Proof methods for concurrent programs

1. shared memory, Hoare logic, separation logic

Francesco Zappa Nardelli
INRIA Paris-Rocquencourt, MOSCOVA project-team

francesco.zappa_nardelli@inria.fr
http://moscova.inria.fr/~zappa/teaching/mpri/2010/

Thursday, 9 December 2010

mailto:francesco.zappa_nardelli@inria.fr
mailto:francesco.zappa_nardelli@inria.fr
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

Concurrency, in theory

Example: 2-way Bufters

1-place 2-way buffer: Buf, . =

Buf, == a.b.Buf, +b_a Buf, Buf,.[c./b..c/b.b/a, b /a]
(Obs: Simullaneous substitution!)
Sys = (Buf,, | Buf_)\{b, b}

Flow graph:
- Intention:
a, b
.
a b,
LTS:

Thursday, 9 December 2010

Concurrency, in theory

Exambple: 2-wav Buffers

wae GONCUIrency theory is fundamental

Buf_ —

Flow gr: Many of the concepts and techniques developed in 25 years of
study of concurrency theory are fundamental.

You will reuse them in your daily research. 1

LTS:
Just some examples:

But,, (ps
"+ e |abelled transition systems;

® simulation and bisimulation;

® contextual equivalences.

Thursday, 9 December 2010

Concurrency, in practice

void __lockfunc ##op## lock(locktype## t *lock)

{
for (;;) {
preempt disable();
if (likely(raw ##op## trylock(lock)))
break;
preempt enable();
if (!(lock)->break lock)
(lock)->break lock = 1;
while (!op## can_ lock(lock) && (lock)->break lock)
raw##op## _ relax(&lock->raw_lock);
}
(lock)->break lock = 0;
}

excerpt from Linux spinlock.c

Thursday, 9 December 2010

Concurrency, in practice

void __lockfunc ##op## lock(locktype## t *lock)

{
for (i) {
preempt disable();

if (likely(_raw_ ##op##_ trylock(lock)))

break;
preempt_enable();

if (!(lock)->break lock)

(lock)->break lock = 1;
while (!op## can_ lock(lock) && (lock)->break lock)
raw##op## _ relax(&lock->raw_lock);

}
(lock)->break lock = 0;

}
excerpt from Linux spinlock.c

excerpt from
WWW.javaconcurrencyinpractice.com

 *x

* LazyInitRace
*

* Race condition in lazy initialization

fauthor Brian Goetz and Tim Peierls
/

* * *

€NotThreadSafe
public class LazyInitRace {
private ExpensiveObject instance = null;

public ExpensiveObject getInstance() {
if (instance == null)
instance = new ExpensiveObject();
return instance;

}

class ExpensiveObject { }

Thursday, 9 December 2010

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Concurrency, in practice

ResourceResponse response;
unsigned long identifier = std::numeric limits<unsigned long>::max();
if (document->frame())
identifier = document->frame()->loader()->loadResourceSynchronously(reguest, storedCredentials, error, response, data

// No exception for file:/// resources, see <rdar://problem/4962298>.

// Also, if we have an HTTP response, then it wasn't a network error in fact.

if (lerror.isNull({) && lreguest.url().isLocalFile() && response.httpStatusCode() <= 0) {
client.didFail(error);
return;

// FIXME: This check along with the one in willSendRequest is specific to xhr and
// should be made more generic.
if (sameOriginRequest && |document->securityOrigin()->canRegquest({response.url())) {
client.didFailRedirectCheck();
return;

client.didReceiveResponse(response);

const char* bytes = static_cast<const char*>(data.data());
int len = static_cast<int>(data.size());
client.didReceiveData(bytes, len); excerpt from WebKit

client.didFinishLoading({identifier);

LTELULD JLudLvauve;

excerpt from } }
WWW.javaconcurrencyinpractice.com

class ExpensiveObject { }

Thursday, 9 December 2010 3

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Concurrency, in practice

N practice

unsigned lor
1f (document

identifi fFesponse, data

sequential code, interaction via shared memory, some OS calls.

No except

if (lerror.i

c1ient.cLibraries may provide some abstractions (e.g. message passing).

return;

) However, somebody must still implement these libraries. And...

