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Warm-up

Hoare logic:

• Commands operate on the state: C / s ⟶ C' / s';

• statements P are assertions on the state: s ⊨ P;

• a triple {P} C {Q} states that whenever C is executed in a state satisfying P and 
the execution of C terminates, the state in which C’s execution terminates 
satisfies Q;

• a logic system allows us to prove ⊢ {P} C {Q}.  The logic system is sound.

Separation logic. All of the above plus:

• Special assertions, P * Q, E1 ⟼ E2, empty, to describe the heap part of the state.
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Warm-up

Special assertions, P * Q, E1 ⟼ E2, empty, to describe the heap part of the state.

Three axioms to reason about separation:

• write:       { E ⟼ _ }  [E] = E'  { E ⟼ E' }

• dispose:  { E ⟼ _ } dispose(E)  { empty }

• alloc:       { empty }  x = cons(E1,…,En)  { x ⟼ E1 * x+1 ⟼ E2 * … * x+(n-1) ⟼ En }

where E ⟼ _ is a shorthand for ∃ x. E ⟼ x .

Exercise: prove that { i ⟼ v } x := [i] { i ⟼ v ⋀ x = v } .
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Pure assertions

Remark: some assertions are independent of the heap, e.g. x = v.

Definition: an assertion P is pure, iff for all stores s and heaps h1 and h2, it holds

(s,h1) ⊢ P   iff   (s,h2) ⊢ P .

Some key properties of pure assertions:

P ⋀ Q ⇒ P * Q      when P or Q is pure;

P * Q ⇒ P ⋀ Q      when P and Q are pure;

(P ⋀ Q) * R ⇒ (P * R) ⋀ Q         when Q is pure.
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The lseg predicate denotes list segments:

lseg [] (x,y) ≡ empty ∧ x = y 

lseg v::α (x,y) ≡ ∃ j. x ⟼ v ∗ (x+1 ⟼ j ) ∗ lseg α (j,y)

Exercise: prove that the triple below holds. 

 { lseg a·α (i,k) } r := [i+1]; dispose i; dispose i+1; i := r { lseg α (i,k) }

Remark: it is important to be able to reason on the assertion.  Prove, by 
structural induction on α, that:

lseg α·β (x,y) ⇔ ∃ j. lseg α (x,j) ⋀ lseg β (j,y)

v2 vnx ...

Warm-up: list segments

v1 y
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Warm-up: a cyclic buffer

We implement a cyclic buffer using:

• an active list segment lseg α (i,j) (where α is the content of the buffer);

• an inactive list segment lseg β (j,i) (where β is arbitrary);

• an unchanged variable n records the combined length of the two lists.

When i=j the buffer is empty or full: 

• a variable m records the length of the active list segment.

Inserting and deleting elements on the buffer must preserve the invariant:

∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

(where # computes the length of a sequence).
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Adding x to the buffer can be done by the code below (under the hypothesis 
that n-m > 0):

[j] := x;
j := [j+1];
m := m+1;

For reference: ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

Warm-up: a cyclic buffer

… 

… 

v1 v2 vm

i
j
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Adding x to the buffer can be done by the code below (under the hypothesis 
that n-m > 0):

[j] := x;
j := [j+1];
m := m+1;

For reference: ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

Warm-up: a cyclic buffer
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Adding x to the buffer can be done by the code below (under the hypothesis 
that n-m > 0):

[j] := x;
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Adding x to the buffer can be done by the code below (under the hypothesis 
that n-m > 0):

[j] := x;
j := [j+1];
m := m+1;

For reference: ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

Warm-up: a cyclic buffer
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Warm-up: a cyclic buffer

Exercise: we prove that the code below inserts x in the buffer.

 { ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β ⋀ n-m > 0 }
 { ∃ b,β. (lseg α (i,j) * lseg b·β (j,i)) ⋀ m = #α ⋀ n = #α + #b·β }
 { ∃ k,β. (lseg α (i,j) * j ⟼ _,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

[j] := x;
 { ∃ k,β. (lseg α (i,j) * j ⟼ x,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ k,β. j+1 ⟼ k * (lseg α (i,j) * j ⟼ x * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

j := [j+1];
 { ∃ l,β. l+1 ⟼ j * (lseg α (i,l) * l ⟼ x * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α (i,l) * l ⟼ x,j * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m+1 = #α·x ⋀ n = #α·x + #β }
    m := m+1;   
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m = #α·x ⋀ n = #α·x + #β }
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Warm-up: a cyclic buffer

Exercise: we prove that the code below inserts x in the buffer.

 { ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β ⋀ n-m > 0 }
 { ∃ b,β. (lseg α (i,j) * lseg b·β (j,i)) ⋀ m = #α ⋀ n = #α + #b·β }
 { ∃ k,β. (lseg α (i,j) * j ⟼ _,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

[j] := x;
 { ∃ k,β. (lseg α (i,j) * j ⟼ x,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ k,β. j+1 ⟼ k * (lseg α (i,j) * j ⟼ x * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

j := [j+1];
 { ∃ l,β. l+1 ⟼ j * (lseg α (i,l) * l ⟼ x * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α (i,l) * l ⟼ x,j * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m+1 = #α·x ⋀ n = #α·x + #β }
    m := m+1;   
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m = #α·x ⋀ n = #α·x + #β }
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Be careful

Despite the appearances...

