
Proof methods for concurrent programs

1. shared memory, Hoare logic, separation logic

Francesco Zappa Nardelli

INRIA Paris-Rocquencourt, MOSCOVA project-team

 francesco.zappa_nardelli@inria.fr
 http://moscova.inria.fr/~zappa/teaching/mpri/2010/

1Thursday, 9 December 2010

mailto:francesco.zappa_nardelli@inria.fr
mailto:francesco.zappa_nardelli@inria.fr
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

Concurrency, in theory

2Thursday, 9 December 2010

Concurrency, in theory

Concurrency theory is fundamental
Many of the concepts and techniques developed in 25 years of
study of concurrency theory are fundamental.

You will reuse them in your daily research.

Just some examples:

• labelled transition systems;

• simulation and bisimulation;

• contextual equivalences.

2Thursday, 9 December 2010

Concurrency, in practice

excerpt from Linux spinlock.c

3Thursday, 9 December 2010

Concurrency, in practice

excerpt from Linux spinlock.c

excerpt from
www.javaconcurrencyinpractice.com

3Thursday, 9 December 2010

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Concurrency, in practice

excerpt from Linux spinlock.c

excerpt from
www.javaconcurrencyinpractice.com

excerpt from WebKit

3Thursday, 9 December 2010

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Concurrency, in practice

excerpt from Linux spinlock.c

excerpt from
www.javaconcurrencyinpractice.com

excerpt from WebKit

in practice
sequential code, interaction via shared memory, some OS calls.

Libraries may provide some abstractions (e.g. message passing).
However, somebody must still implement these libraries. And...

Programming is hard:
 subtle algorithms, awful corner cases.

Testing is hard:
 some behaviours are observed rarely and difficult to reproduce.

Warm-up: let's implement a shared stack.

3Thursday, 9 December 2010

http://www.javaconcurrencyinpractice.com
http://www.javaconcurrencyinpractice.com

Setup

A program is composed by threads that communicate by writing and reading in
a shared memory. No assumptions about the relative speed of the threads.

In this example we will use a mild variant of the C programming language:

• local variables: x, y, … (allocated on the stack, local to each thread)

• global variables: Top, H, … (allocated on the heap, shared between threads)

• data structures: arrays H[i], records n = t->tl, …

• an atomic compare-and-swap operation (e.g. CMPXCHG on x86):

 bool CAS (value_t *addr, value_t exp, value_t new) {
 atomic {
 if (*addr == exp) then { *addr = new; return true; }
 else return false;
 }}

4Thursday, 9 December 2010

We implement a stack using a list living in the heap:

• each entry of the stack is a record of two fields:

 typedef struct entry { value hd; entry *tl } entry

• the top of the stack is pointed by Top.

A stack	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

5Thursday, 9 December 2010

A sequential stack: demo	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

6Thursday, 9 December 2010

A sequential stack: pop ()	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

t

7Thursday, 9 December 2010

A sequential stack: pop ()	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

t

8Thursday, 9 December 2010

A sequential stack: pop ()	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

t

9Thursday, 9 December 2010

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

10Thursday, 9 December 2010

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

11Thursday, 9 December 2010

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

12Thursday, 9 December 2010

A sequential stack: push (b)	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

b

13Thursday, 9 December 2010

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

14Thursday, 9 December 2010

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t

15Thursday, 9 December 2010

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

16Thursday, 9 December 2010

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

17Thursday, 9 December 2010

A sequential stack in a concurrent world	

pop () {
 t = Top;
 if (t != nil)
 Top = t->tl;
 return t;
}

push (b) {
 b->tl = Top;
 Top = b;
 return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

...the two threads might pop the same entry!

18Thursday, 9 December 2010

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

19Thursday, 9 December 2010

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Two concurrent pop() now work fine...

1: t

20Thursday, 9 December 2010

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Two concurrent pop() now work fine...

1: t

21Thursday, 9 December 2010

Idea 1: validate the Top pointer using CAS

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Two concurrent pop() now work fine...

