
Part 1. Shared memory: an elusive abstraction

Francesco Zappa Nardelli INRIA Paris-Rocquencourt

http://moscova.inria.fr/~zappa/projects/weakmemory

Based on work done by or with

 Peter Sewell, Jaroslav Ševčík, Susmit Sarkar, Tom Ridge, Scott Owens,
 Viktor Vafeiadis, Magnus O. Myreen, Kayvan Memarian, Luc Maranget,
 Derek Williams, Pankaj Pawan, Thomas Braibant, Mark Batty, Jade Alglave.

1Friday, 13 January 2012

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

High-level languages, compilers, multiprocessors...
an elusive mix?

Francesco Zappa Nardelli INRIA Paris-Rocquencourt

http://moscova.inria.fr/~zappa/projects/weakmemory

Based on work done by or with

 Peter Sewell, Jaroslav Ševčík, Susmit Sarkar, Tom Ridge, Scott Owens,
 Viktor Vafeiadis, Magnus O. Myreen, Kayvan Memarian, Luc Maranget,
 Derek Williams, Pankaj Pawan, Thomas Braibant, Mark Batty, Jade Alglave.

1Friday, 13 January 2012

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

Compilers vs. programmers

2Friday, 13 January 2012

Compilers vs. programmers

Compilers and programmers should cooperate,

 don't they?

2Friday, 13 January 2012

Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;

3Friday, 13 January 2012

Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

Consider the two threads below:

Intuitively, this program always prints 0

x = y = 0x = y = 0

x = 1
if (y == 1)
 print x

if (x == 1) {
 x = 0
 y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;

4Friday, 13 January 2012

Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

Consider the two threads below:

Sun HotSpot JVM or GCJ: always prints 1.

x = y = 0x = y = 0

x = 1
if (y == 1)
 print x

if (x == 1) {
 x = 0
 y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;

 print 1

5Friday, 13 January 2012

Background: lock and unlock

• Suppose that two threads increment a shared memory location:

• If both threads read 0, (even in an ideal world) x == 1 is possible:

x = 0x = 0

tmp1 = *x;
*x = tmp1 + 1;

tmp2 = *x;
*x = tmp2 + 1;

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1

6Friday, 13 January 2012

Background: lock and unlock

• Lock and unlock are primitives that prevent the two threads from
interleaving their actions.

• In this case, the interleaving below is forbidden, and we are
guaranteed that x == 2 at the end of the execution.

x = 0x = 0

lock();
tmp1 = *x;
*x = tmp1 + 1;
unlock();

lock();
tmp2 = *x;
*x = tmp2 + 1;
unlock();

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1
FORB

IDDE
N

7Friday, 13 January 2012

Lazy initialisation (an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never
used (e.g. device drivers code). Compare:

 int x = computeInitValue(); // eager initialization
 … // clients refer to x

with:

int xValue() {
 static int x = computeInitValue(); // lazy initialization
 return x;
} ... // clients refer to xValue()

8Friday, 13 January 2012

The singleton pattern

Lazy initialisation is a pattern commonly used. In C++ you would write:

 class Singleton {
 public:
 static Singleton *instance (void) {
! if (instance_ == NULL)
! ! !instance_ = new Singleton;
! ! return instance_;
 }
! … // other methods omitted
 private:
! static Singleton *instance_; // other fields omitted
 };

 …
 Singleton::instance () -> method ();

But this code is not thread safe! Why?

9Friday, 13 January 2012

Making the singleton pattern thread safe

A simple thread safe version:

class Singleton {
public:
! static Singleton *instance (void) {
! ! Guard<Mutex> guard (lock_); // only one thread at a time
! ! if (instance_ == NULL)
! ! ! instance_ = new Singleton;
! ! return instance_;
! }!
private:
! static Mutex lock_;
! static Singleton *instance_;
};

Every call to instance must acquire and release the lock: excessive overhead.

10Friday, 13 January 2012

Obvious (broken) optimisation

class Singleton {
public:
! static Singleton *instance (void) {
! ! if (instance_ == NULL) {
! ! ! Guard<Mutex> guard (lock_); // lock only if unitialised
! ! instance_ = new Singleton; }
! ! return instance_;
! }
!
private:
! static Mutex lock_;
! static Singleton *instance_;
};

Exercise: why is it broken?

11Friday, 13 January 2012

Clever programmers use double-check locking

class Singleton {
public:
! static Singleton *instance (void) {
! ! // First check
! ! if (instance_ == NULL) {
! ! ! // Ensure serialization
! ! ! Guard<Mutex> guard (lock_);
! ! ! // Double check
! ! ! if (instance_ == NULL)
! ! ! ! instance_ = new Singleton;
! ! }
! ! return instance_;
! }
private: [..]
};

Idea: re-check that the Singleton has not been created after acquiring the lock.