(after all, we are reasoning about the heap!)

…mastering separation logics takes time…
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Concurrent separation logic

1. threads that mind their own bussiness
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Threads that mind their own bussiness

Imagine a program composed by two threads, one updates [x], the other [y]: 

What can we prove about it?

[x] := 4 || [y] := 5
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Threads that mind their own bussiness

Imagine a program composed by two threads, one updates [x], the other [y]: 

1) We can give a (sequential) specification to each thread.

{ x ⟼ _ } { y ⟼ _ }

[x] := 4 || [y] := 5

{ x ⟼ 4 } { y ⟼ 5 }

15Friday, 17 December 2010



Threads that mind their own bussiness

Imagine a program composed by two threads, one updates [x], the other [y]: 

1) We can give a (sequential) specification to each thread.

2) If x and y do not point to the same location, then we can guarantee that the 
final state satisfies (x ⟼ 4 * y ⟼ 5) .

{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }

{ x ⟼ _ } { y ⟼ _ }

[x] := 4 || [y] := 5

{ x ⟼ 4 } { y ⟼ 5 }

 { x ⟼ 4 * y ⟼ 5 }  { x ⟼ 4 * y ⟼ 5 }  { x ⟼ 4 * y ⟼ 5 } 
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Parallel composition of non-interfering threads

{ P1 }  C1  { Q1}         { P2 }  C2  { Q2 }

{ P1 * P2 }  C1 || C2  { Q1 * Q2 }

if modifies(C1) ∩ fv(P2) = modifies(C2) ∩ fv(P1) = ∅, and
   modifies(C1) ∩ fv(C2) = modifies(C2) ∩ fv(C1) = ∅.
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Parallel composition of non-interfering threads

{ P1 }  C1  { Q1}         { P2 }  C2  { Q2 }

{ P1 * P2 }  C1 || C2  { Q1 * Q2 }

if modifies(C1) ∩ fv(P2) = modifies(C2) ∩ fv(P1) = ∅, and
   modifies(C1) ∩ fv(C2) = modifies(C2) ∩ fv(C1) = ∅.

... apart from the (rare) moments of explicit 
communication, processes are to be 
regarded as completely independent of 
each other...
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Parallel composition of non-interfering threads

Remark: the "proof figure" below

is an annotation form for

{ x ⟼ _ } [x] := 4 { x ⟼ 4 }        { y ⟼ _ } [y] := 5 { y ⟼ 5 }

{ x ⟼ _ * y ⟼ _ } [x] := 4 || [y] := 5 { x ⟼ 4 * y ⟼ 5 }

{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }

{ x ⟼ _ } { y ⟼ _ }

[x] := 4 || [y] := 5

{ x ⟼ 4 } { y ⟼ 5 }

 { x ⟼ 4 * y ⟼ 5 }  { x ⟼ 4 * y ⟼ 5 }  { x ⟼ 4 * y ⟼ 5 } 
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Example: parallel disposal of a tree

tree p ≡ (p = nil ⋀ empty) ⋁  (∃ j, k. p ⟼ j ∗ p+1 ⟼ k ∗ tree j ∗ tree k)

  procedure DispTree(p) {
    if p != nil then {
      a := [p]; 
      b := [p+1]; 
      DispTree(a) || DispTree(b); 
      dispose(p+1); 
      dispose(p);
  }

Exercise: assume that { tree p } DispTree(p) { empty } holds.  
   Prove that the body of DispTree satisfies { tree p } body { empty }.

This is an example of a shape predicate: it 
only describes the memory layout of the 
data structure, not the actual content.

This is a recursive procedure: to prove its 
correctness you can assume that the 

specification holds for the recursive calls.
Cheating: in these lectures we won't 

formalise procedure calls...This is a bad 
implementation of parallel 
disposal of a tree, why?
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Concurrent separation logic

2. synchronising racy threads
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Racy programs

In current practice, most programs of interest are racy, e.g.:

{ x ⟼ _ }            { x ⟼ _ }

[x] := 10      ||      [x] := 20

{ x ⟼ 10 }            { x ⟼ 20}

  

But we cannot send x ⟼ _ to both threads: 

( x ⟼ _ * x ⟼ _ )   ⇔   F
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Racy programs

In current practice, most programs of interest are racy, e.g.:

{ x ⟼ _ }            { x ⟼ _ }

[x] := 10      ||      [x] := 20

{ x ⟼ 10 }            { x ⟼ 20}

  

But we cannot send x ⟼ _ to both threads: 

( x ⟼ _ * x ⟼ _ )   ⇔   F 

This program does not have a race-free start state…  to reason about such 
programs we must be explicit about the granularity of the interactions.