1: t 1: n

The CAS of Th. 1 fails.

22Thursday, 9 December 2010

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 starts popping...

1: t

23Thursday, 9 December 2010

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 starts popping...

1: t
1: n

24Thursday, 9 December 2010

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pops...

1: t

2:

1: n

25Thursday, 9 December 2010

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pops again...

1: t

2:

1: n

26Thursday, 9 December 2010

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pushes a new node...

1: t

2:

1: n

27Thursday, 9 December 2010

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pushes the old head of the stack...

1: t
1: n

28Thursday, 9 December 2010

The ABA problem

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 return t;
}

push (b) {
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 corrupts the stack...

29Thursday, 9 December 2010

The hazard pointers methodology

Michael adds to the previous algorithm a global array H of hazard pointers:

• thread i alone is allowed to write to element H[i] of the array;

• any thread can read any entry of H.

The algorithm is then modified:

• before popping a cell, a thread puts its address into its own element of H.
This entry is cleared only if CAS succeeds or the stack is empty;

• before pushing a cell, a thread checks to see whether it is pointed to from any
element of H. If it is, push is delayed.

30Thursday, 9 December 2010

Michael’s algorithm, simplified

pop () {
 while (true) {
 atomic { t = Top;
 H[tid] = t; };
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

31Thursday, 9 December 2010

Michael’s algorithm, simplified

pop () {
 while (true) {
 atomic { t = Top;
 H[tid] = t; };
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 cannot push the old
head, because Th 1 has an
hazard pointer on it...

1: t

2:

1: n

H[1]

32Thursday, 9 December 2010

Key properties of Michael’s simplified algorithm

• A node can be added to the hazard array only if it is reachable through the
stack;

• a node that has been popped is not reachable through the stack;

• a node that is unreachable in the stack and that is in the hazard array cannot
be added to the stack;

• while a node is reachable and in the hazard array, it has a constant tail.

These are a good example of the properties we might
want to state and prove about a concurrent algorithm.

33Thursday, 9 December 2010

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 1 copies Top...

1: t

34Thursday, 9 December 2010

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top

Th 2 pops twice, and
pushes a new node...

1: t

35Thursday, 9 December 2010

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Top
Th 2 starts pushing the old
head, and is halfway in the
for loop...

1: t

36Thursday, 9 December 2010

The role of atomic

pop () {
 while (true) {
 t = Top;
 H[tid] = t;
 if (t == nil) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

TopTh 1 sets its hazard
pointer… but Th 2 might
not see the hazard pointer
of Th 1!

1: t

H[1]

1: n

37Thursday, 9 December 2010

Michael shared stack

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 H[tid] = t;
 if (t != Top) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

Trust me: if we validate t against the
Top pointer before reading t->tl, we
get a correct algorithm.

38Thursday, 9 December 2010

Michael shared stack

pop () {
 while (true) {
 t = Top;
 if (t == nil) break;
 H[tid] = t;
 if (t != Top) break;
 n = t->tl;
 if CAS(&Top,t,n) break;
 }
 H[tid] = nil;
 return t;
}

push (b) {
 for (n = 0; n < no_threads, n++)
 if (H[n] == b) return false;
 while (true) {
 t = Top;
 b->tl = t;
 if CAS(&Top,t,b) break;
 }
 return true;
}

HOW CAN WE BE SURE?

39Thursday, 9 December 2010

Michael shared stack

That algorithm is insane… I will never
use it in my everyday programming.

40Thursday, 9 December 2010

Michael shared stack

That algorithm is insane… I will never
use it in my everyday programming.

Yes, you will! Michael algorithms
are part of java.util.concurrent.

40Thursday, 9 December 2010

Background: Hoare logic

41Thursday, 9 December 2010

In 1969, a seminal paper by Hoare introduced the following notation to specify
what a program does:

{ P } C { Q }

• C is a program;

• P (the precondition) and Q (the postcondition) are statements on the program
variables used in C.

