 . ¢ modtonante,
type_abbrev location : string || Noxe —+ T s fonce b is_acquire b4
(3. same_Jocation 3 x A xatomic_action x A (W(a,b) € 5. is_atomic_rmw b
| st
e location 3 of Gza” — 2290 .
Sowe 1 = ko) M be s eetd v ——
memory.order_enum — | Noxe — F — » - = (Fis 50t 3 (V0 X Fac i cosamedocation e b =5 x T, 5))
| Mo_RELAXED
| Mo, - et location || synchronizeswith actions threads location-kind i s ab} (* -Fence restrictions- *)
| Mo_acquis icat_location_kind 2 MUTEX | ¢)
| Mo_coxsune p—— +2033%
Do ‘ [e g o i, (2,
| st non_atommic_location 2 || s i s {fsfence x A s seq_est x A atomicacton b1
| iscatlocation-kind 2 Nox_atonic | iswrite 2/ same_location 3 b A
action = PES

LocK of action_id thread_id location
| UNLOCK of action.id thread_id location

| ATOMIC_0AD of action_id thread_id memory_order_enum location val

| ATOMIC_STORE of action_id thread_id memory_order_enum location val

| ATOMIC_RMW of action_id thread_id memory_order_enum location val val

carries_a_dependency._to_set actions threads location-kind. = oy ma) v o mosionore,

is_at_atomic_ocation 2=
iscat location_kind a ATOMIC

carries_a_dependency_to actions threads focation-kind rfab) (* 2034 %

on (V(a,x) € ==, iy p) e 5

Jre————— (it sticn 3/ - < s ot

| Frence of action.id thread_id memory_order_enum {ab. rclomse 3 scconmume b A x5 bnisonicacion

= (y=a)va 2

threadwise_relation_over s rel =
relation_over s rel A (¥(a, b)

!
H

e s dpennr s 0) 2035
(o) € st () o sttt
(is_atomic_action a A is_fence x A is_seq_cst x A

rel. same

hread 2 b) ®

action_id_of (LocK aid __) = aid)
action_id_of (UNLOCK aid _ _) = aid) A

Lof (ATOMIC_LOAD aid _
Lof ('\uml(,\rmu' aid

¢

(

@

(action_i
(M{meld of
¢

¢

¢

samelocation a b = (location a = location b)

dependency _ordered_before_set actions threads location-kind o -

is_atomic_action b A same_location a b A
dependency_ordered_before actions threads location-kind h o ab} xS ynzhb)

action_id_of

action_id_of oue 1))