22Friday, 17 December 2010



Racy programs

In current practice, most programs of interest are racy, e.g.:

{ x ⟼ _ }            { x ⟼ _ }

[x] := 10      ||      [x] := 20

{ x ⟼ 10 }            { x ⟼ 20}

  

But we cannot send x ⟼ _ to both threads: 

( x ⟼ _ * x ⟼ _ )   ⇔   F 

This program does not have a race-free start state…  to reason about such 
programs we must be explicit about the granularity of the interactions.

 ...designing a program to control the 
fantastic number of combinations involved 
in arbitrary interleaving... 
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Conditional critical regions (Hoare, 72)

A program is a collection of resources shared by concurrent threads:

   init

  resource r1 (list of variables) … resource rn (list of variables)

  C1 || … || Cm

A thread can obtain an exclusive access to a resource:

    with r when B do C

Constraints:

• if a variable belongs to a resource, it cannot appear in a parallel process 
except in a critical section for that resource;

• if a variable is changed in one process, it cannot appear in another unless it 
belongs to a resource. 
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Examples of racy programs

• if a variable belongs to a resource, it cannot appear in a parallel process 
except in a critical section for that resource;

• if a variable is changed in one process, it cannot appear in another unless it 
belongs to a resource. 

These programs do not respect the constraints above:

• x := 3 || x := x + 1

• x := 3 || with r when true do x := x + 1

In general, races depend on aliasing:

• [x] := 3 || [y] := 4

Concurrent separation logic 
will rule out all the races!

24Friday, 17 December 2010



(Informal) semantics of CCRs

• The init command is executed first (and allocates some resources).

• A declaration 

resource r (x1,…,xn) 

states that the variables x1,…,xn can only be accessed while holding the 
resource r.

• The command 

with r when B do C 

executes C while holding the resource r: no other thread can access the 
variables x1,…,xn while C executes.  However the execution of C is postponed 
until the statement B is true.
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Programming a bounded buffer with CCRs

Remark: to simplify notations we use arrays instead of pointers.

Buffer space and pointers are encapsulated in the buffer resource:

and here the producer and consumer code:

 

resource buffer (
  item pool[n];
  int count, in, out;
)

with buffer when (count < n) {
  pool[in] = nextp;
  in = (in+1) % n;
  count++;
}

Producer:

with buffer when (count > 0) {
  nextc = pool[out];
  out = (out+1) % n;
  count--;
}

Consumer:
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Example: semaphores

We can program binary semaphores with CCRs:

     s := 1; 

   resource s (s)

   P(s)  =  with s when s = 1 do s := 0

   V(s)  =  with s when s = 0 do s := 1

Remark: usually CCRs are implemented using semaphores, not the other way 
round.  However CCRs are simpler from a logical point of view.

Can we associate some property (some invariant?) to a semaphore s?
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Example: semaphores

Typical use of a semaphore s:

The location [10] is protected by / associated to / (owned by) the semaphore.

Idea: 

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ )

P(s) P(s)

[10] := 43 || [10] := 57

V(s) V(s)

When the semaphore is not held, no 
thread  can access the location [10].

 (because no thread can have 10 ⟼ _  in its 
precondition) 

when the semaphore is held, the 
location [10] is owned by the 
thread that holds the semaphore. 
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Axioms for CCRs

{ P } init { RI1 * … RIn * P' }          { P' } C1 || … || Cn { Q }

{P} init; resource r1 (…) … resource rn (…); C1 || … || Cn { RI1 * … RIn * Q  }

The init code allocates the resources stored in the resource invariants; the 
threads are then executed.  Threads grab control of the resource invariants 
when entering the CCRs:

{ (P * RIr) ⋀ S }  C  { Q * RIr} 

{ P }  with r when S do C { Q } 

Idea: inside the critical region, the threads has visibility of the state associated 
to (protected by) the resource.
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Example: semaphores

Exercise: suppose that 

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ )

Can we prove that the following holds?

{ empty }{ empty }{ empty }
P(s) P(s)
[10] := 43 || [10] := 57
V(s) V(s)

{ empty }{ empty }{ empty }
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Example: semaphores

Reminder: RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ )

Zoom on the proof of thread 1:

{ empty }   
 P(S)
{ 10 ⟼ _ }
 [10] := 43
{ 10 ⟼ _ }
  V(s)
{ empty }

Key observation: the resource 10 ⟼ _ "flows" from the RI to the thread and back!

{ empty * s = 1 * RIs } s := 0 { s = 0 * 10 ⟼ _ * RIs }

{ empty } with s when s=1 do s := 0 { 10 ⟼ _ }

{ 10 ⟼ _ * s = 0 * RIs } s := 1 { s = 1 * RIs }

{ 10 ⟼ _ } with s when s = 0 do s := 1 { empty }
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Example: semaphores

Reminder: RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ )

Zoom on the proof of thread 1:

{ empty }   
 P(S)
{ 10 ⟼ _ }
 [10] := 43
{ 10 ⟼ _ }
  V(s)
{ empty }

Key observation: the resource 10 ⟼ _ "flows" from the RI to the thread and back!