We say that

{ P } C { Q } is true

if whenever C is executed in a state satisfying P and if the execution of C
terminates, then the state in which C’s execution terminates satisfies Q.

What does it mean for a program to be correct?

42Thursday, 9 December 2010

In 1969, a seminal paper by Hoare introduced the following notation to specify
what a program does:

{ P } C { Q }

• C is a program;

• P (the precondition) and Q (the postcondition) are statements on the program
variables used in C.

We say that

{ P } C { Q } is true

if whenever C is executed in a state satisfying P and if the execution of C
terminates, then the state in which C’s execution terminates satisfies Q.

What does it mean for a program to be correct?

42Thursday, 9 December 2010

Floyd-Hoare logic?

Note: the original ideas were seeded
by the work of Robert Floyd, who in
1969 had published a similar system
for flowcharts.

43Thursday, 9 December 2010

http://en.wikipedia.org/wiki/Robert_Floyd
http://en.wikipedia.org/wiki/Robert_Floyd
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Flowchart

An imperative programming language

The symbol S stands for arbitrary statements: these are conditions like
x + 1 < y which are either true or false.

The symbol E stands for arbitrary expressions: these are things like x + 1 which
denote values.

The symbol C stands for arbitrary commands, where a command is:

• do nothing: skip

• an assignment: x := E

• the sequential composition of two commands: C1; C2

• a conditional: if S then C1 else C2

• a loop: while S do C

44Thursday, 9 December 2010

The computation state is represented with an environment called stack:

 stack : var ⟶ value (denoted s)

Evaluation of expressions and statements:

 3 / s ⟶ 3 x / s ⟶ s(x)

Evaluation of commands:

Operational semantics

e1 + e2 / s ⟶ v1 + v2
e1 / s ⟶ v1 e2 / s ⟶ v2

etc...

x := E / s ⟶ skip / s[x:=v]
E / s ⟶ v

if S then C1 else C2 / s ⟶ C1 / s

S / s ⟶ True

if S then C1 else C2 / s ⟶ C2 / s

S / s ⟶ False

while S do C / s ⟶ C' / s'
S / s ⟶ True C ; while S do C / s ⟶ C' / s'

while S do C / s ⟶ skip / s
S / s ⟶ False

 skip ; C / s ⟶ C / s C1 ; C2 / s ⟶ C' ; C2 / s'
C1 / s ⟶ C' / s'

45Thursday, 9 December 2010

Statements

Statements are assertions on the state. For instance, consider:

A state s satisfies an assertion P (or P holds in s), denoted s ⊨ P, if

s ⊨ T always

s ⊨ ¬P iff s ⊨ P is false

s ⊨ P ⋀ Q iff s ⊨ P and s ⊨ Q

s ⊨ P ⋁ Q iff s ⊨ P or s ⊨ Q

s ⊨ P ⇒ Q iff s ⊨ P implies s ⊨ Q

P, Q ::= T true
| ¬ P negation
| P ⋀ Q conjuction
| P ⋁ Q disjunction
| P ⇒ Q implication
| S language statements

s ⊨ S iff S / s ⟶ true

relates assertions to program state

46Thursday, 9 December 2010

Examples

• { x = 1 } x := x + 1 { x = 2 }

• { x = 1 } y := x { x = 1 ⋀ y = 1 }

• { x = 1 } y := x { y = 2 } (this is clearly false)

• { x = n ⋀ y = m } r := x; x := y; y := r { x = m ⋀ y = n }

The variables n and m which do not occur in the command and are used to
name the initial values of program variables x and y, are called auxiliary
variables (or ghost variables).

• { x = n ⋀ y = m } x := y; y := x { x = m ⋀ y = n } (false)

• { P } C { T } (always true)

• { T } C { Q } (states that whenever C terminates, Q holds)

47Thursday, 9 December 2010

Partial vs. total correctness	

An expression { P } C { Q } is called a partial correctness specification: { P } C
{ Q } can be true even if C does not terminate in a state satisfying P.