~‘Programmlng IS hard:

if (sameOrlc

client-< guptle algorithms, awful corner cases.

return;

}

client.aicre [€StING IS hard:
const char+ SOME behaviours are observed rarely and difficult to reproduce.

int len = st

client.didRe

P — Warm-up: let's implement a shared stack.
excerpt from } '

WWW.javaconcurrencyinpractice.com ’

class ExpensiveObject { }

Thursday, 9 December 2010 3

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Setup

A program is composed by threads that communicate by writing and reading in
a shared memory. No assumptions about the relative speed of the threads.

In this example we will use a mild variant of the C programming language:
® [ocal variables: x, v, ... (allocated on the stack, local to each thread)
® global variables: Top, H, ... (allocated on the heap, shared between threads)
® data structures: arrays H[i], records n = t->tl, ...
® an atomic compare-and-swap operation (e.g. CMPXCHG on x86):
bool CAS (value_t *addr, value_t exp, value_t new) {
atomic {

1f (*addr == exp) then { *addr = new; return true; }
else return false;

I3

Thursday, 9 December 2010

A stack

We implement a stack using a list living in the heap:

® cach entry of the stack is a record of two fields:

typedef struct entry { value hd; entry *tl } entry
® the top of the stack is pointed by Top.

Top —
— . E— . E— o
pop OO { push (b) {
t = Top; b->tl = Top;
if (t !'= nil) Top = b;
Top = t->tl; return true;
return t; }

h

Thursday, 9 December 2010

A sequential stack: demo

pop C) { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥
Top

N

Thursday, 9 December 2010

A sequential stack: pop ()

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ¥
¥
Top

N
/

t

Thursday, 9 December 2010

A sequential stack: pop ()

pop C) { push (b) {
t = Top; b->tl = Top;
if (t !'= nil) Top = b;
Top = t->tl; return true;
return t; ks
¥
Top

Thursday, 9 December 2010

A sequential stack: pop ()

pop C) { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; h
¥
Top

Thursday, 9 December 2010

A sequential stack: push (b)

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥
Top

N

b

N

Thursday, 9 December 2010

A sequential stack: push (b)

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥
Top

N

Thursday, 9 December 2010

A sequential stack: push (b)

pop () { push (b) {
t = Top; b->tl = Top;
if (t !'= nil) Top = b;
Top = t->tl; return true;
return t; ks
¥
Top

N

Thursday, 9 December 2010

A sequential stack: push (b)

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥
Top

N

Thursday, 9 December 2010

A sequential stack in a concurrent world

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥

Imagine that two threads invoke pop() concurrently...

Top

N

Thursday, 9 December 2010

A sequential stack in a concurrent world

pop () { push (b) {
t = Top, b->tl = TOp,
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥

Imagine that two threads invoke pop() concurrently...

Thursday, 9 December 2010

A sequential stack in a concurrent world

pop () { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥

Imagine that two threads invoke pop() concurrently...

Thursday, 9 December 2010

A sequential stack in a concurrent world

pop C) { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥

Imagine that two threads invoke pop() concurrently...

Thursday, 9 December 2010

17

A sequential stack in a concurrent world

pop C) { push (b) {
t = Top; b->tl = Top;
if (t != nil) Top = b;
Top = t->tl; return true;
return t; ks
¥

Imagine that two threads invoke pop() concurrently...

...the two threads might pop the same entry!

Thursday, 9 December 2010

18

|[dea 1: validate the Top pointer using CAS

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Thursday, 9 December 2010

19

|[dea 1: validate the Top pointer using CAS

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Two concurrent pop() now work fine...

Thursday, 9 December 2010

|[dea 1: validate the Top pointer using CAS

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Two concurrent pop() now work fine...

Thursday, 9 December 2010

|[dea 1: validate the Top pointer using CAS

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;

return t;

Iy
Two concurrent pop() now work fine...

ks
Top \
The CAS of Th. 1 fails. .

//

1: t 1: n

Thursday, 9 December 2010

22

The ABA problem

pop C) {
while (true) {

t = Top;
1f (t == nil) break;
n = t->tl;

1f CAS(&Top,t,n) break;

}

return t;

¥
Th 1 starts popping...

push (b) {
while (true) {
t = Top;
b->tl = t;
1f CAS(&Top,t,b) break;
3

return true;

¥

Thursday, 9 December 2010

The ABA problem

pop () { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
3

Th 1 starts popping...