12Friday, 13 January 2012

Double-check locking: clever but broken

The instruction
instance_ = new Singleton;

does three things:
1) allocate memory
2) construct the object
3) assign to instance_ the address of the memory

Not necessarily in this order! For example:

instance_ = // 3
 operator new(sizeof(Singleton)); // 1
new (instance_) Singleton // 2

If this code is generated, the order is 1,3,2.

13Friday, 13 January 2012

Broken…

 if (instance_ == NULL) { // Line 1
 Guard<Mutex> guard (lock_);
 if (instance_ == NULL) {
 instance_ =
 operator new(sizeof(Singleton)); // Line 2
 new (instance_) Singleton; }}

Thread 1:
 executes through Line 2 and is suspended; at this point, instance_ is non-
NULL, but no singleton has been constructed.

Thread 2:
 executes Line 1, sees instance_ as non-NULL, returns, and dereferences
the pointer returned by Singleton (i.e., instance_).

Thread 2 attempts to reference an object that is not there yet!

14Friday, 13 January 2012

The fundamental problem

Problem: You need a way to specify that step 3 come after steps 1 and 2.

There is no way to specify this in C++

Similar examples can be built for any programming language…

15Friday, 13 January 2012

That pesky hardware (1)

Consider misaligned 4-byte accesses

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

• n-bytes on an n-byte boundary (n = 1,2,4,16)

• P6 or later: … or if unaligned but within a cache line

Question: what about multi-word high-level language values?

int32_t a = 0int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

16Friday, 13 January 2012

That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread 0 Thread 1

x = 1 y = 1

print y print x

At the end of some executions:

 0 0

is printed on the screen,

both on x86 and Power/ARM).

17Friday, 13 January 2012

That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread 0 Thread 1

x = 1 y = 1

print y print x

At the end of some executions:

 0 0

is printed on the screen,

both on x86 and Power/ARM).

17Friday, 13 January 2012

That pesky hardware (2)

and differ between architectures...

Thread 0 Thread 1

x = 1 print y

y = 1 print x

At the end of some executions:

 1 0

is printed on the screen on Power/ARM,
but not on x86.

18Friday, 13 January 2012

Compilers vs. programmers

19Friday, 13 January 2012

Compilers vs. programmers

Tension:

• the programmer wants to understand the code he writes

• the compiler and the hardware want to optimise it.

Which are the valid optimisations that the compiler or the hardware
can perform without breaking the expected semantics of a concurrent
program?

Which is the semantics of a concurrent program?

19Friday, 13 January 2012

This lecture

Programming language models

 1) defining the semantics of a concurrent programming language

 2) data-race freedom

 3) soundness of compiler optimisations

Previous lecture: hardware models

 1) why are industrial specs so often flawed?

 focus on x86, with a glimpse of Power/ARM

 2) usable models: x86-TSO, PowerARM

20Friday, 13 January 2012

A brief tour of compiler optimisations

21Friday, 13 January 2012

World of optimisations

 A typical compiler performs many optimisations.

gcc 4.4.1. with -O2 option goes through 147 compilation passes.

computed using -fdump-tree-all and -fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes with each pass
composed of one or more smaller passes.

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends

22Friday, 13 January 2012

http://www.azulsystems.com/blog/cliff-click/2009-04-
http://www.azulsystems.com/blog/cliff-click/2009-04-

World of optimisations

A typical compiler performs many optimisations.

– Common subexpression elimination
 (copy propagation, partial redundancy elimination, value numbering)
– (conditional) constant propagation
– dead code elimination
– loop optimisations
 (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
– vectorisation
– peephole optimisations
– tail duplication removal
– building graph representations/graph linearisation
– register allocation
– call inlining
– local memory to registers promotion
– spilling
– instruction scheduling

23Friday, 13 January 2012

World of optimisations

However only some optimisations change shared-memory traces:

– Common subexpression elimination
 (copy propagation, partial redundancy elimination, value numbering)
– (conditional) constant propagation
– dead code elimination
– loop optimisations
 (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
– vectorisation
– peephole optimisations
– tail duplication removal
– building graph representations/graph linearisation
– register allocation
– call inlining
– local memory to registers promotion
– spilling
– instruction scheduling

24Friday, 13 January 2012

Memory optimisations

Optimisations of shared memory can be classified as:

Eliminations (of reads, writes, sometimes synchronisation).

