
Proof methods for concurrent programs

3. Owicki-Gries, Rely-Guarantee

Francesco Zappa Nardelli

INRIA Paris-Rocquencourt, MOSCOVA project-team

 francesco.zappa_nardelli@inria.fr

 http://moscova.inria.fr/~zappa/teaching/mpri/2010/

1Friday, 7 January 2011

mailto:francesco.zappa_nardelli@inria.fr
mailto:francesco.zappa_nardelli@inria.fr
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

Warm-up: concurrent separation logic

• Threads must be interference free:

{ P1 } C1 { Q1} { P2 } C2 { Q2 }

{ P1 * P2 } C1 || C2 { Q1 * Q2 }

• A resource invariant RIr is associated to each resource. Acquiring the
resource imports the resource invariant in the local scope.

{ (P * RIr) ⋀ S } C { Q * RIr}

{ P } with r when S do C { Q }

• A careful design of the resource invariants is the key to enable threads to
share datas.

2Friday, 7 January 2011

Warm-up: simple exercices

Prove the following triples, or explain why they cannot be proved.

{ empty }
 x := cons(3);
 z := cons(3);
 [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 }

 { y = x+1 }
 x := 4 || y := y+1;
 { y = x+2 }

 { empty }
 x := 4 || x := 5;
 { empty }

3Friday, 7 January 2011

Warm-up: simple exercices

Prove the following triples, or explain why they cannot be proved.

{ empty }
 x := cons(3);
 z := cons(3);
 [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 }

 { y = x+1 }
 x := 4 || y := y+1;
 { y = x+2 }

 { empty }
 x := 4 || x := 5;
 { empty }

{ P1 } C1 { Q1} { P2 } C2 { Q2 }

{ P1 * P2 } C1 || C2 { Q1 * Q2 }

if modifies(C1) ∩ fv(P2) = modifies(C2) ∩ fv(P1) = ∅, and
 modifies(C1) ∩ fv(C2) = modifies(C2) ∩ fv(C1) = ∅.

3Friday, 7 January 2011

Warm-up: a simple concurrent memory allocator

We implement a simple memory allocator using a shared list of memory cells.

 init() { f := nil }

 resource mm (f)

The resource invariant RImm is list f, where list f ≡ f = nil ⋁ ∃ j. f ⟼ j * list j.

alloc attempts to return a cell
from the list. If the list is
empty, it invokes cons.

dealloc puts the cell back into
the list.

alloc(x) {
 with mm when(true) do {
 if f=nil then x := cons(nil);
 else { x := f; f := [x]; }}
}

dealloc(y) {
 with mm when(true) do {
 [y] := f; f := y; }
}

4Friday, 7 January 2011

Warm-up: a simple concurrent memory allocator

We implement a simple memory allocator using a shared list of memory cells.

 init() { f := nil }

 resource mm (f)

The resource invariant RImm is list f, where list f ≡ f = nil ⋁ (∃ j. f ⟼ j * list j).

alloc(x) {
 with mm when(true) do {
 if f=nil then x := cons(nil);
 else { x := f; f := [x]; }}
}

dealloc(y) {
 with mm when(true) do {
 [y] := f; f := y; }
}

Prove that:

• { empty } alloc(x) { x ⟼ _ }

• { y ⟼ _ } dealloc(y) { empty }

5Friday, 7 January 2011

Warm-up: clients of the memory allocator

Prove that

 { empty }

 alloc(x); [x] := 13; dealloc(x) || alloc(y); [y] := 27; dealloc(y)

 { empty }

Observe that this proof does not mention the resource invariant (or resource).

We know that:

• { empty } alloc(x) { x ⟼ _ }

• { y ⟼ _ } dealloc(y) { empty }

6Friday, 7 January 2011

Disclaimer

In 1965, Dijkstra introduces the parbegin statement.

In 1969, Hoare proposes a formal system of axioms and inference rules for the
verification of imperative sequential programs.

In 1976, Susan Owicki and David Gries extend Hoare’s system for the
verification of parallel programs with shared variables.

In 1981, Cliff Jones introduces the rely-guarantee method, a compositional
version of the Owicki-Gries system.

Around year 2000, Peter O'Hearn introduces concurrent separation logic.

Today we travel back in time:

we ignore pointers and memory allocation (and separation logic).

