
Semantics and tools
 for low-level concurrent programming

1Tuesday, January 15, 13

Semantics and tools
 for low-level concurrent programming

Assembler is has-been. Why should we care?

1Tuesday, January 15, 13

Compilers vs. programmers

2Tuesday, January 15, 13

Compilers vs. programmers

Compilers and programmers should cooperate,

 don't they?

2Tuesday, January 15, 13

Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;

3Tuesday, January 15, 13

Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

Consider the two threads below:

Intuitively, this program always prints 0

x = y = 0x = y = 0

x = 1
if (y == 1)
 print x

if (x == 1) {
 x = 0
 y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;

4Tuesday, January 15, 13

Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

Consider the two threads below:

Sun HotSpot JVM or GCJ: always prints 1.

x = y = 0x = y = 0

x = 1
if (y == 1)
 print x

if (x == 1) {
 x = 0
 y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;

 print 1

5Tuesday, January 15, 13

Background: lock and unlock

• Suppose that two threads increment a shared memory location:

• If both threads read 0, (even in an ideal world) x == 1 is possible:

x = 0x = 0

tmp1 = *x;
*x = tmp1 + 1;

tmp2 = *x;
*x = tmp2 + 1;

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1

6Tuesday, January 15, 13

Background: lock and unlock

• Lock and unlock are primitives that prevent the two threads from
interleaving their actions.

• In this case, the interleaving below is forbidden, and we are
guaranteed that x == 2 at the end of the execution.

x = 0x = 0

lock();
tmp1 = *x;
*x = tmp1 + 1;
unlock();

lock();
tmp2 = *x;
*x = tmp2 + 1;
unlock();

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1
FORB

IDDEN

7Tuesday, January 15, 13

Lazy initialisation (an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never
used (e.g. device drivers code). Compare:

 int x = computeInitValue(); // eager initialization
 … // clients refer to x

with:

int xValue() {
 static int x = computeInitValue(); // lazy initialization
 return x;
} ... // clients refer to xValue()

8Tuesday, January 15, 13

The singleton pattern

Lazy initialisation is a pattern commonly used. In C++ you would write:

 class Singleton {
 public:
 static Singleton *instance (void) {
! if (instance_ == NULL)
! ! !instance_ = new Singleton;
! ! return instance_;
 }
! … // other methods omitted
 private:
! static Singleton *instance_; // other fields omitted
 };

 …
 Singleton::instance () -> method ();

But this code is not thread safe! Why?

9Tuesday, January 15, 13

Making the singleton pattern thread safe

A simple thread safe version:

class Singleton {
public:
! static Singleton *instance (void) {
! ! Guard<Mutex> guard (lock_); // only one thread at a time
! ! if (instance_ == NULL)
! ! ! instance_ = new Singleton;
! ! return instance_;
! }!
private:
! static Mutex lock_;
! static Singleton *instance_;
};

Every call to instance must acquire and release the lock: excessive overhead.

10Tuesday, January 15, 13

Obvious (broken) optimisation

class Singleton {
public:
! static Singleton *instance (void) {
! ! if (instance_ == NULL) {
! ! ! Guard<Mutex> guard (lock_); // lock only if unitialised
! ! instance_ = new Singleton; }
! ! return instance_;
! }
!
private:
! static Mutex lock_;
! static Singleton *instance_;
};

Exercise: why is it broken?

11Tuesday, January 15, 13

Clever programmers use double-check locking
class Singleton {

public:
! static Singleton *instance (void) {
! ! // First check
! ! if (instance_ == NULL) {
! ! ! // Ensure serialization
! ! ! Guard<Mutex> guard (lock_);
! ! ! // Double check
! ! ! if (instance_ == NULL)
! ! ! ! instance_ = new Singleton;
! ! }
! ! return instance_;
! }
private: [..]
};

Idea: re-check that the Singleton has not been created after acquiring the lock.

12Tuesday, January 15, 13

Double-check locking: clever but broken

The instruction
instance_ = new Singleton;

does three things:
1) allocate memory
2) construct the object
3) assign to instance_ the address of the memory

Not necessarily in this order! For example:

instance_ = // 3
 operator new(sizeof(Singleton)); // 1
new (instance_) Singleton // 2

If this code is generated, the order is 1,3,2.

13Tuesday, January 15, 13

Broken…

 if (instance_ == NULL) { // Line 1
 Guard<Mutex> guard (lock_);
 if (instance_ == NULL) {
 instance_ =
 operator new(sizeof(Singleton)); // Line 2
 new (instance_) Singleton; }}

Thread 1:
 executes through Line 2 and is suspended; at this point, instance_ is non-
NULL, but no singleton has been constructed.

Thread 2:
 executes Line 1, sees instance_ as non-NULL, returns, and dereferences
the pointer returned by Singleton (i.e., instance_).

Thread 2 attempts to reference an object that is not there yet!

14Tuesday, January 15, 13

The fundamental problem

Problem: You need a way to specify that step 3 come after steps 1 and 2.

There is no way to specify this in C++

Similar examples can be built for any programming language…

15Tuesday, January 15, 13

That pesky hardware (1)

Consider misaligned 4-byte accesses

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

• n-bytes on an n-byte boundary (n = 1,2,4,16)

• P6 or later: … or if unaligned but within a cache line

Question: what about multi-word high-level language values?

int32_t a = 0int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

16Tuesday, January 15, 13

That pesky hardware (1)

Consider misaligned 4-byte accesses

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

• n-bytes on an n-byte boundary (n = 1,2,4,16)

• P6 or later: … or if unaligned but within a cache line

Question: what about multi-word high-level language values?

int32_t a = 0int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

This is called a out-of-thin air read:

the program reads a value
that the programmer never wrote.