Reordering (of independent non-conflicting memory accesses).

Introductions (of reads – rarely).

25Friday, 13 January 2012

Eliminations

This includes common subexpression elimination, dead read
elimination, overwritten write elimination, redundant write elimination.

Irrelevant read elimination:

r=*x; C ! C
where r is not free in C.

Redundant read after read elimination:

r1=*x; r2=*x ! r1=*x; r2=r1

Redundant read after write elimination:

*x=r1; r2=*x ! *x=r1; r2=r1

26Friday, 13 January 2012

Reordering

Common subexpression elimination, some loop optimisations, code
motion.

Normal memory access reordering:

r1=*x; r2=*y ! r2=*y; r1=*x
*x=r1; *y=r2 ! *y=r2; *x=r1
r1=*x; *y=r2 ⇄ *y=r2; r1=*x

Roach motel reordering:

memop; lock m ! lock m; memop
unlock m; memop ! memop; unlock m

where memop is *x=r1 or r1=*x

27Friday, 13 January 2012

Memory access introduction

Can an optimisation introduce memory accesses?

Yes, but rarely:

Note that the loop body is not executed.

i = 0;
...
while (i != 0) {
 j = *x + 1;
 i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
 j = tmp + 1;
 i = i-1 }

→

28Friday, 13 January 2012

Memory access introduction

Can an optimisation introduce memory accesses?

Yes, but rarely:

Note that the loop body is not executed.

i = 0;
...
while (i != 0) {
 j = *x + 1;
 i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
 j = tmp + 1;
 i = i-1 }

→

Back to our question now:

Which is the semantics of a concurrent program?

28Friday, 13 January 2012

Naive answer: enforce sequential consistency

29Friday, 13 January 2012

Lamport, 1979.

Sequential consistency

Multiprocessors have a sequentially consistent shared memory when:

...the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program...

30Friday, 13 January 2012

Compilers, programmers & sequential consistency

31Friday, 13 January 2012

Compilers, programmers & sequential consistency

Simple and intuitive
programming model

31Friday, 13 January 2012

Compilers, programmers & sequential consistency

Simple and intuitive
programming model

Expensive
to implement

31Friday, 13 January 2012

Expensive
to implement

An SC-preserving compiler, obtained by
restricting the optimization phases in
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

And this study supposes that the hardware is SC.

32Friday, 13 January 2012

SC and hardware

The compiler must insert enough synchronising instructions to prevent
hardware reorderings. On x86 we have:

•MFENCE
 flush the local write buffer

•LOCK prefix (e.g. CMPXCHG)
 flush the local write buffer
 globally lock the memory

These consumes hundreds of cycles… ideally should be avoided.

Naively recovering SC on x86 incurs in a ~40% overhead.

33Friday, 13 January 2012

Expensive
to implement

An SC-preserving compiler, obtained by
restricting the optimization phases in
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

And this study supposes that the hardware is SC.

What is an SC-preserving compiler?

When is a compiler correct?

34Friday, 13 January 2012

When is a compiler correct?	

i.e. for any execution of the compiled program, there is an execution of
the source program with the same observable behaviour.

Intuition: we represent programs as sets of memory action traces,
where the trace is a sequence of memory actions of a single thread.

Intuition: the observable behaviour of an execution is the subtrace of
external actions.

A compiler is correct if any behaviour of the compiled
program could be exhibited by the original program.

35Friday, 13 January 2012

Example

Is the transformation from P1 to P2 correct (in an SC semantics)?

36Friday, 13 January 2012

Example

37Friday, 13 January 2012

Example

Executions of P1:

37Friday, 13 January 2012

Example

Executions of P1: Executions of P2:

37Friday, 13 January 2012

Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

37Friday, 13 January 2012

Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

It is correct to rewrite P1 into P2, but not the opposite!

38Friday, 13 January 2012

General CSE incorrect in SC

There is only one execution with a printing behaviour:

39Friday, 13 January 2012

General CSE incorrect in SC

But a compiler would optimise to:

40Friday, 13 January 2012

General CSE incorrect in SC

The only execution with a printing behaviour in the optimised code is:

So the optimisation is not correct.

41Friday, 13 January 2012

General CSE incorrect in SC

The observable behaviours are (note that 0 - 1 - 0 is not observable):

Our first example highlighted that CSE is incorrect in SC.

Here is another example.

42Friday, 13 January 2012

General CSE incorrect in SC

The observable behaviours are (note that 0 - 1 - 0 is not observable):

42Friday, 13 January 2012

General CSE incorrect in SC

But a compiler would optimise as:

43Friday, 13 January 2012

General CSE incorrect in SC

Let's compare the behaviours of the two programs:

44Friday, 13 January 2012

General CSE incorrect in SC

Let's compare the behaviours of the two programs:

The optimised program exhibits a new, unexpected, behaviour.