Thursday, 9 December 2010

The ABA problem

pop () { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥
Th 2 pops...
Top
2 \\)
/ 1 1 :
1: t /
1: n

Thursday, 9 December 2010

The ABA problem

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Th 2 pops again...

Thursday, 9 December 2010

The ABA problem

pop C) { push (b) {
while (true) { while (true) {
t = Top; t = Top;
if (t == nil) break; b->tl = t;
n = t->tl; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Th 2 pushes a new node...

Top > \
2:\ \
1:'E////////”,////////*
1: n

Thursday, 9 December 2010 27

The ABA problem

pop () { push (b) 1
while (true) { while (true) {
= Top; t = Top;
if (t == nil) break; b->tl = t;
= t->t1; 1f CAS(&Top,t,b) break;
if CAS(&Top,t,n) break; ks
1 return true;
return t; ks
¥

Th 2 pushes the old head of the stack...

Top\ /
//

Thursday, 9 December 2010 28

The ABA problem

pop C) {
while (true) {
t = Top;
1f (t == nil) break;
n = t->tl;
1f CAS(&Top,t,n) break;
¥
return t;
¥

Th 1 corrupts the stack...
Top

push (b) {
while (true) {
t = Top;
b->tl = t;
1f CAS(&Top,t,b) break;
3

return true;

\4 ~

Thursday, 9 December 2010

The hazard pointers methodology

Michael adds to the previous algorithm a global array H of hazard pointers:
® thread i alone is allowed to write to element H[i] of the array;

® any thread can read any entry of H.

The algorithm is then modified:

® before popping a cell, a thread puts its address into its own element of H.
This entry is cleared only if CAS succeeds or the stack is empty;

® before pushing a cell, a thread checks to see whether it is pointed to from any
element of H. If it is, push is delayed.

Thursday, 9 December 2010

30

Michael’s algorithm, simplified

pop () { push (b) {
while (true) { for (n = 0; n < no_threads, n++)
atomic { t = Top; 1f (H[n] == b) return false;
H[tid] = t; 3; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks
¥

Thursday, 9 December 2010

31

Michael’s algorithm, simplified

pop () { push (b) {
while (true) { for (n = @; n < no_threads, n++)
atomic { t = Top; 1f (H[n] == b) return false;
H[tid] = t; }; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks
¥
Top > \
‘ \
Th 2 cannot push the old
head, because Th 1 has an H[1] g 1 I

hazard pointer on it... / /

1: t
1: n

Thursday, 9 December 2010

32

Key properties of Michael’s simplitied algorithm

e A node can be added to the hazard array only if it is reachable through the
stack;

¢ a node that has been popped is not reachable through the stack;

¢ a node that is unreachable in the stack and that is in the hazard array cannot
be added to the stack;

¢ while a node is reachable and in the hazard array, it has a constant tail.

These are a good example of the properties we might
want to state and prove about a concurrent algorithm.

Thursday, 9 December 2010

33

The role of atomic

pop () { push (b) {
while (true) { for (n = @; n < no_threads, n++)
t = Top; 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks
¥
Top

Th 1 copies Top... /

Thursday, 9 December 2010

The role of atomic

pop () { push (b) {
while (true) { for (n = @; n < no_threads, n++)
t = Top; 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; 1f CAS(&Top,t,b) break;
} h
H[tid] = nil; return true;
return t; ks
¥
S
Top \\\\‘
Th 2 pops twice, and
——> ——

pushes a new node... /

Thursday, 9 December 2010

The role of atomic

pop () { push (b) {
while (true) { for (n = 0; n < no_threads, n++)
t = Top; 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks
¥
Top — A\
Th 2 starts pushing the old \"
head, and is halfway in the i I
for loop... /
1: t