7Friday, 7 January 2011

Owicki-Gries reasoning

8Friday, 7 January 2011

Can we reason about interfering processes?

Separation logic is about absence of interference:

• specifications are simple because they describe only the state that the
program accesses;

• difficult to deal with interference.

How to reason about interferfering processes? For instance, consider:

P1 :: x := x + 1 || P2 :: x := x + 2 .

Intuitively, if assignement is atomic and x initially holds 0, this program ends
with x = 3.

9Friday, 7 January 2011

A rule for parallel composition

Can we derive a specification of the parallel composition of two commands
from the specifications of each command?

A first attempt:

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }

{ P1 ⋀ P2 } C1 || C2 { Q1 ⋀ Q2 }

Intuition: if we satisfy the preconditions of C1 and C2, their postconditions will be
satisfied too.

10Friday, 7 January 2011

Unsoundness of the first attempt

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }

{ P1 ⋀ P2 } C1 || C2 { Q1 ⋀ Q2 }

Consider:

 { y = 1 } x := 0 { y = 1 }

 { T } y := 2 { T }

It is not true that

 { y = 1 ⋀ T } x := 0 || y := 2 { y = 1 ⋀ T }

11Friday, 7 January 2011

Unsoundness of the first attempt

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }

{ P1 ⋀ P2 } C1 || C2 { Q1 ⋀ Q2 }

Consider:

 { y = 1 } x := 0 { y = 1 }

 { T } y := 2 { T }

It is not true that

 { y = 1 ⋀ T } x := 0 || y := 2 { y = 1 ⋀ T }

11Friday, 7 January 2011

Second attempt

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }

{ P1 ⋀ P2 } C1 || C2 { Q1 ⋀ Q2 }

if mod(C1) ∩ free(P2,Q2) = ∅ and mod(C2) ∩ free(P1,Q1) = ∅.

12Friday, 7 January 2011

Second attempt

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }

{ P1 ⋀ P2 } C1 || C2 { Q1 ⋀ Q2 }

if mod(C1) ∩ free(P2,Q2) = ∅ and mod(C2) ∩ free(P1,Q1) = ∅.

Still unsound. Consider:

 { z = 0 } x := z; y := x { y = 0 }

 { T } x := 2 { T }

It does not hold that

 { z = 0 ⋀ T } x := z; y := x || x := 2 { y = 0 ⋀ T }

Diagnose: x := 2 interferes with the proof of { z = 0 } x := z; y := x { y = 0 }.

{ x = 0 }

12Friday, 7 January 2011

Interference

The intuition suggests that the command x := 2 interferes with { x = 0 }.

Question: does the command bal := bal + 1 interfere with { bal > 1000 } ?

What does interfere really means?

1) mod(C) ∩ free(P) = ∅

 this will give a sound logic, but it is over-restrictive…

2) ⊢ { P } C { P }

 Intuition: the assertion P is not invalidated by the execution of C.

 Alternative intuition: if a thread went to a state where P holds, it is not a
problem if another thread executes C.

 Example: { bal > 1000 } bal := bal + 1 { bal > 1000 }.

13Friday, 7 January 2011

Interference freedom

Let a proof outline ∆ of {P} C {Q} be given. A critical formula of ∆ is either Q or a
formula Q' appearing immediately before some statement in ∆.

Let proof outlines ∆1 of {P1} C1 {Q1} and ∆2 of {P2} C2 {Q2} be given.

Definition: ∆2 does not interfere with ∆1, if for every critical formula P of ∆1 and
triple {P2} C2 {Q2} appearing in ∆2, it holds {P ⋀ P2} C2 {P}.

Remark: need consider only those C2 that are assignments.

We say that ∆1 and ∆2 are interference free, if ∆1 and ∆2 do not interfere with
each other.

14Friday, 7 January 2011

Owicki-Gries proof rule

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }

{ P1 ⋀ P2 } C1 || C2 { Q1 ⋀ Q2 }

if the proofs of { P1 } C1 { Q1 } and { P2 } C2 { Q2 } are interference free.

15Friday, 7 January 2011

Owicki & Gries method (on a simple example)

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

• Annotate an assertion to every control point, and show that the processes are
locally correct (as if they were run in isolation) w.r.t. these assertions.