44Friday, 13 January 2012

Reordering incorrect

Again, the optimised program exhibits a new behaviour:

45Friday, 13 January 2012

Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

The basic idea: whenever we perform the read r1 = *x in the
optimised program, we perfom both reads in the source program.

(More on this later)

46Friday, 13 January 2012

Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

The basic idea: whenever we perform the read r1 = *x in the
optimised program, we perfom both reads in the source program.

(More on this later)

Can we define a model that:

1) enables more optimisations than SC, and

2) retains the simplicity of SC?

46Friday, 13 January 2012

Alternative answer: data-race freedom

47Friday, 13 January 2012

Data-race freedom

Our examples again:

•the problematic transformations
 (e.g. swapping the two writes in
 thread 0) do not change the meaning of single-threaded programs;

•the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

48Friday, 13 January 2012

Data-race freedom

Our examples again:

•the problematic transformations
 (e.g. swapping the two writes in
 thread 0) do not change the meaning of single-threaded programs;

•the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0
...intuition...

Programming languages provide

synchronisation mechanisms

if these are used (and implemented) correctly,
we might avoid the issues above...

48Friday, 13 January 2012

 Prohibit data races

Defined as follows:

•two memory operations conflict if they access the same memory
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting
operations corresponding to different threads are adjacent (maybe
executed concurrently).

Example: a data race in the example above:

The basic solution Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

49Friday, 13 January 2012

 Prohibit data races

Defined as follows:

•two memory operations conflict if they access the same memory
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting
operations corresponding to different threads are adjacent (maybe
executed concurrently).

Example: a data race in the example above:

The basic solution

The definition of data race quantifies only

over the sequential consistent executions

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

49Friday, 13 January 2012

How do we avoid data races? (focus on high-level languages)

•Locks
 No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) calls
from other threads balance.

•Atomic variables
 Allow concurrent access “exempt” from data races. Called volatile in Java.

Example:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

50Friday, 13 January 2012

This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();
51Friday, 13 January 2012

This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

51Friday, 13 January 2012

This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

Compiler/hardware can continue to reorder accesses

Intuition:
compiler/hardware do not know about threads, but only

racing threads can tell the difference!

51Friday, 13 January 2012

Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

52Friday, 13 January 2012

Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!

The writes cannot be executed in any SC execution, so they cannot
participate in a data race.

52Friday, 13 January 2012

Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!

The writes cannot be executed in any SC execution, so they cannot
participate in a data race.

Data-race freedom is not the ultimate panacea

- the absence of data-races is hard to verify / test (undecidable)

- imagine debugging: my program ended with a wrong result, then
either my program has a bug OR it has a data-race

52Friday, 13 January 2012

Validity of compiler optimisations, summary

53Friday, 13 January 2012

Validity of compiler optimisations, summary

 Jaroslav Sevcik

 Safe Optimisations for Shared-Memory Concurrent Programs

PLDI 2011

53Friday, 13 January 2012

Compilers, programmers & data-race freedom

54Friday, 13 January 2012

Compilers, programmers & data-race freedom

Can be implemented
efficiently

54Friday, 13 January 2012

Compilers, programmers & data-race freedom

Intuitive programming
model (but detecting

races is tricky!)

Can be implemented
efficiently

54Friday, 13 January 2012

Data-race freedom, formalisation

55Friday, 13 January 2012

A toy language: semantics

location, x shared memory location
register, r thread-local variable
integer, n integers
thread_id, t thread identifier

statement, s ::= statements
 | r := x read from memory
 | x := r write to memory
 | r := n read from memory
 | lock lock
 | unlock unlock
 | print r output

program, p ::= s;…;s a program is a sequence of statements

system ::= concurrent system

 | t0:p0 | … | tn:pn parallel composition of n threads

56Friday, 13 January 2012

A toy language: semantics

location, x shared memory location
register, r thread-local variable
integer, n integers
thread_id, t thread identifier

statement, s ::= statements
 | r := x read from memory
 | x := r write to memory
 | r := n read from memory
 | lock lock
 | unlock unlock
 | print r output

program, p ::= s;…;s a program is a sequence of statements

system ::= concurrent system

 | t0:p0 | … | tn:pn parallel composition of n threads

We work with a toy language, but all this scales to the full

Java Memory Model.