Total correctness specification: [P] C [Q] is true if and only if

(1) whenever C is executed in a state satisfying P, then the execution of C
terminates;

(ii) after termination Q holds.

Informally: Total correctness = Termination + Partial correctness.

In all these lectures we will focus on partial correctness.

48Thursday, 9 December 2010

Floyd-Hoare logic: the assignment axiom

⊢ { P [E / x] } x := E { P }

Examples:

 ⊢ { y = 2 } x := 2 { y = x }

 ⊢ { x + 1 = n + 1 } x := x + 1 { x = n + 1 }

 ⊢ { E = E } x := E { x = E } (if x does not occur in E)

Remark: the axiom as a backward flavour. Two common erroneus intuitions are
that it should be as follows:

(a) ⊢ { P } x := E { P [x / E] }

(b) ⊢ { P } x := E { P [E / x] }

Exercise: the axioms (a) and (b) are unsound. Why?

Notation:
P where all occurrences of x
have been substituted with E.

(a) ⊢ {X=0} X:=1 {X=0}, since the (X=0)[X/1]
is equal to (X=0) as 1 doesn’t occur in (X=0).

(b) ⊢ {X=0} X:=1 {1=0} which follows by
taking P to be X=0, V to be X and E to be 1.

49Thursday, 9 December 2010

Floyd-Hoare logic: weakening and strenghtening

⊢ P ⇒ P' ⊢ { P' } C { Q' } ⊢ Q' ⇒ Q

⊢ { P } C { Q }

Exercise: deduce the following facts:

 ⊢ { x = n } x := x + 1 { x = n + 1 }

 ⊢ { T } x := E { x = E }

 ⊢ { x = r } q := 0 { x = r + (y * q) }

Remember: ⊢ { P [E / x] } x := E { P }

50Thursday, 9 December 2010

Floyd-Hoare logic: statement manipulation

⊢ P ⇒ P' ⊢ { P' } C { Q' } ⊢ Q' ⇒ Q

⊢ { P } C { Q }

Reminscent of sequent calculus...

⊢ { P } C { Q1 } ⊢ { P } C { Q2 }

⊢ { P } C { Q1 ⋀ Q2 }

⊢ { P1 } C { Q } ⊢ { P2 } C { Q }

⊢ { P1 ⋁ P2 } C { Q }

51Thursday, 9 December 2010

Floyd-Hoare logic: commands

⊢ { P ⋀ S } C { P }

⊢ { P } while S do C { P ⋀ ¬S }

Exercise: prove that

 ⊢ { T }

 r := x; q := 0; while y ≤ r do (r := r-y; q := q+1)

 { r < y ⋀ x = r+(y*q) }

⊢ { P } C1 { Q } ⊢ { Q } C2 { R }

⊢ { P } C1 ; C2 { R }

⊢ { P ⋀ S } C1 { Q } ⊢ { P ⋀ ¬S } C2 { Q }

⊢ { P } if S then C1 else C2 { Q }

Remember: ⊢ { P [E / x] } x := E { P }

P is called loop invariant

52Thursday, 9 December 2010

Exercise

The Zune’s real-time clock stores the time in terms of days and seconds since
January 1st, 1980. At the end of the boot sequence, it converts the clock value
into date and time. This is the code that, given the number of days since
January 1st, 1980, computes the year.

while (days > 365) {
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 }
 else {
 days -= 365;
 year += 1;
 }
}

Is this code correct? Does it hold that

{ days > 0 ⋀ year = 0 }
 code
{ days <= 365 ⋀ year >= 0 }

53Thursday, 9 December 2010

Exercise

The Zune’s real-time clock stores the time in terms of days and seconds since
January 1st, 1980. At the end of the boot sequence, it converts the clock value
into date and time. This is the code that, given the number of days since
January 1st, 1980, computes the year.

while (days > 365) {
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 }
 else {
 days -= 365;
 year += 1;
 }
}

Is this code correct? Does it hold that

{ days > 0 ⋀ year = 0 }
 code
{ days <= 365 ⋀ year >= 0 }

Plenty of Zunes hang up on December
31st, 2008. They worked perfectly the day
after.