‘ locations_of actions = {I. 3a. (location a =

nction. i | (2= a) v 5 medtcstenerter,
simple_happens_before — “setappeniear, |
(thread_id-of (LoCK - tid -) = tid) A I dency — -
(thread_id_of (UNLOCK — tid) = tid) A ATOMIC_LOAD _ _ mem_ord _ _ — mem_ord & ‘1 (£ s depadenyo
{ ottt g o) consiont.sinplbappens-bofrs sh = \
(thread_id_of (LoAD _ tid || ATontc_ra — mem_ord - mem_ord | wbdependene o
(thread_id_of (STORE _ tid _ {MO_RELAXED, MO_RE . MO_ACQUIRE, MO_ACQ_REL, MO_SEQ_CST, MO_CONSUME} T | frreflexive (()
(threadid_of (FExCE = inter_thread_happens_befor open et
R consistent_execution actions threads location-kind sc
(memory-order (ATOMIC_LOAD - mem_ord - _) — well_formed_threads = well_formed_thread: PE— ;;.L,..W) el fommedthreads actions threads focaton kind ve adt da (
em-ord) inj_on action.id_of (actions) \ ot | et iy consistent locks actions threads ocation-kin sch
A £ (e 1 ot release-sequence — release-sequence_set actions threads location-kind h
memory_order (ATOMIC_STORE _ _ mem_ord _ (¥a. well_formed_action 2) Ly (Sl 1, eq equ
ey =108 = mem-erd) ons sequencedbefore el Ul It ol el eqarce ol ks sgerce st secns sl o ki rcs s slionl ot s dependey e dg,,mmy moditcation-order in
- . £ actions thrcads location-ing " in
(memory _order (ATOMIC_RAW — _ mem_ord threadsvise_relation_over actions data-dependency / y
SOME mem_ord) A relation_over actions control-dependency /\ comsisent_nterthread_appens_before = consisten iner_thread_appens before = Ut o dpendrr 1o ot iy .5 s o oo of in .
o oy
(memory order (FENCE _ _ mem_ord) — strict_preorder sequenced-before s g let dependency-ordered-before = dependency _ordered_before _set actions threads location-kind o in
SoE mem_od) A strict_preorder data-dependency A inreflexive (=) ot intertheas happen. ofor = itz lnppen bere actos threads oaton-bind b in
(memory_order _= strict_preorder control-dependency A fet happens- happens_before actions threads location-kind h o - in
Noxg) relationover actions additional-synchronized-with A p—— o Vet ol e e e asons heeuds onon it in
(Va. thread.idof 2 ¢ threads) A happens_before = 1220, _ It il equences ofside.¢ets = vsl.sequencs-ofsid.fct.se actiors threas loction ind seuenced befre altioal synchronized-with data-dependency control-dependency modification-order happens-before visible-side-cffct in
actions._respeet_Jocation_kinds A sewenced before, | it reshappens bt consistent_inter_thread_happens_bef
data-dependency C sequenced-before ot oo scons hreads locatinind s A
| consistent_modification_order actions threads ocation-kind sc
. B B well_formed_reads-from_mapping actions threads focation-kind d: 9 Iz
ellformed_reads_§ — ellformed_reads._i - ‘“k;’(';i‘_:’:;lqd:]j(.:\\:(’f":\, s unlock 2)) ‘ consistent reads_from_mapping actions threads focation-kind d e d i sc mod b e
relation_over actions (%) A ‘
(Va.¥a.¥b.a b bra' b = (a=a)A consistent_sc_orde stent i ‘ eads actions threads = cads =
oty e s order = conssent sc_order = il seads e
(()»y tion a b A let sc_happens_before I {b ad b/ (3 b)}
(value_read b= value_written a) A et sc_mod_order — e ‘“"»\..u -
(value_read (ATOMIC_LOAD — SomE v) A t‘ D e docation 3 stiet-total-order_over alsc actons (55) A unsequenced_races = unsequenced_races = {(a,
(e (Arosc-sony - = SomE) A ot o o = C 5 (a7 b) A same_location a b A (is-write aV is_write 5) A
e isunlock 2/ is-lock b) A o order, _ e Smethread 3
aerend (1 (is_at_non_atomic_location 3 — =S e 2t et
(alecrend - Nowe) o by 2
isstore 2 isload b) A AR —
(isat_atomiclocation 2 —>
(isatomic_store 2V is_atomic_rmw aV is_store 3) consistent der = consistent_modification_order =
A (i atomicJond bV is-atomic_rmw b s_load b)) (¥, ¥b. 5 eI e ocation 3 b) A duta_races = data_races = {(2,)
(¥1 € locations_of actions. case location-kind | of (0 # b) psameocation 3 bA (is.wite 3V iswite 5)
Aromic — “samethread 2
[i tockcorumlock_nctionsat fopt a5 — et sctions_at_I = {a. location a = Sow 1) ~(iatomicaction a A atomicction)
{3 € as. islock_or_unlock 2 A (location 3 = lopt)} et writes_at_| = {a_at_I. (is_storc v (g Jepenstetore, | bappe e
| is_atomic_store a v is_atomic_rmw a)} in
isdock a = strict_total_order_over writes_at_|
case 2 of Lock +F || comsistent tocs — comistentdocks — (”“"""”"“" 3 scorot1) dataraces’ actions threads focation-kind o sc=
¥ € locations_of actions. (lacation-kind | = MuTEX) => ((* happens-before at the writes of | a subset of mo for 1 ¥) ot release-sequence = release-sequence_set actions threads focation-kind d. de h de in
let.lock_unlock_actions = boppesteoe, | medtesionrde ot hypothetical-release-sequence — release_sequence-set actions thteads location-kind. h in
pamadea s TioE alllock_or-unlockactions-at (SOME /)actions in * Mo_sEq cur Fectas impose mocifcation order) let ynconie vith~ synchroniesath.set actons Wscads octon ki sequncedbefrsaddtona sychronizswithdta dependen:y Controldependency modifcation arde reless.sequence hypothetca elessesequence in
2 of Uniook -5 Tl let lock order = | e it sciors o b ol et actions threads locationin in
(% 30415 - The implementation shallseriafize those (ock and nlock) apeations. *) e 0 tlsnce) o loies-ser) ot dependency-ordered before = dependency.ordered_before st actions threads focation-kind " in
strict_total_order_over lock_unlock_actions lock_order / €) let. inter-thread-happens-before = inter_thread_happens_before actions threads location-kind h in
is_atomic_load a = - let happens-before = happens_before actions threads /oc.mau kmd da -
a of ATOMIC_LOAD F (*30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until let actions_at_{ = {a. (location a = Soms [) data_races actions threads location-kind de b
it calls unlock.*) (o o s at1) = (1))
(*30.4.1:20 Requires: The calling thread shall own the mutex. *)
is_atomic_store 2 = (*30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*) e e <)~
case a of AToMICSTOR S TIoF (¥a, € lock-unlock-actions. is-unlock 2, — Visible_side_clfoct = 5 Xiblesdestict,) let exceutions — {(actior . 5
Sa) € lock_unlock-actions. persctoe opsm sctiow, theads fcation i A consistent._execution actions theads focation-kind o s} in
ay A 5, A same_thread 3 a, A s lock a)) A i write 2 A is_read b A same_location 3 bA if (actions, threads, location-} h 3 o, /,5¢) € executions.
is_atomic_rmw 2= G (c £ (e #b)A (idterminte-vnds stions thzens bctionind a - Vi)V
aling thresd) Happerbes s (dataraces actions threads ocation-kind sequenced-before additional. syn:hromzed with data-dependency control. dependency T modtfcation-order sc (1)
(*3C The calling thread owns the mutex. *) a= — b) then
‘ ooload 2= case 3 of LoAD -+ T |-+ F ‘ (va, e rm,uma:k,mons isdock a) —> else executions
(Va, € lock jons.
a, Mu, = islock 2,)))