Thursday, 9 December 2010

The role of atomic

pop () { push (b) {
while (true) { for (n = 0; n < no_threads, n++)
t = Top; 1f (H[n] == b) return false;
H[tid] = t; while (true) {
if (t == nil) break; t = Top;
n = t->tl; b->tl = t;
if CAS(&Top,t,n) break; , 1f CAS(&Top,t,b) break;
a[tid] = nil; return true;
return t; ks
¥
Th 1 sets its hazard Top / ~
\ \
pointer... but Th 2 might

not see the hazard pointer H[1] — >
of Th 1! /

1ot 1: n

Thursday, 9 December 2010

Michael shared stack

pop () { push (b) 1

while (true) { for (n = 0; n < no_threads, n++)
t = Top; if (H[n] == b) return false;
if (t == nil) break; while gtree) i
Htid] = t; E :tIOD,t.
1f (£t !'=T b k, ._ = Ly
; =Ct_>t1.0p) o 1f CAS(&Top,t,b) break;
1f CAS(&Top,t,n) break; ¥

1 return true;

H[tid] = nil; 3

return t;

} ///’
Trust me: if we validate t against the

Top pointer before reading t->t1, we

\get a correct algorithm. j g

Thursday, 9 December 2010

38

Michael shared stack

push (b) {

POZhEIZ étrue) { for (n = 0; n < no_threads, n++)
t = Top; if (H[n] == b) return false;
if (t == nil) break; Whlle %E;ge) {

H . = : = ’
A p->t1 = t;

1f (t '= Top) break;

n = t->tl;

if CAS(&Top,t,n) break; ;
1 return true;
H[tid] = nil; !
return t;

h

HOW CAN WE BE SURE?

1f CAS(&Top,t,b) break;

Thursday, 9 December 2010

39

Michael shared stack

That algorithm is insane... | will never “’ a

use it in my everyday programming. o

Thursday, 9 December 2010

40

Michael shared stack

That algorithm is insane... | will never
use it in my everyday programming.

Yes, you willl Michael algorithms
are part of java.util.concurrent.

Thursday, 9 December 2010

40

BSackground:

oare logic

Thursday, 9 December 2010

41

What does it mean fol

In 1969, a seminal paper by Hoare

what a program does:

® Cis a program;

® P (the precondition) and Q (the ¢

variables used in C.

We say that

{P

If whenever C is executed in a stat
terminates, then the state in whict

An Axiomatic Basis for
Computer Programming

C. A. R. HoARre
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming’
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation

CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

1. Introduction

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Science

576 Communications of the ACM

of axioms it is possible to deduce such simple theorems as:
r=z+y X0
y<ror+yXg=(0—-—y)+yX 1+¢q)
The proof of the second of these is:
A5 (r—y)+yX (1+gq)
=@ —-y)+ GX1+yXyg

A9 =0r—-y)+ G+yXq
A3 =(r—y)+y)+yXgq
A6 =r+y Xgqg providedy <r

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers’’ which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of A1 to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table II by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented.

It is interesting to note that the different systems satisfy-
ing axioms A1l to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

A10; —3dzVy (y < z),
where all finite arithmetics satisfy:
Al0r Vz (x < max)

where “max” denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:

Ally =32z (x =max + 1) (strict interpretation)
Ally max + 1 = max

Ally max+1 =0

(firm boundary)

(modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

Volume 12 / Number 10 / October, 1969

Thursday, 9 December 2010

42

What does it mean for a program to be correct”?

In 1969, a seminal paper by Hoare introduced the following notation to specify
what a program does:

{P}C{Q}
® Cis a program;

® P (the precondition) and Q (the postcondition) are statements on the program
variables used in C.

We say that
{P}cCc{Q}istrue

if whenever C is executed in a state satisfying P and if the execution of C
terminates, then the state in which C’s execution terminates satisfies Q.

Thursday, 9 December 2010

42

Floyd-Hoare logic?

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:!

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent

Note: the original ideas were seeded
by the work of Robert Floyd, who in
1969 had published a similar system
for flowcharts.

REJ " ANi=1IAS=0
1=1

neJtAiEJ ANisn+1IAS = Zl%
'-

———=nEJ Aimn+1IAS= T aj; ie,S= T g

J=1 =1

-1

neEJTAIEJ AISsAAS= J g
)=\

nEJTAIEJ AisnAS= Lag
J=1

-1

nedJ Aied T A2sisgn+1AS= 2 g

J=1

FiGuRe 1. Flowchart of program to compute S = Zf.l gj(nz0)

Thursday, 9 December 2010

43

http://en.wikipedia.org/wiki/Robert_Floyd
http://en.wikipedia.org/wiki/Robert_Floyd
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Flowchart

An Imperative programming language

The symbol S stands for arbitrary statements: these are conditions like
x + 1 < y which are either true or false.