Let P1 = (x = 0 ⋁ x = 2), Q1 = (x = 1 ⋁ x = 3),

Let P2 = (x = 0 ⋁ x = 1), Q2 = (x = 2 ⋁ x = 3). We must verify that

 { P1 } x := x + 1 { Q1 }

 { P2 } x := x + 2 { Q2 }

• Prove interference freedom: every assertion used in the local verification is
shown not invalidated by the execution of the other process.

{ P1 ⋀ P2 } x := x + 2 { P1 } { P2 ⋀ P1 } x := x + 1 { P2 }

{ Q1 ⋀ P2 } x := x + 2 { Q1 } { Q2 ⋀ P1 } x := x + 1 { Q2 }

16Friday, 7 January 2011

Example

 P1:: bal := bal + dep

 P2:: if bal > 1000 then credit := 1 else credit := 0

Proof goal:

 { bal = B ⋀ dep > 0 }
 P1 || P2

 { bal = B + dep ⋀ dep > 0 ⋀ (credit = 1 ⇒ bal > 1000)}

17Friday, 7 January 2011

Proof outline Δ1

Proof outline Δ1 of

{ bal = B ⋀ dep > 0 } bal := bal + dep { bal = B + dep ⋀ dep > 0 }

{ bal = B ⋀ dep > 0 }

{ bal + dep = B + dep ⋀ dep > 0 }

 bal := bal + dep

{ bal = B + dep ⋀ dep > 0 }

Critical formulas:

 P1,1 : bal + dep = B + dep ⋀ dep > 0

 P1,2 : bal = B + dep ⋀ dep > 0

18Friday, 7 January 2011

Proof outline Δ2

{ T } if bal > 1000 then credit := 1 else credit := 0 { credit=1 ⇒ bal>1000 }

{ T }
if bal > 1000 then
 { T ⋀ bal > 1000 }
 { 1 = 1 ⇒ bal > 1000 }

 credit := 1
 { credit = 1 ⇒ bal > 1000 }

else
 { T ⋀ bal <= 1000 }
 { 0 = 1 ⇒ bal > 1000 }

 credit := 0
 { credit = 1 ⇒ bal > 1000 }

{ credit = 1 ⇒ bal > 1000 }

Critical formulas:

P2,1 : 1 = 1 ⇒ bal > 1000

P2,2 : 0 = 1 ⇒ bal > 1000

P2,3 : { credit = 1 ⇒ bal > 1000 }

19Friday, 7 January 2011

Proving interference freedom

Need to prove, for each i {1,2} and j {1,2,3}:

 1. { P1,i ⋀ P2,1 } credit := 1 { P1,i }

 2. { P1,i ⋀ P2,2 } credit := 0 { P1,i }

 3. { P2,j ⋀ P1,1 } bal := bal + dep { P2,j }

Triples of type 1 and 2 hold trivially since no P1,i mentions credit.

The type 3 goal { P2,2 ⋀ P1,1 } bal := bal + dep { P2,j } is trivially valid

Remain to prove:

• {(1=1 ⇒ bal > 1000) ⋀ bal + dep = B + dep ⋀ dep > 0} bal := bal + dep {1=1

=> bal > 1000 }

• {(credit = 1 ⇒ bal > 1000) ⋀ bal + dep = B + dep ⋀ dep > 0} bal := bal + dep

{credit = 1 ⇒ bal > 1000}

7 proof goals!

20Friday, 7 January 2011

Remarks

• If P1 had been withdrawal

bal := bal - wdr

where wdr > 0, then the last step of the proof would not have gone through.

• A program which never grants credit would satisfy the specification.

• Same for a postcondition of the form

(credit = 1 ⇒ bal > 1000) ⋀ (credit = 0 ⇒ bal ≤ 1000)

but this would lead to a violation of interference freedom. Why?

21Friday, 7 January 2011

Exercise

Prove that:

 { x = 0 } x := x + 1 || x := x + 1 { x = 2 }

22Friday, 7 January 2011

Exercise

Prove that:

 { x = 0 } x := x + 1 || x := x + 1 { x = 2 }

Did you find this unreasonably difficult? Do not worry (and read on)...

22Friday, 7 January 2011

Auxiliary variables

Let C be a program and A a set of variables in C.

A is a set of auxiliary variables of C if

• variables in A occurs only in assignments
 not in assignment guards or tests in loops or conditionals

• If x ∈ A occurs in an assignment (x1,...,xn) := (E1,...,En) then x occurs in Ei
only when xi ∈ A
 variables in A cannot influence variables outside A

• erase(C,A) is defined as C where all assignments to auxillary variables in A, and
all assignments () := (), have been erased.