56Friday, 13 January 2012

Traces and tracesets

Definition [trace]: a sequence of memory operations (read, write, thread
start, I/O, synchronisation). Thread start is always the first action of
thread. All actions in a trace belong to the same thread.

Definition [traceset]: a traceset is a prefix-closed set of traces.

Sample traceset:

57Friday, 13 January 2012

Traces and tracesets

Definition [trace]: a sequence of memory operations (read, write, thread
start, I/O, synchronisation). Thread start is always the first action of
thread. All actions in a trace belong to the same thread.

Definition [traceset]: a traceset is a prefix-closed set of traces.

Sample traceset:

Remarks:

 1. Reads can read arbitrary values from memory.

 2. Tracesets should not be confused with interleavings.

 3. Tracesets do not enforce receptiveness or determinism:

 is also a valid traceset for the example below.

57Friday, 13 January 2012

Associate tracesets to toy language programs

< S, r := x; s > < S[r=v], s >

< S, x := r; s > < S, s >

< S, r := n; s > < S[r=n], s >

< S, lock; s > < S, s >

< S, unlock; s > < S, s >

< S, print r; s > < S, s >

< S, t0:p0 | … | tn:pn > < S, pi >

R[x=v]

W[x=S(r)]

τ

L

U

X(S(r))

S(i)

58Friday, 13 January 2012

Tracesets and interleavings

Definition [interleaving]: an interleaving is a sequence of thread-identifier-
action pairs.

Example:

Given an interleaving I, the trace of tid in I is the sequence of actions of
thread tid in I, e.g.:

 trace 1 I’ = [S(1), R[v=0], X(0)].

Conversely, given a traceset, we can compute all the well-formed
interleavings (called executions)... (next slide)

59Friday, 13 January 2012

Tracesets and interleavings

An interleaving I is an execution of a traceset T if:

- for all tid, trace tid I ∈ T (traces belong to the traceset)

- tids correspond to entry points S(tid)

- lock / unlock alternates correctly

- each read sees the most recent write to the same location (read/from).

(The last property enforce the sequentially consistent semantics for memory accesses).

60Friday, 13 January 2012

Tracesets and interleavings

An interleaving I is an execution of a traceset T if:

- for all tid, trace tid I ∈ T (traces belong to the traceset)

- tids correspond to entry points S(tid)

- lock / unlock alternates correctly

- each read sees the most recent write to the same location (read/from).

(The last property enforce the sequentially consistent semantics for memory accesses).

Remarks:

 1. Interleavings order totally the actions, and do not keep track
of which actions happen in parallel.

 2. It is however possible to put more structure on interleavings,
and recover informations about concurrency.

60Friday, 13 January 2012

Happens-before

Definition [program order]: program order, <po, is a total order over the
actions of the same thread in an interleaving.

Definition [synchronises with]: in an interleaving I, index i synchronises-
with index j, i <sw j, if i < j and A(Ii) = U (unlock), A(Ij) = L (lock).

Definition [happens-before]: Happens-before is the transitive closure of
program order and synchronises with.

61Friday, 13 January 2012

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

Examples of happens before

 0:W[y=1], 0:L, 0:W[x=1], 0:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1)

po po po po po po po

swhb

0:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U

po popo po

po

swhb

S(tid) actions omitted.
62Friday, 13 January 2012

Data-race freedom

Definition [data-race-freedom]: A traceset is data-race free if none of
its executions has two adjacent conflicting actions from different
threads.

Equivalently, a traceset is data-race free if in all its executions all pairs of
conflicting actions are ordered by happens-before.

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

0:W[y=1], 1:R[x=0], 0:W[x=1]

po

Two conflicting accesses
not related by happens before.A racy program

63Friday, 13 January 2012

Data-race freedom: equivalence of definitions

Given an execution

of a traceset T where [a] and [b] are the first conflicting actions not
related by happen-before, we build the interleaving

where β' are all the actions from β that strctly happen-before [b].

It remains to show that is an execution of T.

The formal proof is tedious and not easy (see Boyland 2008, Bohem & Adve 2008,
Sevcik), here will give the intuitions of the construction on an example.

α ++ [a] ++ β ++ [b]

α ++ β' ++ [a] ++ [b]

α ++ β' ++ [a] ++ [b]

64Friday, 13 January 2012

Data-race freedom: equivalence of definitions

Thread 1: x := 1; r1 := x; print r1;
Thread 2: r2 := z; print r2; x := 2;

read first

write first

65Friday, 13 January 2012

(Sketch of)
 proof of correctness of redundant read removal

66Friday, 13 January 2012

Redundant read after read

Given a trace t we say that index i ∈ dom(t) is a redundant read after
read if ti = tj = R[l=v] for some v, l, and j < i.