The symbol E stands for arbitrary expressions: these are things like x + 1 which
denote values.

The symbol C stands for arbitrary commands, where a command is:
® do nothing: skip

® an assignment: x := E

® the sequential composition of two commands: C1; C

® 3 conditional: if S then Ci else (;

® a loop: while S do C

Thursday, 9 December 2010

44

Operational semantics

The computation state is represented with an environment called stack:

stack : var — value (denoted s)

Evaluation of expressions and statements:

e1/ s -v1 e/ s 5w
3/s -3 x/s — s(x) e1 +e /S — Vi+ V2 etc...

Evaluation of commands:

E/ s - v Ct/ s - C" /s’
X :=E /s — skip / s[x:=v] skip ; C/ s - C/s CG; CG/s -C ;CG/Ss'

S/ s — True S / s — Fdlse
1f S then C1 else (2 / s — C1 / s 1f S then CL else (; / s — C / s
S/ s - True C ; while Sdo(C/ s — C" / s' S / s — False

while Sdo C/ s - C" / s' while S do C / s — skip / s

Thursday, 9 December 2010 45

Statements

Statements are assertions on the state. For instance, consider:

PQ =T true
- P negation
PAQ conjuction
PvQ disjunction
P=Q implication
S language statements

A state s satisfies an assertion P (or P holds in s), denoted s = P, if

s = T always
s = -P iff s = P is false skES iff S/s — true
sEPAQiffsePandskE=Q
sEPVvQiffsePorseEQ
sEP = Qiff s=Pimplies s = Q

relates assertions to program statej

Thursday, 9 December 2010

46

—Xamples

e{x=1}x:1=x+1{x =2}

e{x=1}y :=x{x=1ary=1}

o{x =1}y :=x{y =2} (this is clearly false)
*{x=nay=m}r:i=x;x:i=y;y:=r{x=may=n}

The variables n and m which do not occur in the command and are used to
name the initial values of program variables x and y, are called auxiliary
variables (or ghost variables).

o{x=nAry=m}x:=y;y :=x{x=maAay=n} (false)
o {P}C{T} (always true)

e {T}c{Q} (states that whenever C terminates, Q holds)

Thursday, 9 December 2010 47

Partial vs. total correctness

An expression { P } ¢ { Q } is called a partial correctness specification: { P } C
{ Q} can be true even if C does not terminate in a state satisfying P.

Total correctness specification: [P] C[Q] is true if and only if

(1) whenever C is executed in a state satisfying P, then the execution of C
terminates;

(i) after termination Q holds.

Informally: Total correctness = Termination + Partial correctness.

In all these lectures we will focus on partial correctness.

Thursday, 9 December 2010

48

Floyd-Hoare logic: the assignment axiom

—{P[E/x]} x :=E {P}

Examples: wNotation:

P where all occurrences of x
have been substituted with E.

—{y =2} x =2 {y =x}

F{x+1=n+1}x:=x+1{x=n+1}

H{E=E} x :=E {x =E} (if x does not occur in E)

Remark: the axiom as a backward flavour. Two common erroneus intuitions are

that it should be as follows:

@+ {P}x :=F {P[x/E]}
b)-{P} x :=E {P[E/x])

Exercise: the axioms (a) and (b) are unsound. Why?

(a) — {X=0} X:=1 {X=02, since the (X=0)IX/11
is equal to (X=0) as 1 doesn’t occur in (X=0).

(b) — {X=02} X:=1 {1=02 which follows by
taking P to be X=0, V to be X and E to be 1.

Thursday, 9 December 2010

49

Floyd-Hoare logic: weakening and strenghtening

-P=P H{P}c{Q) Q=0
- {P}c{Q)

Exercise: deduce the following facts:
F{x=n}x:=x+1{x=n+1}
—{T} x :=E {x=E}

F{x=r}a:=0{x=r+ & *a}

Remember: — {P[E/x]} x := E {P}

Thursday, 9 December 2010

50

Floyd-Hoare logic: statement manipulation

-P=P H{P}c{Q) Q' =Q
- {P}c{Q)

F{P}C{Q1} +H{P}C{Q2} —F{P1}Cc{Q} +~{P2}C{Q}

F{P}C{Q1 AQ2} F{P1VvP2}Cc{Q}

Reminscent of sequent calculus...