23Friday, 7 January 2011

Auxiliary variable rule

{ P } C { Q }

{ P } C' { Q }

if there is a set A of auxiliary variables of C such that

• C' = erase(C,A), and

• Q does not mention variables in A.

Auxiliary variables are often used to record the state of the
computation at some point in time.

24Friday, 7 January 2011

Exercise

 { x = 0 } x := x + 1 || x := x + 1 { x = 2 }

Idea: Add auxillary variables done1, done2 to catch when each of the assignments
have been executed. Initially (done1, done2) := (0,0).

Proof outline ∆1:
 { done1 = 0 ⋀ (done2 = 0 ⇒ x = 0) ⋀ (done2 = 1 ⇒ x = 1) }

 (x,done1) := (x+1,1)

 { done1 = 1 ⋀ (done2 = 0 ⇒ x = 1) ⋀ (done2 = 1 ⇒ x = 2) }

Proof outline ∆2:
 { done2 = 0⋀ (done1 = 0 ⇒ x = 0) ⋀ (done1 = 1 ⇒ x = 1) }

 (x,done2) := (x+1,1)

 { done2 = 1 ⋀ (done1 = 0 ⇒ x = 1) (done1 = 1 ⇒ x = 2) }

25Friday, 7 January 2011

Exercise (ctd.)

Check that ∆1 and ∆2 are interference free. By the Owicki-Gries rule and by the
rule of consequence we obtain

{ x=0 ⋀ done1 = 0 ⋀ done2 = 0 } C' { x = 2 }

where C' = (x,done1) := (x+1,1) || (x,done2) := (x+1,1).

Observe that erase(C') = x := x + 1 || x := x + 1.

By Hoare logic reasoning:

{x = 0} (done1,done2) := (0,0) ; C' {x = 2} .

By the auxillary variable rule:

{x = 0} x := x + 1 || x := x + 1 {x = 2} .

26Friday, 7 January 2011

Great but…

requires reasoning on the whole program.

Owicky-Gries

Uff, sequential reasoning is hard enough!

I would prefer to prove the correctness of a
concurrent program one thread at a time,
as we did for concurrent separation logic.

27Friday, 7 January 2011

Rely-Guarantee reasoning

28Friday, 7 January 2011

Owicki & Gries method from a different perspective

Consider again { x = 0 } x := x + 1 || x := x + 2 { x = 3 }.

In the example, the transition of P2 :: x := x + 2 (which is the environment of
P1), is constrained by the predicate

(x = 0 ⋀ x = 2) ⋁ (x = 1 ⋀ x = 3)

where x and x refer to program states before and after a transition.

This fact suffices to prove that the assertion used in P2's local proof are not
invalidated by interference from P1.

If we record interference information in a specification,
we can use it in the verification of constituent processes.

No additional interference freedom test will be needed.

29Friday, 7 January 2011

Binary relations vs. predicates

We will specify how a program changes the state by means of binary relations.

Recall that a (unary) predicate P describes a set of system states.

A binary relation describe a set of actions (i.e. transitions) of the system. These
are two-state predicates that relate the state just after the action (denoted σ) to
the state just before the action (denoted σ).

We will often call such binary relations actions.

Example: in the previous exercise, the transitions of P1:: x := x + 1 can be
described by the action:

{ (x=0 , x=1); (x=2 , x=3) } .

Notations:

• we will use predicates to denote actions, e.g. (x=0 ⋀ x=1) ⋁ (x=2 ⋀ x=3);

• True will denote the action that changes arbitrarily the state, that is σ × σ.

30Friday, 7 January 2011

Rely/guarantee specifications

A rely/guarantee specification is a quadruple

(P, R, G, Q) .

• The predicate P is the precondition, a single state predicate that describe
what is assumed about the initial state;

• the predicate Q is the postcondition, a two-state predicate relating the initial
state to the final state immediately after the program terminates;

• the rely condition R models all the atomic actions of the environment,
describing the interference the program can tolerate from its environment.

• the guarantee condition G models the atomic actions of the program, and
hence it describes the interference that it imposes on the other threads of the
system.

A command that satisifies a RG specification: C sat (P,R,G,Q).