Given traces t and t', the trace t' is an elimination of t if there is a set of
indexes S ∈ dom(T) such that t' = t|S and all i ∈ dom(t) \ S are redundant
reads after read.

Example: [R[x=3], X(3), R[x=3], X(3)] ⇒ [R[x=3], X(3), X(3)]

Elimination lifts to tracesets: a traceset T’ is an elimination of a traceset
T if each trace t' in T’ is an elimination of some trace in T.

Exercice: compute the traceset T of r1 = x; print x; r2 = x; print x
and find a traceset which is an elimination of T.

67Friday, 13 January 2012

Exercice

Compute the traceset T of

 Thread 1 : r1 = x; print r1; r2 = x; print r2
 Thread 2 : x = 2

and find a traceset which is an elimination of T.

68Friday, 13 January 2012

Exercice

Compute the traceset T of

 Thread 1 : r1 = x; print r1; r2 = x; print r2
 Thread 2 : x = 2

and find a traceset which is an elimination of T.

Answer: let T be the prefix closure of

and let T' be (the prefix closure of) the following elimination of T:

{ [S(1), R[x=v1] , X(v1), R[x=v2], X(v2)] | forall v1,v2 } ∪ { [S(2), W[x=2] }

{ [S(1), R[x=v1] , X(v1), X(v1)] | forall v1 } ∪ { [S(2), W[x=2] }

r1

69Friday, 13 January 2012

Safety of redundant read after read

We show that:

1) any execution of the transformed traceset has the same behaviour as
some execution of the original traceset, provided that the original
program was data race free;

2) the transformations preserve data race freedom.

We take an arbitrary execution of the transformed program, and construct an execution of
the original program that has the same behaviour. We decompose the execution of the
transformed program into traces for each thread, we compute untrasformed traces of the
original traceset, and then compose the untrasformed traces back into an untrasformed
execution that preserve the behaviour. Now we must prove that either the constructed
interleaving is an execution of the original traceset, or there must have been a data race.

Also prove that the transformed program is drf, as the happens-before orders is
somewhat preserved.

70Friday, 13 January 2012

Consider an arbitrary interleaving of the transformed traceset

for instance,

Project into the thread traces:

Perform the thread-wise unelimination:

Rebuild an execution (care required to preserve read-from):

that is an interleaving of the original traceset:

{ [S(1), R[x=v1] , X(v1), X(v1)] | forall v1 } ∪ { [S(2), W[x=2] }

 1:S(1), 1:R[x=0], 2: S(2), 2:W[x=2], 1:X(0), 1:X(0)

 1:S(1), 1:R[x=0], 1:X(0), 1:X(0) 2: S(2), 2:W[x=2]

 2: S(2), 2:W[x=2] 1:S(1), 1:R[x=0], 1:X(0), 1:R[x=0], 1:X(0)

1:S(1), 1:R[x=0], 1:X(0), 1:R[x=0], 2: S(2), 2:W[x=2], 1:X(0)

{ [S(1), R[x=v1] , X(v1), R[x=v2], X(v2)] | forall v1,v2 } ∪ { [S(2), W[x=2] }

71Friday, 13 January 2012

Rebuild an execution (care required to preserve read-from):

that is an interleaving of the original traceset:

Key property: it is always possible to rebuild the execution, reasoning as
we have done to prove the equivalence of the two data race free
formulations,e.g.:

 2: S(2), 2:W[x=2] 1:S(1), 1:R[x=0], 1:X(0), 1:R[x=0], 1:X(0)

1:S(1), 1:R[x=0], 1:X(0), 1:R[x=0], 2: S(2), 2:W[x=2], 1:X(0)

72Friday, 13 January 2012

Defining programming language memory models

73Friday, 13 January 2012

Option 1

Don't.

No concurrency.

 Poor match for current trends

74Friday, 13 January 2012

Option 2

Don't.

No shared memory

A good match for some problems (see Erlang, MPI, …)

75Friday, 13 January 2012

Option 3

Don't.

But language ensures data-race freedom

Possible (e.g. by ensuring data accesses protected by associated
locks, or fancy effect type systems), but likely to be inflexible.

76Friday, 13 January 2012

Option 3

Don't.

But language ensures data-race freedom

Possible (e.g. by ensuring data accesses protected by associated
locks, or fancy effect type systems), but likely to be inflexible.

 What about these fancy racy algorithms?

77Friday, 13 January 2012

Option 4

Don't.

Leave it (sort of) up to the hardware

Example: MLton (a high performance ML-to-x86 compiler, with
concurrency extensions).