{ empty * s = 1 * RIs } s := 0 { s = 0 * 10 ⟼ _ * RIs }

{ empty } with s when s=1 do s := 0 { 10 ⟼ _ }

{ 10 ⟼ _ * s = 0 * RIs } s := 1 { s = 1 * RIs }

{ 10 ⟼ _ } with s when s = 0 do s := 1 { empty }

Since s = 0 the RI cannot 
hold any resource (empty).

The resource 10 ⟼ _ gets 
into the scope of the thread.
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Example: semaphores

Reminder: RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ )

Zoom on the proof of thread 1:

{ empty }   
 P(S)
{ 10 ⟼ _ }
 [10] := 43
{ 10 ⟼ _ }
  V(s)
{ empty }

Key observation: the resource 10 ⟼ _ "flows" from the RI to the thread and back!

{ empty * s = 1 * RIs } s := 0 { s = 0 * 10 ⟼ _ * RIs }

{ empty } with s when s=1 do s := 0 { 10 ⟼ _ }

{ 10 ⟼ _ * s = 0 * RIs } s := 1 { s = 1 * RIs }

{ 10 ⟼ _ } with s when s = 0 do s := 1 { empty }
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Example: semaphores

Exercise: can you prove the triple below under the stronger invariant?

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ 57 ) 

{ empty }{ empty }{ empty }
P(s) P(s)
[10] := 43 || [10] := 57
V(s) V(s)

{ empty }{ empty }{ empty }

With the stronger invariant we 
cannot prove that the invariant 
holds after executing V(s)!
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Remark: a dull specification?

⊢ { empty } P(s); [10]:=43; V(s) || P(s); [10]:=57; V(s) { empty }

holds under the invariant RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ ).

This guarantees that if the program is executed in a state that satisifies { empty 
* RIs }, if the program terminates, it ends in a state that satisfies { empty * RIs }.  

Even if the precondition and the postcondition does not look very interesting, 
the triple (also) guarantees that:

• the program is race-free;
   all the accesses to the shared resource were correctly protected by locks

• the resource invariant was preserved by all the threads;

• no memory leaks occurred.
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Producer/consumer via semaphores

Two semaphores.  Initially free = 1 and busy = 0.

For s being either free or busy, the semaphore invariant is:

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ )

Exercise: prove the triple above.

{ empty }{ empty }{ empty }

P(free) P(busy)
[10] := 43 || x := [10]
V(busy) V(free)

{ empty }{ empty }{ empty }
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Producer/consumer via semaphores

Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ )

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }

free busy

thread 1 thread 2

This diagram records the 
current owner of the 

ressource [10].
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Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ ) 

Producer/consumer via semaphores

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }
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Producer/consumer via semaphores

Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ ) 

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }
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Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ ) 

Producer/consumer via semaphores

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }
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Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _ ) 

Producer/consumer via semaphores

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }
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Remarks

• Each semaphore invariant talks only about itself, not about other semaphores 
or processes. 

• Each assertion within a process talks about only its own state, not the state of 
the other process or even the semaphores. 

• We do not maintain 0 ≤ free + busy ≤ 1 as a global invariant. 

• Semaphores are “logically attached” to resources. P and V are ownership 
transformers.
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Example: a single-place buffer

  Initially full := false.

  resource buf(c, full)

Filling the buffer:   

  
Emptying the buffer:

  

Invariant:                             RI = (empty ⋀ ¬full) ⋁ (c ⟼ _ ⋀ full)

put (m)  =  with buf when ¬full do {
                    c := m;
                    full := true;
                  }

get (n)  =  with buf when full do {
                  n := c;
                  full := false;
                }

passing a pointer,
not the value.
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Example: a single-place buffer

{ empty }{ empty }{ empty }
full := false;full := false;full := false;

{ empty ⋀ ¬full }{ empty ⋀ ¬full }{ empty ⋀ ¬full }
resource buf (c, full)resource buf (c, full)resource buf (c, full)

{ empty * empty * RI }{ empty * empty * RI }{ empty * empty * RI }

{ empty } { empty }
x := cons(3); with buf when full do

{ x ⟼ 3 } { empty * (( c ⟼ _ ) ⋀ full) }
with buf when ¬full do ||    y := c; full := false;

{ (x ⟼ 3)*(empty ⋀ ¬full) } { (y ⟼ _) * (empty ⋀ ¬full) }
   c := x; full := true; dispose (y);

{ c ⟼ 3 * (empty ⋀ full) } { empty }

{ empty * RI }

{ empty * empty * RI }{ empty * empty * RI }{ empty * empty * RI }

{ RI }{ RI }{ RI }

get(y)

put(x)

  RI = (empty ⋀ ¬full) ⋁ (c ⟼ _ ⋀ full)
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Ownership is in the eye of the asserter

Transfer of ownership is not determined operationally:

whatever we transfer depends on what we want to prove.