31Friday, 7 January 2011

A R/G computation

The computation of a thread (in black), with the interleaved computations of the
other threads of the system (in blue):

σ0 … σi σi+1 … σk σk+1 ... σj σj+1 … σf

Key ideas:

• the action of the interleaved transitions of the other threads (e.g. the states σi+1

and σj+1) is constrained by the rely condition;

• the postcondition relates the initial and final state, under the assumption that all
other threads respect the rely constraints.

{

precondition

postcondition

{
rely

{

rely

32Friday, 7 January 2011

A R/G computation

The computation of a thread (in black), with the interleaved computations of the
other threads of the system (in blue):

σ0 … σi σi+1 … σk σk+1 ... σj σj+1 … σf

Key ideas:

• the action of the interleaved transitions of the other threads (e.g. the states σi+1

and σj+1) is constrained by the rely condition;

• the postcondition relates the initial and final state, under the assumption that all
other threads respect the rely constraints.

{

precondition

postcondition

{
rely

{

rely

• Concurrent separation logic did not allow other threads to modify the
state of a thread;

• R/G allows other threads to modify the state of a thread, provided
that they respect the rely constraints.

32Friday, 7 January 2011

Example: the FINDP algorithm

Problem:
given an array v[1..n] and a predicate P,

find the smallest r such that P(v[r]) holds.

A sequential specification in Hoare logic:

 { ∀ i . P(v[i])) is defined }

 findp

 { (r = n + 1 ⋀ ∀ i . ¬P(v[i])) ⋁ (1 ≤ r ≤ n ⋀ P(v[r]) ⋀ ∀ i < r. ¬P(v[i])))

An R/G specification of the findp algorithm:

findp ⊨ (pre , v = v ⋀ r = r , True , post)

where pre and post are as above. Rely: other threads
cannot modify v or r.

Guarantee: this thread can
modify the state arbitrarily.

33Friday, 7 January 2011

Example: a concurrent FINDP algorithm

Idea:

• partition the array,

• multiple processes search concurrently, one process per partition.

Simple way: even and odd processes.

Naive concurrency: each process searches a partition, calculates the final result
as the minimum of the result of the even and odd processes.

Problem: can perform worse than sequential (why?)

34Friday, 7 January 2011

Example: a concurrent FINDP algorithm

Idea:

• partition the array,

• multiple processes search concurrently, one process per partition.

Simple way: even and odd processes.

Naive concurrency: each process searches a partition, calculates the final result
as the minimum of the result of the even and odd processes.

Problem: can perform worse than sequential (why?)

Communicating processes:

• introduce a (shared) variable top that records the lowest index that satisifies P
found so far;

• each thread checks at each iteration that it did not go past top.

34Friday, 7 January 2011

Example: specification of concurrent FINDP

FindpWorker ⊨

 pre: ∀ i ∈ partition . P(v[i])) is defined

 rely: v = v ⋀ top ≤ top

 guar: top = top ⋁ top < top ⋀ P(v[top])

 post: ∀ i ∈ partition, i ≤ top ⇒ ¬P(v[i])

Rely: other threads cannot modify
v and can only decrement top.

Guarantee: the other threads are
guaranteed that, if this thread
updates top, the new value is

smaller than the older and is such
that P(v[top])holds.

It is then possible to prove that two
FindpWorkers, running in parallel, satisfy
the specificationof Findp described two
slides ago.

(modulo setting up the partitions appropriately
and copying the final value from top to r)

35Friday, 7 January 2011

Rely/guarantee reasoning

Compare:

 Hoare logic specification: { P } C { Q }

 Rely-guarantee specification: C ⊨ (P, R, G, Q)

• The rely condition R models all the atomic actions of the environment,
describing the interference the program can tolerate from its environment.

The key idea is that if the environment performs actions declared in R, it does not
invalidate the precondition P. This is captured by the notion of stable relations.

• the guarantee condition G models the atomic actions of the program, and
hence it describes the interference that it imposes on the other threads of the
system.

The guarantee condition, although not useful to prove the correctness of C on its
own, is vital to reason on the correctness of C || C'. Intuition: the guarantee of C
morally is the rely of C', and viceversa.

36Friday, 7 January 2011

Stability

In a specification (P, R, G, Q) we require that P is stable under the rely
condition, that is, they are resistant to interference from the environment.