How is it possible?
We just proved the code correct!

53Thursday, 9 December 2010

http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm

Exercise

The Zune’s real-time clock stores the time in terms of days and seconds since
January 1st, 1980. At the end of the boot sequence, it converts the clock value
into date and time. This is the code that, given the number of days since
January 1st, 1980, computes the year.

while (days > 365) {
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 }
 else {
 days -= 365;
 year += 1;
 }
}

Is this code correct? Does it hold that

{ days > 0 ⋀ year = 0 }
 code
{ days <= 365 ⋀ year >= 0 }

Plenty of Zunes hang up on December
31st, 2008. They worked perfectly the day
after.

How is it possible?
We just proved the code correct!

We proved only partial correctness!

53Thursday, 9 December 2010

http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm
http://www.zune.net/en-us/support/zune30.htm

Relating the initial and final state

Forget leap years for now, and consider a simplified version of the Zune code:

 while (days > 365) {
 days -= 365;
 year += 1;
 }

How can we specify that, after executing the code, the expression

 days + year * 365

is equal to the value of days before executing the code?

54Thursday, 9 December 2010

Relating the initial and final state

Forget leap years, and consider a simplified version of the Zune code:

 olddays = days;
 while (days > 365) {
 days -= 365;
 year += 1;
 }

We need to introduce an auxiliary variable, olddays, to record some informations
about a particular state of the program,

 { days > 0 ⋀ year = 0 } code { days + year * 365 = olddays }

Remark: the extra assignments must not change the semantics of the program.
A set X is auxiliary for C if each free occurrence in C of an identifier from X is in
an assignment whose target is in X: no effect on control flow, no effect on other
variables.

55Thursday, 9 December 2010

Soundness of Floyd-Hoare logic

Imagine you can derive { P } C { Q } for some command C and statements P and
Q. What does this assert on the execution of C in some state s?

Soundness: Let ⊢ { P } C { Q } a provable triple.

For all states s, s ⊨ P and C / s ⟶ skip / s' imply s' ⊨ Q .

Exercise: what about completeness? Is it true that if for all states s, s ⊨ P and
C / s ⟶ skip / s' imply s' ⊨ Q, then ⊢ { P } C { Q } is provable?

Hint: what does the triple { P } C { ¬T } state?

56Thursday, 9 December 2010

Separation logic

57Thursday, 9 December 2010

Adding the heap

We extend our programming language with

• memory writes, [E1] := E2

• memory reads, x := [E]

• memory allocation, x := cons(E1,…,En)

• memory deallocation, dispose E

The state is now represented by a pair (stack, heap), denoted (s,h), where

stack : var -> value

heap : loc -> value

where loc ⊆ value.

58Thursday, 9 December 2010

x := cons(E1,…,En) / (s,h) ⟶ skip / (s[x:=v], h ⊕ [v:=v1 … v+(n-1):=vn])

E1 / s ⟶ v1 ... En / s ⟶ vn v … v+(n-1) ∉ dom(h)

Operational semantics

x := E / (s,h) ⟶ skip / (s[x:=v],h)
E / s ⟶ v

x := [E] / (s,h) ⟶ skip / (s[x:=h(v)], h)
E / s ⟶ v

[E1] := E2 / (s,h) ⟶ skip / (s, h[v1:=v2])
E1 / s ⟶ v1 E2 / s ⟶ v2

Remark: h[v:=v'] and h\v are defined only if v ∈ dom(h).

Remark: the operational semantics is stuck if accesses outside the domain of s
and h are performed.

dispose E / (s,h) ⟶ skip / (s,h\v)
E / s ⟶ v

The other rules are straightforward.