Thursday, January 10, 13 124

s C++11 hopelessly complicated”

Programmers cannot be given this model.

However, with a formal definition, we can do proofs!

- Can we compile to x867?

- Can we compile to Power?

Operation x86 Implementation
load(non-seq_cst) mov
load(seq_cst) lock xadd(0)
store(non-seq_cst) mov
store(seq-_cst) lock xchg
fence(non-seq_cst) no-op
C++40x Operation | POWER Implementation
Non-atomic Load | 1d
_oad Relaxed 1d
L oad Consume 1d (and preserve dependency)
_oad Acquire 1d; cmp; bc; isync
Load Seq Cst sync; 1ld; cmp; bc; isync

Non-atomic Store
Store Relaxed
Store Release
Store Seq Cst

st

st

lwsync; st
sync,; st

Thursday, January 10, 13

125

s C++11 hopelessly complicated”

Simplifications:

Full model: visible sequences of side effects are unneded (HOL4)
Derivative models:

- without consume, happens-before is transitive

- DRF programs using only seq cst atomics are SC (false)

atomic_int x = 0;

atomic_int y = O;

if (1 == x.load(seq_cst)) |if (1 == y.load(seq_cst))
atomic_init(&y, 1); atomic_init(&x, 1);

atomic init is a non-atomic write, and in C++11 they race.

Thursday, January 10, 13 126

The current state of the standard

Fixed:

- In some cases, happens-before was cyclic

- coherence

- seqg cst atomics were more broken

Not fixed:

- self satisfying conditional

rl = x.load (mo_relaxed);
if (r1 == 42)
y.store(rl, mo_relaxed);

r2 = y.load(mo_relaxed);
if (r2 == 42)
x.store(42, mo_relaxed);

- seq_cst atomics are still not SC

c:Rrlx x=1

d:Wrlx y=1

e:Rrlx y=1

o e

f:Wrlx x=1

Thursday, January 10, 13

127