Definition (stability): A binary relation Q is stable under a binary relation R if and
only if (R; Q) ⇒ Q and (Q; R) ⇒ Q.

Intuition: doing an environment step before or after Q should not make Q
invalid.

For single-state predicates the definition above can be simplified:

Lemma: A single state predicate P is stable under a binary relation R if and only
P(σ) ⋀ R(σ, σ') ⇒ P(σ').

37Friday, 7 January 2011

Examples of stable relations

• The predicate P = bal > 1000 is stable under the action bal = bal + dep,
provided that dep > 0 (that is, the action { (bal, bal+dep) | dep > 0 }).

 We must show that P(σ) ⋀ R(σ, σ') ⇒ P(σ'), which is easy.

• Let ID be the identity action, defined as: ∀ x. x = x. Any predicate P or action
R is stable under ID.

• Given a predicate P, the action

preserve(P) = P ⇒ P

 is the smallest action under which P is stable.

38Friday, 7 January 2011

Proof rules: parallel composition

• Initially, the preconditions of both threads must hold;

• each thread must be immune to interference by all the other threads;
 this is checked by the Gi ⇒ Rj conditions (remember that pi is stable under Ri).

• the total action of the program is given by the composition of the actions of
the two threads in either order, allowing for repeated environment interference
(R1 ⋀ R2)* in between.

• the concurrent threads can only guarantee the disjunction G1 ∨ G2.

39Friday, 7 January 2011

Proof rules: atomic actions

If C is an atomic action, then

• the precondition and the postcondition are determined by sequential
reasoning;

• the rely condition states that the environment must at least preserve the
precondition; (def preserve)

• the guarantee condition states that either the command terminates and its
action is described by Q, or nothing happens on the global state (ID).

40Friday, 7 January 2011

Proof rules: parallel composition, again

In plain English, proving the safety of a parallel program reduces to:

• a sequential proof of the post-condition and guarantee condition of each
individual thread, assuming that its rely condition is true;

• a pairwise proof that every other thread's guarantee condition implies this
thread's rely conditiion.

41Friday, 7 January 2011

Proof rules: sequential composition and weaken

• The precondition of the second operand must follow from the postcondition
of the first. The total action is given by the composition of the actions of its
components accounting for environment interference in between.

• It is always safe to replace the specification by a stronger specification:

42Friday, 7 January 2011

Many R/G proof systems	

Disclaimer:

• several (slightly) different proof systems have been proposed for Rely/
Guarantee reasoning. The one presented here is taken from Vafeiadis et al.

For instance, Jones requires that, given a specification C ⊨ (P,R,G,Q), both the
precondition and postcondition are stable under the rely guarantee R. This
leads to a mildly different proof system and mildly different proofs.

All these proof systems enjoy soundness (proof non-trivial).

43Friday, 7 January 2011

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

In RG, we would write this specification as:

x := x + 1 || x := x + 2 ⊨ (x=0 , x = x , True , x=3)

The specifications of the two threads are:

x := x + 1 ⊨

(x=0 ⋁ x=2 , (x=0⋀x=2)⋁(x=1⋀x=3) , (x=0⋀x=1)⋁(x=2⋀x=3) , (x=0⋀x=1)⋁(x=2⋀x=3))

Observe that (x=0 ⋁ x=2) is stable under the rely condition (x=0⋀x=2) ⋁ (x=1⋀x=3).

x := x + 2 ⊨

(x=0 ⋁ x=1 , (x=0⋀x=1)⋁(x=2⋀x=3) , (x=0⋀x=2)⋁(x=1⋀x=3) , (x=0⋀x=2)⋁(x=1⋀x=3)})

Observe that (x=0 ⋁ x=1) is stable under the rely condition (x=0⋀x=1) ⋁ (x=2⋀x=3).

It is trivial to show that Gi ⇒ Rj. Can you complete the proof?

44Friday, 7 January 2011

The budget example with rely-guarantee

 P1:: bal := bal + dep

 P2:: if bal > 1000 then credit := 1 else credit := 0

Proof goal:

 P1 || P2 ⊨

 { dep > 0,
 dep = dep ⋀ credit = credit,
 True,
 bal = bal + dep ⋀ dep > 0 ⋀ (credit = 1 ⇒ bal > 1000) }

Exercise: can you complete this proof?