59Thursday, 9 December 2010

Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x

stack heap

60Thursday, 9 December 2010

Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x

x 43 43 3

44 3

stack heap

x

3 3

graphically

61Thursday, 9 December 2010

Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x

x 43

y 57

43 3

44 3

57 4

58 4

stack heap graphically

x

3 3

y

4 4

62Thursday, 9 December 2010

Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x

43 3

44 57

57 4

58 4

stack heap graphically

x

3

y

4 4

x 43

y 57

63Thursday, 9 December 2010

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x

Example program

43 3

44 57

57 4

58 43

stack heap graphically

3 4

x 43

y 57 x y

64Thursday, 9 December 2010

Why separation logic?

Can you suggest a precondition such that this triple holds?

⊢ { ??? }

 [y] := 4;
 [z] := 5;

 { [y] != [z] }

65Thursday, 9 December 2010

Why separation logic?

Can you suggest a precondition such that this triple holds?

We need to assume that the locations pointed by y and z are different (aliasing).

⊢ { y != z }

 [y] := 4;
 [z] := 5;

 { [y] != [z] }

66Thursday, 9 December 2010

Why separation logic?

And now?

⊢ { ??? }

 [y] := 4;
 [z] := 5;

 { [y] != [z] ⋀ [x] = 3 }

67Thursday, 9 December 2010

Why separation logic?

And now?

• we need to assume that the locations pointed by y and z are different (aliasing).

• we need to know when things stay the same.

⊢ { y != z ⋀ x != y ⋀ x != z ⋀ [x] = 3}

 [y] := 4;
 [z] := 5;

 { [y] != [z] ⋀ [x] = 3 }

68Thursday, 9 December 2010

Framing

We want a general concept of things not being affected.

{ P } C { Q }

{ [x] = 3 ⋀ P } C { Q ⋀ [x] = 3 }

What are the conditions on C and [x] = 3?

These are very hard to define if reasoning about a heap and aliasing.

This is where separation logic comes in:

{ P } C { Q }

{ R * P } C { Q * R }

The new connective * is used to separate the heap.

69Thursday, 9 December 2010

In the beginning: classical logic

70Thursday, 9 December 2010

In the beginning: classical logic

71Thursday, 9 December 2010

A substructural logic: bunched implications

Idea: ⋀ admits weakening and contraction, but * does not.

We have:

But we do not have:

The logic of bunched implications (BI) mixes substructural logic with classical/
intuitionistic logic. BI is the logic behing separation logic.

If this does not make sense, don't panic.

72Thursday, 9 December 2010

 (s,h) ⊨ empty iff dom(h) = ∅

 (s,h) ⊨ E1 ⟼ E2 iff E1 / s ⟶ v1 ⋀ E2 / s ⟶ v2 ⋀ dom(h) = v1 ⋀ h(v1) = v2

 (s,h) ⊨ P * Q iff
 ∃ h1, h2. dom(h1) ∩ dom(h2) = ∅ ⋀ h1 ⊕ h2 = h ⋀ (s,h1) ⊨ P ⋀ (s,h2) ⊨ Q

Statements of separation logic

P, Q ::= T true
| ¬ P negation
| P ⋀ Q conjuction
| P ⋁ Q disjunction
| P ⇒ Q implication
| S language statements
| P * Q separating conjunction
| E1 ⟼ E2 points to
| empty empty heap

73Thursday, 9 December 2010

Our previous heap

satisfies the statement: (x ⟼ 3) * (x+1 ⟼ y) * (y ⟼ 4) * (y+1 ⟼ x) ,

but not the statement: x ⟼ 3 .

Exercise: does the heap above satisfy

(x ⟼ 3 * x+1 ⟼ y) ⋀ (y ⟼ 4 * y+1 ⟼ x) ?

Example

x

3

y

4

74Thursday, 9 December 2010

A non-cyclic list

can be defined by the following recursive statement:

list [] x ≡ empty ∧ x = nil

list v1::α x ≡ ∃ j. x ⟼ v1 ∗ (x+1 ⟼ j) ∗ list α j

Example: list v1::…::vn x is satisfied by an heap where x points to a list whose
content is v1::…::vn.