Thursday, 9 December 2010

51

Floyd-Hoare logic: commands

f P is called loop invariant ’

—F{PAS}C{P}
= {P}while S do C{P A S}

F{P}G{Q} F{Q}CG{R} F{PAS}G{Q} F{PA-S}CG{Q]}
—{P}c ; :{R} —{P}if S then Ci else C:{Q}

Exercise: prove that
={T}
r:=x; q :=0; whiley <rdo (r :=r-y; q :=qg+l)

{r <y arx=r+y*q}
Remember: — {P[E/x]} x := E {P}

Thursday, 9 December 2010 52

—Xercise

The Zune’s real-time clock stores the time in terms of days and seconds since
January 1st, 1980. At the end of the boot sequence, it converts the clock value
into date and time. This is the code that, given the number of days since
January 1st, 1980, computes the year.

while (days > 365) {
if (IsLeapYear(year)) {

if (days > 366) { Is this code correct? Does it hold that
days -= 36606;
year += 1; {days > @ A year = 0 }
; code
ilse { { days <= 365 A year >= 0}
days -= 365;
year += 1;
¥

Thursday, 9 December 2010

53

Th
Jal
Int
Jal

wh

.eS .|.I,.- B R R R R N T P —,

of t
COC
e)

Plenty of Zunes hang up on December
31st, 2008. They worked perfectly the day
after.

How is it possible?
We just proved the code correct!

{aays <="365"A"year >="07}

Thursday, 9 December 2010

53

http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm

Th
Jal
Int
Jal

wh

.eS .|.I,.- B R R R R N T P —,

of t
COC
e)

Plenty of Zunes hang up on December
31st, 2008. They worked perfectly the day
after.

How is it possible?
We just proved the code correct!

We proved only partial correctness!

{aays <="365"A"year >="07}

Thursday, 9 December 2010

53

http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm

Relating the initial and final state

Forget leap years for now, and consider a simplified version of the Zune code:

while (days > 365) {
days -= 365;
year += 1;

h

How can we specify that, after executing the code, the expression
days + year * 365

is equal to the value of days before executing the code?

Thursday, 9 December 2010

54

Relating the initial and final state

Forget leap years, and consider a simplified version of the Zune code:

olddays = days;

while (days > 365) {
days -= 365;
year += 1;

}

We need to introduce an auxiliary variable, olddays, to record some informations
about a particular state of the program,

{days > @ A year = @} code { days + year * 365 = olddays }

Remark: the extra assignments must not change the semantics of the program.
A set X is auxiliary for C if each free occurrence in C of an identifier from X is in
an assignment whose target is in X: no effect on control flow, no effect on other
variables.

Thursday, 9 December 2010 55

Soundness of Floyd-Hoare logic

Imagine you can derive { P } ¢ { Q } for some command C and statements P and
Q. What does this assert on the execution of C in some state s?

Soundness: Let - { P } C { Q } a provable triple.

For all states s, s=EPand (/s — skip/s"implys' Q.

Exercise: what about completeness? Is it true that if for all states s, s = P and
C/s —skip/s"implys'=Q,then{P}C {Q}is provable?

Hint: what does the triple { P } ¢ { =T } state?

Thursday, 9 December 2010

56

Separation logic

Thursday, 9 December 2010

57

Adding the heap

We extend our programming language with

® memory writes, [E1] := E

® memory reads, x := [E]

® memory allocation, x := cons(Ei,..,En)

® memory deallocation, dispose E

The state is now represented by a pair (stack, heap), denoted (s,h), where
stack : var -> value

heap : loc -> value

where loc ¢ value.

Thursday, 9 December 2010

58

Operational semantics

E/ s o v E/ s v

x := E / (s,h) — skip / (s[x:=v],h) x :=[E] / (s,h) — skip / (s[x:=h(v)], h)

E1 / s — w»n1 E> / s — v2
[E1] := E2 / (s,h) — skip / (s, h[vi:=vz])

E1 / s — w1 En / S — wvn V .. v+(n-1) ¢ dom(Ch)
X := cons(Ei,..,En) / (s,h) — skip / (s[x:=v], h @ [v:=vi .. v+(n-1):=vn])

E/ s - v
dispose E / (s,h) — skip / (s,h\v) The other rules are straightforward.