 You will need the rule for if/then/else:

45Friday, 7 January 2011

Case study:
linearisability of highly-concurrent data-structures

46Friday, 7 January 2011

• Coarse grain: a single owner thread (e.g. one big lock on the data structure);

• Fine grain: multiple threads inside the same object simultaneously.

Several patterns:

• lock coupling: locks are acquired and released in a "hand-over-hand" order,
acquiring the next lock before releasing the previous;

• optimistic: a thread searches a data structure without acquiring locks, locks
the sough-after component, and then validates;

• lazy: two phases to remove an object, logical (e.g. setting a flag) and physical.

• lock-free: some thread always complete in a finite number of steps, even in
presence of failures or delays by other threads.

Concurrent data structures

47Friday, 7 January 2011

Abstract specification of a set data type:

A module implements the abstract specification using local state and methods.

Sequential code: prove that the concrete methods are equivalent to their
abstract counterpart.

Concurrent code: must also establish that the externally visible effect of each
method takes place at some instant, atomically with respect to other threads.

This property is called linearisability:

Abstract and concrete state

each operation appears to take effect instantaneously.

48Friday, 7 January 2011

Concrete shared state:

• sorted linked list;

• two sentinel nodes: Head with value -∞ and Tail with value +∞;

• no duplicates;

• each node in the list is associated with a lock.

Implementing the set data type

We will implement a
lock-coupling algorithm.

49Friday, 7 January 2011

Pessimistic implementation of a set via a linked list

• locate uses lock-coupling: the lock on some node is not released until the next is locked.
Returns the previous and current (that is the first node >= e) node, both locked.

• add inserts the new element while holding the locks of the previous and next node;

• remove updates the previous next pointer while holding the locks on previous and current

50Friday, 7 January 2011

remove(4):

add(4):

Key property: locked nodes are always reachable

3

5 6

4 6

4 63

3

4

5 6

4

51Friday, 7 January 2011

Lock-coupling and separation logic

Can we reason on lock-coupling algorithms using separation logic?

• must provide invariants for the locks.

Specifying this invariant in separation logic is painful… (the other threads must
be allowed to read, lock, modify, the unlocked nodes the precede the current
one).

An example of the VeriFast tool details this example: http://www.cs.kuleuven.be/~bartj/
verifast/examples/lcset/lcset.c.html . However, there should be a simpler way...

The lock invariant for a node should state that when
the lock is held, the node is reachable from the list.

52Friday, 7 January 2011

http://www.cs.kuleuven.be/~bartj/verifast/examples/lcset/lcset.c.html
http://www.cs.kuleuven.be/~bartj/verifast/examples/lcset/lcset.c.html
http://www.cs.kuleuven.be/~bartj/verifast/examples/lcset/lcset.c.html
http://www.cs.kuleuven.be/~bartj/verifast/examples/lcset/lcset.c.html

Rely/Guarantee specification of locks

A mutex L is just a variable that holds the thread id (tid) of its owner, or null.

The semantics of lock and unlock can be formalised as:

L.lock() = < L.owner = null ⟶ L.owner := self >

L.unlock() = < L.owner := null >

where < C > denotes that C is executed atomically (and < B ⟶ C > is a CCR),
and the distinguished variable self stands for the tid of the current thread.

 L.lock() ⊨ (L.owner ≠ self , lockRely , lockGuar , L.owner = self)

 L.unlock() ⊨ (L.owner = self , lockRely , lockGuar , L.owner ≠ self)

where lockRely = ID(L.owner = self)

and lockGuar = (∀i ∉ {self, null}. ID(L.owner = i)).

53Friday, 7 January 2011

Rely/Guarantee and thread identifiers

In Rely/Guarantee reasoning, threads identifiers are abstract and the only one
of interest are self and non-self.

The special variable self must be instantiated with the proper tid value in the
rule for parallel composition. In particular the

Gi ⇒ Rj

check becomes

Gi [i/self] ⇒ Rj [j/self] .

54Friday, 7 January 2011

We write Node(n) for the assertion that n is a valid public node, and n ⟶ m for
Node(n.next) ⋀ n.next = m.

The data-structure invariant states that:
• Head and Tail contain the infinity values;

• if a (public) node other than Tail is unlocked, it points to a valid node;

• if two unlocked nodes follow each other, their values are sorted;

• the abstract set Abs and the values of non-sentinel reachable nodes are equal.

Observe that locked nodes are not required to satisfy the invariant.