In the last example ownership of the location allocated by thread 1 had to be 
transferred to thread 2, so that thread 2 could safely dispose it:

Reminder: RI = (emp ⋀ ¬full) ⋁ (c ⟼ _ ⋀ full)

x:=cons(3); get(y);

put(x); || use(y);

dispose(y)
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Ownership is in the eye of the asserter

Transfer of ownership is not determined operationally:

whatever we transfer depends on what we want to prove.

The code below is silly, but should be provable:

Exercise: prove the code above, using the invariant

RI = (emp ⋀ ¬full) ⋁ (emp ⋀ full)

x:=cons(3); get(y);

put(x); ||

dispose(x);
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Ownership is in the eye of the asserter

Transfer of ownership is not determined operationally:

whatever we transfer depends on what we want to prove.

However you won't be able to prove:

because ownership cannot flow both to thread 1 and thread 2.  

This is fortunate: this program attempts to dispose the same pointer twice.

x:=cons(3); get(y);

put(x); || dispose(y);

dispose(x);
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Simple exercises

• Is the triple below derivable?

• And this?

{ empty } 
  x := cons(3); 
  z := cons(3);
  [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 } 

{ empty } 
  x := cons(3); 
  [x] := 4 || [x] := 5;
{ x ⟼ _ } 

• And this?

    { empty } 
      x := 4 || x := 5;
    { empty } 

• And this?

    { y = x+1 } 
      x := 4 || y := y+1;
    { y = x+2 } 
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Simple exercises

• Is the triple below derivable?

• And this?

{ empty } 
  x := cons(3); 
  z := cons(3);
  [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 } 

{ empty } 
  x := cons(3); 
  [x] := 4 || [x] := 5;
{ x ⟼ _ } 

• And this?

    { empty } 
      x := 4 || x := 5;
    { empty } 

• And this?

    { y = x+1 } 
      x := 4 || y := y+1;
    { y = x+2 } 

This is a stack race!

Here the race is betwen x := 4 
and the proof of  

{ y = x+1 } y := y+1 { y = x+2 } 
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Simple exercises

• Is the triple below derivable?

• And this?

{ empty } 
  x := cons(3); 
  z := cons(3);
  [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 } 

{ empty } 
  x := cons(3); 
  [x] := 4 || [x] := 5;
{ x ⟼ _ } 

• And this?

    { empty } 
      x := 4 || x := 5;
    { empty } 

• And this?

    { y = x+1 } 
      x := 4 || y := y+1;
    { y = x+2 } 

This is a stack race!

Here the race is betwen x := 4 
and the proof of  

{ y = x+1 } y := y+1 { y = x+2 } 

The logic forbids all kinds of races.
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Exercise: parallel mergesort

Let ls(p) = (empty ∧ p = nil) ⋁ ∃ j. p ⟼ _ ∗ (p+1 ⟼ j ) ∗ ls(j).

Suppose that the functions split and merge obey to the specifications

    { ls(p) } split(r,p) { ls(r) }

    { ls(p) * ls(q) } merge(r,p,q) { ls(r) }

Prove that:

    { ls(p) } 
       mergesort(r,p) {
        if p = Nil then r := p;
        else {
          split(q,p);
          mergesort(q1,q) || mergesort(p1,p);
          merge(r,p1,q1)
    { ls(r) } 
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Exercise: parallel mergesort

Let ls(p) = (empty ∧ p = nil) ⋁ ∃ j. p ⟼ _ ∗ (p+1 ⟼ j ) ∗ ls(j).

Suppose that the functions split and merge obey to the specifications

    { ls(p) } split(r,p) { ls(r) }

    { ls(p) * ls(q) } merge(r,p,q) { ls(r) }

Prove that:

    { ls(p) } 
       mergesort(r,p) {
        if p = Nil then r := p;
        else {
          split(q,p);
          mergesort(q1,q) || mergesort(p1,p);
          merge(r,p1,q1)
    { ls(r) } 

This is another example of a shape predicate: it 
only describes the memory layout of the data 

structure, not the actual content.

Concurrent separation logic is decidable for 
shape predicates.

 (well, you still have to supply the loop invariants). 

Check out the SmallFoot tool.
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Suppose that the functions split and merge obey to the specifications
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    { ls(p) * ls(q) } merge(r,p,q) { ls(r) }

Prove that:

    { ls(p) } 
       mergesort(r,p) {
        if p = Nil then r := p;
        else {
          split(q,p);
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Dynamic partitioning idioms

• Memory Managers, Thread Pools, Connection Pools;

• efficient Message Passing (copy avoiding);

• double-buffered I/O;

• many semaphore programs.

These idioms underlie much fundamental code: Microkernel OS designs, web 
servers, network packet processing, etc... 

Old program design ideas, reflected in concurrent separation logic.

Question: are we done?
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No: Reynolds counterexample

This logic is inconsistent!  We can derive:

 { x ⟼ _ } with r when true do skip { F }

where the resource r() has invariant RI = T.

The triple states that the program diverges, while obviously it does not.

Exercise: can you find such derivation?
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No: Reynolds counterexample

This logic is inconsistent!  We can derive:

 { x ⟼ _ } with r when true do skip { F }

where the resource r ( ) has invariant RI = T.