Remark: h[v:=v'] and h\v are defined only if v e dom(h).

Remark: the operational semantics is stuck if accesses outside the domain of s

and h are performed.

Thursday, 9 December 2010

59

—Xample program
X = cons(3,3); y = cons(4,4); [x+1] = vy; [y+1] = x

stack heap

Thursday, 9 December 2010

60

—Xample program

X = cons(3,3); y = cons(4,4); [x+1] =vy; [y+1l] = x

stack heap graphically

X 143 431 3
44 3 X

Thursday, 9 December 2010

stack

X 43
y |57

X

—Xample program

cons(3,3); y = cons(4,4); [x+1] = vy; [y+1l] = x

heap graphically
43| 3
441 3 X y
orl 4
58| 4

\4 \

Thursday, 9 December 2010

62

—Xample program

x = cons(3,3); y = cons(4,4); [x+1] =vy; [y+1l] = x

stack heap graphically
X [43 431 3
y |57 44157 X y
orl 4
58| 4
\4 \
31\ 414

Thursday, 9 December 2010

—Xample program

X = cons(3,3); y = cons(4,4); [x+1] =vy; [y+1] = x

stack heap graphically
X [43 431 3
y |57 44157 X y
orl 4
58|43
\4 \
S|\ sl

Thursday, 9 December 2010

Why separation logic”

Can you suggest a precondition such that this triple holds?

- { ?2?2? 1
Lyl := 4,
[z] :=5;
{ Lyl '=[z] }

Thursday, 9 December 2010

65

Why separation logic”

Can you suggest a precondition such that this triple holds?

1y l=2}
Lyl = 4,
[z] := 5;
{ Lyl '=[z] }

We need to assume that the locations pointed by y and z are different (aliasing).

Thursday, 9 December 2010

66

Why separation logic”

And now?

- { ?2?2? 1
Lyl := 4,
[z] :=5;

1Lyl '=[z] A [x] =33}

Thursday, 9 December 2010

67

Why separation logic”
And now?

F{yl=zAXx!=yAx!l=zar[x] =3}

[yl :
[z] :

4,
5;

1Lyl '=[z] A [x] =33}

® we need to assume that the locations pointed by y and z are different (aliasing).

® Wwe need to know when things stay the same.

Thursday, 9 December 2010

68

Framing

We want a general concept of things not being affected.

{P}c{Q]}
{[x] =3AP}C{QA[x] =3}

What are the conditions on C and [x] = 37

These are very hard to define if reasoning about a heap and aliasing.

This is where separation logic comes in:
{P}C{Q}
{R*P}C{Q*"R}

The new connective * is used to separate the heap.

Thursday, 9 December 2010

69

In the beginning: classical logic

I'FAA T'FBA ['VA,BFA ' A

TFAAB.A M T.ANBEAN T AF A Wweakl
I'AFA T.BFA L-A,BA FE A
T AVBFA YU TrAvB A" TFA, A weakr

PFAA T,BFA T,AFBA _ T,AAFA
A=BFA ~! TFASBA T AF A conrl

I'-AA I AFA L-AAA
F-AFA TF-AA " TFAA o
BS

AFA

Thursday, 9 December 2010

In the beginning: classical logic

PFAA TEBA T A, BF A
THAAB,A " T,AANBFA
T AFA T,BFA T+ A BA

ravBra Y\ TtraveA Y

I'HAA TI'BFA I'VAF B, A
I'NA= BFA = I‘I—A=>BA

T'HAA I AFA
T -AFA ¥ TF-A.A
BS

AFA

Thursday, 9 December 2010

A substructural logic: bunched implications

ldea: A admits weakening and contraction, but * does not.

A(T) 1 A(CAT) 4
We have: ACAT) F AT) F ¢

A(T) F A(T *T) F 1
But we do not have: A(F * F,) - w A(F) - w

The logic of bunched implications (Bl) mixes substructural logic with classical/
intuitionistic logic. Bl is the logic behing separation logic.

If this does not make sense, don't panic.