Accesses to ML refs will exhibit the underlying x86-tso behaviour (at
least they are atomic).

78Friday, 13 January 2012

Option 5

Do.

Use data race freedom as a definition

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way

 Sarita Adve & Mark Hill, 1990

79Friday, 13 January 2012

Option 5

Do.

Use data race freedom as a definition

Pro:
 - simple
 - strong guarantees for most code
 - allows lots of freedom for compiler and hardware optimisations

Cons:
 - undecidable premise
 - can't write racy programs (escape mechanisms?)

80Friday, 13 January 2012

Data race freedom as a definition

• Posix is sort-of DRF

Applications shall ensure that access to any memory location by
more than one thread of control (threads or processes) is
restricted such that no thread of control can read or modify a
memory location while another thread of control may be
modifying it. Such access is restricted using functions that
synchronize thread execution and also synchronize memory with
respect to other threads.	

Single Unix SPEC V3 & others

81Friday, 13 January 2012

Data race freedom as a definition

• Core of the C++11 standard.

Hans Boehm & Sarita Adve, PLDI 2008.

• Part of the JSR-133 standard.

Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.

82Friday, 13 January 2012

Isn't this all obvious?

83Friday, 13 January 2012

Isn't this all obvious?

Perhaps it should have
been.

83Friday, 13 January 2012

Isn't this all obvious?

Perhaps it should have
been.

But a few things went
wrong in the past...

83Friday, 13 January 2012

1. Uncertainity about details

Is the outcome r1=r2=1 allowed?

r1 := [x];
if (r1=1)
 [y] := 1

r2 := [y];
if (r2=1)
 [x] := 1

||

Initially x = y = 0

84Friday, 13 January 2012

1. Uncertainity about details

Is the outcome r1=r2=1 allowed?

r1 := [x];
if (r1=1)
 [y] := 1

r2 := [y];
if (r2=1)
 [x] := 1

||

Initially x = y = 0

• If the threads speculate that the values of x and y are 1, then each
thread writes 1, validating the other thread speculation;

• such execution has a data race on x and y;

• however programmers would not envisage such execution when
they check if their program is data-race free…

84Friday, 13 January 2012

2. Compiler transformations introduce data races

•Many compilers perform transformations similar to the one above
when a is declared as a bit field;

•May be visible to client code since the update to x.b by T2 may be
overwritten by the store to the complete structure x.

And many more interesting examples...

struct s
 { char a; char b; } x;

Thread 1: Thread 2:

x.a = 1; x.b = 1;

Thread 1 is not equivalent to:
 struct s tmp = x;
 tmp.a = 1;
 x = tmp;

FORBIDDEN

85Friday, 13 January 2012

2b. Compiler transformations introduce data races

•The vectorisation above might introduce races, but

•most compilers do things along these lines (introduce speculative stores).

for (i = 1; i < N; ++i)
 if (a[i] != 1) a[i] = 2;

for (i = 1; i < N; ++i)
 a[i] = ((a[i] != 1)? 2 : a[i]);

FORBIDDEN

86Friday, 13 January 2012

3. "escape" mechanisms

Some frequently used idioms (atomic counters, flags, …) do not require
sequentially consistency.

Programmers wants optimal implementations of these idioms.

Speed, much more than safety, makes programmers happier.

87Friday, 13 January 2012

Data race freedom as a definition

• Core of the C++11 standard.

Hans Boehm & Sarita Adve, PLDI 2008.

 with some escape mechanism called "low level atomics".

Mark Batty & al., POPL 2011.

• Part of the JSR-133 standard.

Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.

DRF gives no guarantees for untrusted code: a disaster for Java, which
relies on unforgeable pointers for its security guarantees.

JSR-133 is DRF + some out-of-thin-air guarantees for all code.

88Friday, 13 January 2012

A word on JSR-133

Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

89Friday, 13 January 2012

Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements.

Programs should never read values that cannot be written by the
program:

the only possible result should be printing two zeros because no other
value appears in or can be created by the program.

90Friday, 13 January 2012

Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements.

Programs should never read values that cannot be written by the
program:

the only possible result should be printing two zeros because no other
value appears in or can be created by the program.

91Friday, 13 January 2012

Out-of-thin-air

Under DRF, it is correct to speculate on values of writes:

The transformed program can now print 42. This will be theoretically
possible in C++11, but not in Java.

The program above looks benign, why does Java care so much about
out-of-thin-air?

92Friday, 13 January 2012

Out-of-thin-air

Out-of-thin-air is not so bening for references. Compare:

What should r2.run() call?