Let one be a shorthand for x ⟼ _. From:

{ T } skip { T }

{ (emp ⋁ one) * True } skip { emp * True }

{ emp ⋁ one } with r when true do skip { emp }

we can derive:

                                 { emp ⋁ one } with … { emp }                                 
                                       { emp } with … { emp }

{ emp * one } with … { emp * one }                       { emp ⋁ one } with … { emp }
{ one } with … { one }                                       { one } with … { emp}

{ one ⋀ one } with r when true do skip { emp ⋀ one }
{ one } with r when true do skip { false }
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What the Reynolds counterexample implies

Trouble if you have all of:

{ P } C { Q }

{ P * R } C { Q * R }

The semantics of P * Q is nondeterministic:

∃ h1, h2. dom(h1) ∩ dom(h2) = ∅ ⋀ h1 ⊕ h2 = h ⋀ (s,h1) ⊨ P ⋀ (s,h2) ⊨ Q

The resource invariant T does not precisely nail down the storage owned by the 
resource; it is ambiguous.  And the connective * can be satisfied with different 
splittings.

{ P1 } C { Q1 }     { P2 } C { Q2 }

{ P1 ⋀ P2 } C { Q1 ⋀ Q2 }

{ ( P * RIr) ⋀ S } C { Q * RIr }

{ P } with r when S do C { Q }
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What the Reynolds counterexample implies

Trouble if you have all of:

{ P } C { Q }

{ P * R } C { Q * R }

The semantics of P * Q is nondeterministic:

∃ h1, h2. dom(h1) ∩ dom(h2) = ∅ ⋀ h1 ⊕ h2 = h ⋀ (s,h1) ⊨ P ⋀ (s,h2) ⊨ Q

The resource invariant T does not precisely nail down the storage owned by the 
resource; it is ambiguous.  And the connective * can be satisfied with different 
splittings.

{ P1 } C { Q1 }     { P2 } C { Q2 }

{ P1 ⋀ P2 } C { Q1 ⋀ Q2 }

{ ( P * RIr) ⋀ S } C { Q * RIr }

{ P } with r when S do C { Q }

If we can nail down the storage owned more 
precisely, perhaps we can get around this 
problem...
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Precise predicates

A predicate P is precise if for every state, there is at most one substate 
satisfying it.  Formally:

P is precise if for all s, h, there exists at most one h′ ⊑ h where s,h′ ⊨  P .

 Examples of imprecise predicates:

T               10 ⟼ _ ⋁ 11 ⟼ _                    

ls(x,y) = (x = y ∧ empty) ∨ (∃x' .x ⟼ x' ∗ ls(x',y)) 

Examples of precise predicates:

empty          10 ⟼ _          (empty ∧ ¬full) ∨ (c ⟼ _ ∧ full) 

ls(x,y) =  if (x = y) then empty else ∃x' .x ⟼ x' ∗ ls(x',y) 
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A sound separation logic

Consider concurrent separation logic with the restriction that

Notation: let Γ define all the resources, and let inv(Γ) *-conjunction of all the 
resource invariants.

Theorem: 

  If { P } C { Q } is provable, every finite computation from a state satisfying P * inv Γ, 

• is error free; and

• ends in a state satisfying Q * inv Γ.

all the resource invariants are precise.
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A sound separation logic

Consider concurrent separation logic with the restriction that

Notation: let Γ define all the resources, and let inv(Γ) *-conjunction of all the 
resource invariants.

Theorem: 

  If { P } C { Q } is provable, every finite computation from a state satisfying P * inv Γ, 

• is error free; and

• ends in a state satisfying Q * inv Γ.

all the resource invariants are precise.

We are not done: we must define what is a computation of C.
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Soundness of concurrent separation logic

Brookes proof

Alternative proofs:

• Vafeiadis, Concurrent separation logic and operational semantics

• Hayman, Winskel, Independence and concurrent separation logic (LICS 06)

?
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Disclaimer

The purpose of the following section is only to give an overview of the proof of 
soundness of concurrent separation logic, to characterise what error-free 
means operationally, and discover which is the role of precise predicates.

A simpler and more elegant proof (which unfortunately does not prove that 
programs verified using CSL do not have data-races) can be found here:

  Vafeiadis, Concurrent separation logic and operational semantics.

http://www.mpi-sws.org/~viktor/cslsound/
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Brookes's semantic analysis: the big picture

1. The denotation of a command is a set of traces:

• traces captures all the interactions of the command with an arbitrary state;
• the trace abort captures a race.

2. An LTS defines the action of a trace on a state:

• the LTS goes to the state abort if the trace performs an access outside of the 
domain of the state, or if the trace is abort.

3. Command C is race-free from state s, if for all traces α ∈ [[C]], ¬ s ⇒ abort .

4. Intuition (but we'll need one more idea):

α

if {P} C {Q}, then every finite computation of C from a state satisfying 
P * inv Γ, is race-free, and ends in a state satisfying Q * inv Γ.
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1. denotation of commands

1. The denotation of a command is a set of traces

    - traces captures all the interactions of a command with an arbitrary state:

e.g.        [[ x := i+1 ]]  =  { i=v . x:=v+1 | v ∈ Value } .