Pessimistic implementation of a set via a linked list

55Friday, 7 January 2011

Rely/Guarantee proof of add and remove

It is then possible to prove that the operations add(e) and remove(e) operations
preserve the list invariant:

 locate(e) ⊨ (ListInv ⋀ -∞ < e < +∞ , R , G , ListInv ⋀ Head ⟶* pred ⟶ curr ⋀
pred.val < e ≤ curr.val ⋀ pred.owner = curr.owner = self)

 add(e) ⊨ (ListInv ⋀ -∞ < e < +∞ , R , G , ListInv ⋀ result = AbsResult)

 remove(e) ⊨ (ListInv ⋀ -∞ < e < +∞ , R , G , ListInv ⋀ result = AbsResult)

where the R (resp. G) condition states that the environment (resp. thread)
actions preserve the list invariant and use locks properly:

56Friday, 7 January 2011

Linearisability

Abs = Abs ∪ {e}

The instructions marked with [*A] and [*B] are
the linearisation points of add(e).

To prove this, we embed the abstract
implementation of the algorithm at that point,
and check that the abstract implementation is
implied by the post-condition of [*A] and [*B].

Abs = Abs ∪ {e}

57Friday, 7 January 2011

I = ListInv ⋀ -∞ < e < +∞

{ I }
n1,n3 = locate(e)
{ I ⋀ Head ⟶* n1 ⟶ n3 ⋀ n1.val<e≤n3.val ⋀ n1.owner=n3.owner=self }
if n3.val /= e then
 { I ⋀ Head ⟶* n1 ⟶ n3 ⋀ n1.val<e<n3.val ⋀ n1.owner=n3.owner=self }
 n2 = new Node(e)
 { … ⋀ PNode(n2) ⋀ n2.val = e }
 n2.next = n3;
 { … ⋀ PNode(n2) ⋀ n2.val = e ⋀ n2.next = n3 } ⇒ { e ∉ Abs }

 n1.next = n2;
 { I ⋀ n1.owner=n3.owner=self ⋀ Node(n2) ⋀ Abs = Abs ∪ {e} }
 Result := true;
 { I ⋀ n1.owner=n3.owner=self ⋀ Node(n2) ⋀ Abs = Abs ∪ {e} ⋀ AbsResult = e ∉ Abs }
else
 { I ⋀ Head ⟶* n1 ⟶ n3 ⋀ n3.val = e ⋀ n1.owner=n3.owner=self }
 Result := false;
 { I ⋀ n1.owner=n3.owner=self ⋀ Abs=Abs∪{e} ⋀ AbsResult=e∉Abs ⋀ Result=AbsResult }
{ I ⋀ n1.owner=n3.owner=self ⋀ Result=AbsResult }
n1.unlock();
{ I ⋀ n3.owner=self ⋀ Result=AbsResult }
n3.unlock{};
{ I ⋀ Result=AbsResult }

Must also check that R ⇒ all intermediate conditions, and that all the intermediate conditions imply G (easy).

See Vafeiadis, Herlihy, Hoare, Shapiro: A safety proof of a lazy concurrent list-based set implementation.

58Friday, 7 January 2011

Perspectives

• Separation logic has difficulties dealing with interference, but its
specifications are simpler because they describe only the relevant state that
the program accesses.

• Rely-Guarantee copes naturally with interference, but its specifications
describe the entire state.

Recent works in this direction seem very promising:

 Parkinson, Vafeiadis: A marriage of rely/guarantee and separation logic.

 Doods, Feng, Parkinson, Vafeiadis: Deny-Guarantee reasoning.

Is a marriage between
separation logic and rely-

guarantee possible?

59Friday, 7 January 2011

Exercise: who is who?

60Friday, 7 January 2011

I am extremely grateful to Cliff Jones, Matthew Parkinson
and Viktor Vafeiadis for their help preparing this lecture.

References (two PhD thesis):

 Leonor Prensa Nieto, Verification of Parallel Programs with the Owicki-Gries
and Rely-Guarantee Methods in Isabelle/HOL, 2002.

 Viktor Vafeiadis: Modular fine-grained concurrency verification, 2007.

 available from http://moscova.inria.fr/~zappa/teaching/mpri/2010/ .

Next lecture: all lies!
(the semantics of a concurrent program is not the interleaving of its atomic actions)

61Friday, 7 January 2011

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