If we allow out-of-thin-air, then it could do anything!

and

r2.run()

93Friday, 13 January 2012

Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

A word on JSR-133

The model is intricate, and fails to meet goal 3.

An example: should the source program print 1? can the optimised
program print 1?

Jaroslav Ševčík, David Aspinall, ECOOP 2008

x = y = 0x = y = 0

r1 = x
y = r1

r2 = y
x=(r2==1)?y:1
print r2

x = y = 0x = y = 0

r1 = x
y = r1

x = 1
r2 = y
print r2

HotSpot Optimization

94Friday, 13 January 2012

A word on C++11 low-level atomics
std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {
 if (0 == index) {
 flag0.store(1, std::memory_order_relaxed);
 turn.exchange(1, std::memory_order_acq_rel);

 while (flag1.load(std::memory_order_acquire)
 && 1 == turn.load(std::memory_order_relaxed))
 std::this_thread::yield();
 } else {
 flag1.store(1, std::memory_order_relaxed);
 turn.exchange(0, std::memory_order_acq_rel);

 while (flag0.load(std::memory_order_acquire)
 && 0 == turn.load(std::memory_order_relaxed))
 std::this_thread::yield();
 }
}

void unlock(unsigned index) {
 if (0 == index) {
 flag0.store(0, std::memory_order_release);
 } else {
 flag1.store(0, std::memory_order_release);
 }
}

Atomic variable declaration

New syntax for
memory accesses

Qualifier

95Friday, 13 January 2012

Low-level atomics

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

96Friday, 13 January 2012

MO_SEQ_CST

The compiler must ensure that MO_SEQ_CST accesses have
sequentially consistent semantics.

Thread 0 Thread 1

x.store(1,MO_SEQ_CST) y.store(1,MO_SEQ_CST)

r1 = y.load(MO_SEQ_CST) r2 = x.load(MO_SEQ_CST)

The program above cannot end with r1 = r2 = 0.

Sample compilation on x86:

store: MOV; MFENCE
load: MOV

Sample compilation on Power:

store: HWSYNC; ST
load: HWSYNC; LD; CMP; BC; ISYNC

97Friday, 13 January 2012

MO_RELEASE / MO_ACQUIRE

Supports a fast implementation of the message passing idiom:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(MO_ACQUIRE)

y.store(1,MO_RELEASE) r2 = x.load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86:

store: MOV
load: MOV

Sample compilation on Power:

store: LWSYNC; ST
load: LD; CMP; BC; ISYNC

Accesses to the data structure can be reordered/optimised (MO_RELAXED).

98Friday, 13 January 2012

MO_RELEASE / MO_CONSUME

Supports a fast implementation of the message passing idiom on Power:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(x,MO_CONSUME)

y.store(&x,MO_RELEASE) r2 = (*x).load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86:

store: MOV
load: MOV

Sample compilation on Power:

store: LWSYNC; ST
load: LD

The two loads have an address dependency, Power won't reorder them.

99Friday, 13 January 2012

The end?

C++11 is not yet implemented by mainstream compilers, and low-level
atomics are hard to use (just google for low-level atomics).

How are interesting concurrent algorithms currently implemented? Usually C
plus asm!

Example: lockfree-lib, by Keir Fraser, starts with some macro definitions...

100Friday, 13 January 2012

The end?

C++11 is not yet implemented by mainstream compilers, and low-level
atomics are hard to use (just google for low-level atomics).

How are interesting concurrent algorithms currently implemented? Usually C
plus asm!

Example: lockfree-lib, by Keir Fraser, starts with some macro definitions...

In some cases, it would be better to have a
language whose semantics reflects the hardware
reorderings, and a semantic-preserving compiler.

(see our CompCertTSO project)

100Friday, 13 January 2012

A word on CompCertTSO

Idea: the programming language memory model faithfully mimics the
processor model.

Intel processors implement the x86-TSO MM

TSO
The C-TSO programming language:
 a C-like language with a TSO semantics
 for memory accesses.

A semantic preserving compiler,
 CompCertTSO

101Friday, 13 January 2012

Our we might want radically different

programming languages!

(Radically different language = radically different challenges?)

Lecture 1 (5/1/12).
 Runtimes.

Lecture 2 (19/1/12).
 Compilation of synchronous data-flow languages toward Java futures.

102Friday, 13 January 2012

Resources

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

Starting point:

J. Sevcik

Safe Optimisations for Shared Memory Concurrent Programs

PLDI 2011

H. Bohem

Threads Cannot Be Implemented as a Library

PLDI 2005

103Friday, 13 January 2012

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html
http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