Remark: we have (implicitely) added sequences (ranged over by α) to the logic.

v2 vnx
...

Data types: list

v1

75Thursday, 9 December 2010

Often it is useful to be able to denote list segments:

lseg [] (x,y) ≡ empty ∧ x = y

lseg v::α (x,y) ≡ ∃ j. x ⟼ v ∗ (x+1 ⟼ j) ∗ lseg α (j,y)

Exercise: prove, by structural induction on α, that:

lseg α·β (x,y) ⇔ ∃ j. lseg α (x,j) * lseg β (j,y)

where · denotes concatenation of sequences.

v2 vnx
...

Data types: list segment

v1 y

76Thursday, 9 December 2010

Exercise: can you write a statement that encodes doubly-linked lists?

Exercise: which data structure is defined by the guess predicate below?

guess a i ≡ i = a ∧ empty

guess (τ , τ′) i ≡ ∃ j, k. i ⟼ j ∗ (i+1 ⟼ k) ∗ guess τ j ∗ guess τ′ k

Exercises

dlsegε(i,iʼ,jʼ,j) = empty ∧ i=jʼ ∧ iʼ=j

dlseg(a·α)(i,iʼ,jʼ,j) = ∃k.i→a,k,iʼ ∗ dlsegα(k,i,jʼ,j)

 and consider the definition of doubly-linked lists
below:
dlsα(f,b) = dlsegα(f,null,null,b)

77Thursday, 9 December 2010

Here are three of the axioms:

• write: { E ⟼ _ } [E] = E' { E ⟼ E' }

• dispose: { E ⟼ _ } dispose(E) { empty }

• alloc: { empty } x = cons(E1,…,En) { x ⟼ E1 * x+1 ⟼ E2 * … * x+(n-1) ⟼ En }

where E ⟼ _ is a shorthand for ∃ x. E ⟼ x .

(Local) axioms

78Thursday, 9 December 2010

The most important rule, called the frame rule:

{ P } C { Q }

{ P * R } C { Q * R }

provided that fv(R) ∩ modifies(C) = ∅

Note: modifies(C) denotes the set of stack variables assigned by a given
command, C, e.g. modifies(x=3) = {x}. However assignment through a stack
variable to the heap is not counted: modifies([x]=3) = ∅. See the references for
full definition.

Exercice: show that { P } C { Q } ⇒ { P⋀ R } C { Q ⋀ R } is not sound.

The frame rule

79Thursday, 9 December 2010

Prove that:

 { lseg α (i,j) } k := cons(a,i); i := k { lseg a·α (i,j) }

 { lseg α (i,j) * j ⟼ a,k } l := cons(b,k); [j+1] := l { lseg α·a·b (i,k) }

 { lseg a·α (i,k) } j := [i+1]; dispose i; dispose i+1; i := j { lseg α (i,k) }

Remember:

 lseg [] (x,y) ≡ empty ∧ x = y

 lseg v::α (x,y) ≡ ∃ j. x ⟼ v ∗ (x+1 ⟼ j) ∗ lseg α (j,y)

Notation: j ⟼ a,k stands for j ⟼ a * j+1 ⟼ k.

Exercises

80Thursday, 9 December 2010

Exercise: associate each picture with its owner….

Thanks to:

 Mike Gordon

 John Reynolds

 Tony Hoare

 Maged Michael

 Peter O'Hearn

 Robert Floyd

 Doug Lea

 Robin Milner

81Thursday, 9 December 2010

Next lecture: and concurrency?

References:

 Mike Gordon, Specification and Verification I, chapters 1 and 2.

 John Reynolds, Introduction to Separation Logic, parts 1-4.

both available from http://moscova.inria.fr/~zappa/teaching/mpri/2010/ .

82Thursday, 9 December 2010

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