Thursday, 9 December 2010

Statements of separation logic

PQ =T true
- P negation
PAQ conjuction
PvQ disjunction
P=Q implication
S language statements
P*Q separating conjunction
E1— E; points to
empty empty heap

(s,h) E empty iff dom(h)=J
(s,h)=EE1 — E2 iff E1 /s — vi A E2/ s — v2 A domCh) = vi A h(v1) = v

(s,h) EP*Q iff
3 hi1, hz. domChi) n dom(Chz) = @ A h1 ® h = h A (s,h1) =P A (s,h2) = Q

Thursday, 9 December 2010 73

—Xample

Our previous heap X y
\/ \4
S\ 41

satisfies the statement: (x — 3) " (x+1 — y) "y — 4) * (y+1 — x),
but not the statement: x — 3.
Exercise: does the heap above satisfy

(X — 3"x+1 — YA (y — 47 y+l — x) ?

Thursday, 9 December 2010

74

Data types: list

A non-cyclic list

X— vi| |+—>| Vo | —F— —| v |

can be defined by the following recursive statement:
list [| x = empty A x = nil

istviiad X =3 3. x— Vi (x+1 —) * list &]

Remark: we have (implicitely) added sequences (ranged over by &) to the logic.

Thursday, 9 December 2010

75

Data types: list segment

Often it is useful to be able to denote list segments:

X — vi| +—>|Vo | +— —| vnl| VY

Iseg [] (x,y) = empty A x =y

Iseg viixX (x,y) =3 j.x — V * (x+1+— j) = Iseg & (3,y)

Exercise: prove, by structural induction on «, that:

Iseg & - B (x,y) & 3 j. Iseg & (x,3) *Iseg B (3,y)

where - denotes concatenation of sequences.

Thursday, 9 December 2010

76

—Xercises

Exercise: can you write a statement that encodes doubly-linked lists?

.

| —» (X1 Ao~ » ~ Xn i’
O—-‘>< d|Segg(i,i’,j’,j) = empty A i=j’ A i’:j

diseg(a-a)(i,i’,j’,j) = ak.i—a,k,i’ = disega(k,i,j’,j)

and consider the definition of doubly-linked lists

Exercise: which data structure i: Pelow:
disa(f,b) = disega(f,null,null,b)

gue

guess (T, T)i=13j, k.|

Thursday, 9 December 2010

77

(Local) axioms

Here are three of the axioms:
® write: {E — _} [E] =E' {E — E'}

® dispose: {E — _ }dispose(E) {empty }

® alloc: {empty } x = cons(E1,..,En) {x — E1 * x+1 — E2 * ..

where E — _is ashorthand for3 x. E — x.

* x+(n-1) — En}

Thursday, 9 December 2010

78

The frame rule

The most important rule, called the frame rule:
{P} Cc{Q]}
{P*R} C {Q*R}
provided that fv(R) n modifies(C) = &

Note: modifies(C) denotes the set of stack variables assigned by a given
command, C, e.g. modifies(x=3) = {x}. However assignment through a stack
variable to the heap is not counted: modifies([x]=3) = @. See the references for
full definition.

Exercice: showthat {P}c{Q}={PAR}Cc{Q A R}is not sound.

Thursday, 9 December 2010

79

—Xercises

Prove that:

{Ilseg & (i,j) } k := cons(a,i); i := k {Isega-&(i,]) }
{lseg & (i,j) *j — a,k}1 := cons(b,k); [j+1] := 1 {Iseg &X-a-b (i,k) }
{lsega-(i,k) } j := [i+1]; dispose i; dispose i+1l; i := j {Iseg & (i, k) }

Remember:

Iseg [l (x,y) =empty A x =y
Iseg vi:iX (x,y) =3 j.x — V * (x+1 — j) = Iseg & (5,y)

Notation: j — a,k stands forj — a *j+1 — k.

Thursday, 9 December 2010

80

Exercise: associate each picture with its owner....

Thanks to:

Mike Gordon
John Reynolds
Tony Hoare
Maged Michael
Peter O'Hearn
Robert Floyd
Doug Lea
Robin Milner

Thursday, 9 December 2010

81

References:
Mike Gordon, Specification and Verification I, chapters 1 and 2.

John Reynolds, Introduction to Separation Logic, parts 1-4.

both available from http://moscova.inria.fr/~zappa/teaching/mpri/2010/ .

Next lecture: and concurrency?

Thursday, 9 December 2010

82

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