    - the trace abort captures a race:

e.g.    [[ x := 1 || x := 2 ]] = { x:=1 . x:=2 , x:=2 . x:=1, abort }

      Special care required to define the denotation of || .
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1. actions and traces

A command denotes a set of traces.  A trace is a sequence of actions:

λ ranges over actions.  A trace can be finite or infinite.  α, β range over traces.  

Concatenation of traces is defined modulo:

α.δ.β = α.β                 α.abort.β = α.abort 

δ idle

i=v,  i:=v read, write

[v]=v',  [v]:=v' lookup, update

alloc(v, L),  disp(v) allocate, dispose

try(r),  acq(r),  rel(r) try, acquire, release

abort race detected
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1. clauses (1)

sequential constructs

pointer operations

}
}
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1. clauses (2)

where

synchronisation

parallel composition

Key ideas: 
  1) processes start with no resources; 
  2) resources are mutually exclusive;
  3) races produce abort.
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We rely on an auxiliary operator on traces:

• it builds all the traces obtained by interleaving the actions of the two threads

• in doing so, it keeps track of the resources allocated by each thread, and 
looks for data races.  

Key ideas:

  1) processes start with no resources; 
  2) resources are mutually exclusive;
  3) races produce abort.

1. clauses (3)
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1. (3) resource enabling

Let A1 and A2 be sets of resources.

What a process can do depends on its resources and those of its environment.  
For that, we define the resource enabling relation:

Intuition: a process holding the resources A1 can do λ in an environment that 
holds the resources A2.
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1. (3) interference and interleaving

Two actions interfere if one write to a variable or a cell used by the other:

We can then define (fair, resource sensitive, race-detecting) interleaving:

iff or
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[[ x := 1 || y := 1 ]]  =  { x:=1 y:=1, y:=1 x:=1 }

[[ x := 1 || x := 1 ]] = { x:=1 x:=1, abort }

[[ with r do x := 1 ]] = (try r)* acq r x:=1 rel r  ∪ (try r)ω

[[ with r do x := 1 || with r do x := 2 ]] = 

   (try r)* acq r x:=1 rel r  ∪ (try r)ω    { } || { }   (try r)* acq r x:=2 rel r  ∪ (try r)ω   =

    (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)* acq r x:=2 rel r  

   ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)* acq r x:=1 rel r  

   ∪ (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)ω

   ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)ω

  ∪ (try r)ω

1. Examples

64Friday, 17 December 2010



[[ x := 1 || y := 1 ]]  =  { x:=1 y:=1, y:=1 x:=1 }

[[ x := 1 || x := 1 ]] = { x:=1 x:=1, abort }

[[ with r do x := 1 ]] = (try r)* acq r x:=1 rel r  ∪ (try r)ω

[[ with r do x := 1 || with r do x := 2 ]] = 

   (try r)* acq r x:=1 rel r  ∪ (try r)ω    { } || { }   (try r)* acq r x:=2 rel r  ∪ (try r)ω   =

    (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)* acq r x:=2 rel r  

   ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)* acq r x:=1 rel r  

   ∪ (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)ω

   ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)ω

  ∪ (try r)ω

1. Examples

here acq r by 
thread 2 is not 
enabled
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[[ x := 1 || y := 1 ]]  =  { x:=1 y:=1, y:=1 x:=1 }

[[ x := 1 || x := 1 ]] = { x:=1 x:=1, abort }

[[ with r do x := 1 ]] = (try r)* acq r x:=1 rel r  ∪ (try r)ω

[[ with r do x := 1 || with r do x := 2 ]] = 

   (try r)* acq r x:=1 rel r  ∪ (try r)ω    { } || { }   (try r)* acq r x:=2 rel r  ∪ (try r)ω   =

    (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)* acq r x:=2 rel r  

   ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)* acq r x:=1 rel r  

   ∪ (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)ω

   ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)ω

  ∪ (try r)ω

1. Examples

now, acr r by
thread 2 is 
enabled

here acq r by 
thread 2 is not 
enabled
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2. The action of a trace on a state

The state is store + heap + resource:

• global store: s : var ⇀ value ;

• global heap: h : loc ⇀  value ;

• resources A held by the process.

Actions cause state change, and either end in a new state, or abort.
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2. the LTS that relates states and actions (1)
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2. the LTS that relates states and actions (2)

A global computation is an executable sequence of actions:
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3. Error freedom

Definition: a command C is error-free if from (s,h) iff 

forall α ∈ [[C]]. ¬ ((s,h,{}) ⇒ abort) .

Example: 

  dispose x || dispose y   

is error-free from all the states s such that  ¬(s(x) = s(y)) ⋀ s(x), s(y) ∈ dom(h).

α

68Friday, 17 December 2010



3. Error freedom

Definition: a command C is error-free if from (s,h) iff 

forall α ∈ [[C]]. ¬ ((s,h,{}) ⇒ abort) .

Example: 

  dispose x || dispose y   

is error-free from all the states s such that  ¬(s(x) = s(y)) ⋀ s(x), s(y) ∈ dom(h).

α

No dangling
pointers!

race freeprograms!
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4. A theorem?

It would be natural to define validity of { P } C { Q } as:

Theorem: 

{ P } C { Q } if every finite computation of C from a state satisfying P * inv Γ,

1) is error free,

2) ends in a state satisfying Q * inv Γ.

Proof: It is natural to proceed by induction on the derivation of {P} C {Q}.  But…  
can you prove the case where C is C1 || C2 and the last rule is the rule for parallel 
composition?
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4. A theorem?

It would be natural to define validity of { P } C { Q } as:

Theorem: 

{ P } C { Q } if every finite computation of C from a state satisfying P * inv Γ,

1) is error free,

2) ends in a state satisfying Q * inv Γ.

Proof: It is natural to proceed by induction on the derivation of {P} C {Q}.  But…  
can you prove the case where C is C1 || C2 and the last rule is the rule for parallel 
composition?

NO!   This definition is not compositional: finite computations 
of C look at C in its entirety, and do not give enough 
informations about the computations performed by C1 and C2.

Not yet!
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Compositionality

• C1 behaviour defines the evolution of the blue part of the heap;

• but all the red part is not constrained at all by C1, and might change under 
the influence of C2;

• if the semantics of C1 is defined in terms of the whole heap, it is tricky to 
derive it from the behaviour of C1 || C2…

Idea: define the semantics of the thread only in terms of the heap it owns!

C1   ||   C2

imagine C1 owns the blue part of the heap...

heap
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Local computations

Idea: keep track of the local state of each thread.  The local state is defined by:

 

subject the condition

dom(s) ∩ owned(Γ) = owned(Γ|A).

Local store only contains protected variables for which the process has 
resources.

A process starts with only non-critical data in its local state:

• local state grows when resource is acquired;

• local state shrinks when resource is released;

• error if program breaks design rules.

We can define another LTS, that captures the local effects.
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Local effects: acquire and release

The rule for acq r imports into the local state the part of the stack and of the 
heap protected by r.

   

   Similarly for rel r.

The heap h' is uniquely 
determined because the 
invariant R is precise.
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Local effects: other transitions

All the other transitions are inherited from the global semantics.  E.g. (excerpt):

(in the last rule, the extra condition ensures that the variable being updated is 
does not belong to a resource).
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Local effects: abort transitions

Two new abort rules (plus all the cases as in the global semantics):

- cannot update a variable 
protected by a resource not 
owned.

- when releasing a resource, 
the associated invariant must 
hold.
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Local computations

Local computation captures what a thread sees of a computation.

Assumes that the environment:

•  respects the resource rules;

•  interferes only on synchronisation.
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A local computation of put || (get ; dispose y)

This can be decomposed into local computations of put and of get; dispose y...
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The local computations of put and get || dispose y

put

get || dispose y
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Validity

Theorem: all provable formulas are valid.

Proof: uses local states and local effects, shows that each rule preserves 
validity, for parallel uses the parallel lemma:

• a local computation of C1 || C2 decomposes into local computations of C1 and C2;

• A local error of C1 || C2  is caused by a local error of C1 or C2 (not by interference);

• A successful local computation of C1 || C2  is consistent with all successful local 
computations of C1 and C2.

{ P } C { Q } is valid if every finite local computation of C from 
a state satisfying P * inv Γ, is 1) error free and 2) ends in a 
state satisfying Q * inv Γ.
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Local vs. global

1. Soundness shows that provable formulas are valid;

2. Validity referes to local computations.

Theorem: Suppose                                                                    . . 

1.If                                    then

2.If                               then                                               where  

Need to connect local computations with conventional 
notions: global state, traditional partial correctness.

and
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Corollary: validity implies error freedom

{ P } C { Q } if every finite computation of C from a state satisfying P * inv Γ,

1) is error free,

2) ends in a state satisfying Q * inv Γ.
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Many concurrent separation logics?

The logic presented here is not entirely realistic, and is not as expressive as one 
might hope/desire/expect. 

Several variants have been proposed, including:

• Gotsman, Berdine, Cook, Rinetzky and Sagiv (APLAS 07)

• … plenty of other logics…

• Hobor, Appel and me (ESOP 08)
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Exercise: associate each picture with its owner...  

Thanks to:

    Stephen Brookes

    John Reynolds

    Tony Hoare

    Edgser Dijkstra

    Peter O'Hearn

    Per Brinch Hansen
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References:

    Peter O'Hearn, Resources, concurrency and local reasoning;

    Stephen Brookes, A semantics for concurrent separation logic;

    Viktor Vafeiadis, Concurrent separation logic and operational semantics

 all available from http://moscova.inria.fr/~zappa/teaching/mpri/2010/ . 

Next lecture: 
                  can we reason about racy programs?
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