16Tuesday, January 15, 13

That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread 0 Thread 1

x = 1 y = 1

print y print x

At the end of some executions:

 0 0

is printed on the screen,
both on x86 and Power/ARM).

17Tuesday, January 15, 13

That pesky hardware (2)

...and differ between architectures...

At the end of some executions:

 1 0

is printed on the screen on Power/ARM,
but not on x86.

Thread 0 Thread 1

x = 1 print y

y = 1 print x

18Tuesday, January 15, 13

Compilers vs. programmers

19Tuesday, January 15, 13

Compilers vs. programmers

Tension:
• the programmer wants to understand the code he writes
• the compiler and the hardware want to optimise it.

Which are the valid optimisations that the compiler or the hardware
can perform without breaking the expected semantics of a concurrent
program?

Which is the semantics of a concurrent program?

19Tuesday, January 15, 13

This lecture

Programming language models

 1) soundness of compiler optimisations

 2) data-race freedom

 3) defining the semantics of a concurrent programming language

Tomorrow:

 The C11/C++11 model in detail.

20Tuesday, January 15, 13

A brief tour of compiler optimisations

21Tuesday, January 15, 13

World of optimisations

 A typical compiler performs many optimisations.

gcc 4.4.1. with -O2 option goes through 147 compilation passes.

computed using -fdump-tree-all and -fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes with each pass
composed of one or more smaller passes.

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends

22Tuesday, January 15, 13

http://www.azulsystems.com/blog/cliff-click/2009-04-
http://www.azulsystems.com/blog/cliff-click/2009-04-

World of optimisations

A typical compiler performs many optimisations.

– Common subexpression elimination
 (copy propagation, partial redundancy elimination, value numbering)
– (conditional) constant propagation
– dead code elimination
– loop optimisations
 (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
– vectorisation
– peephole optimisations
– tail duplication removal
– building graph representations/graph linearisation
– register allocation
– call inlining
– local memory to registers promotion
– spilling
– instruction scheduling

23Tuesday, January 15, 13

World of optimisations

However only some optimisations change shared-memory traces:

– Common subexpression elimination
 (copy propagation, partial redundancy elimination, value numbering)
– (conditional) constant propagation
– dead code elimination
– loop optimisations
 (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
– vectorisation
– peephole optimisations
– tail duplication removal
– building graph representations/graph linearisation
– register allocation
– call inlining
– local memory to registers promotion
– spilling
– instruction scheduling

24Tuesday, January 15, 13

Memory optimisations

Optimisations of shared memory can be classified as:

Eliminations (of reads, writes, sometimes synchronisation).

Reordering (of independent non-conflicting memory accesses).

Introductions (of reads – rarely).

25Tuesday, January 15, 13

Eliminations

This includes common subexpression elimination, dead read
elimination, overwritten write elimination, redundant write elimination.

Irrelevant read elimination:
r=*x; C ! C

where r is not free in C.

Redundant read after read elimination:
r1=*x; r2=*x ! r1=*x; r2=r1

Redundant read after write elimination:
*x=r1; r2=*x ! *x=r1; r2=r1

26Tuesday, January 15, 13

Reordering

Common subexpression elimination, some loop optimisations, code
motion.

Normal memory access reordering:
r1=*x; r2=*y ! r2=*y; r1=*x
*x=r1; *y=r2 ! *y=r2; *x=r1
r1=*x; *y=r2 ⇄ *y=r2; r1=*x

Roach motel reordering:
memop; lock m ! lock m; memop

unlock m; memop ! memop; unlock m
where memop is *x=r1 or r1=*x

27Tuesday, January 15, 13

Memory access introduction

Can an optimisation introduce memory accesses?

Yes, but rarely:

Note that the loop body is not executed.

i = 0;
...
while (i != 0) {
 j = *x + 1;
 i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
 j = tmp + 1;
 i = i-1 }

→

28Tuesday, January 15, 13

Memory access introduction

Can an optimisation introduce memory accesses?

Yes, but rarely:

Note that the loop body is not executed.

i = 0;
...
while (i != 0) {
 j = *x + 1;
 i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
 j = tmp + 1;
 i = i-1 }

→

Back to our question now:

Which is the semantics of a concurrent program?

28Tuesday, January 15, 13

Naive answer: enforce sequential consistency

29Tuesday, January 15, 13

Lamport, 1979.

Sequential consistency

Multiprocessors have a sequentially consistent shared memory when:

...the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program...

30Tuesday, January 15, 13

Compilers, programmers & sequential consistency

31Tuesday, January 15, 13

Compilers, programmers & sequential consistency

Simple and intuitive
programming model

31Tuesday, January 15, 13

Compilers, programmers & sequential consistency

Simple and intuitive
programming model

Expensive
to implement

31Tuesday, January 15, 13

Expensive
to implement

An SC-preserving compiler, obtained by
restricting the optimization phases in
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

This study supposes that the hardware is SC.

A recent paper at ISCA mentions a 6.2% slowdown wrt TSO to enforce
end-to-end SC on dedicated hardware.

32Tuesday, January 15, 13

Expensive
to implement

An SC-preserving compiler, obtained by
restricting the optimization phases in
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

This study supposes that the hardware is SC.

A recent paper at ISCA mentions a 6.2% slowdown wrt TSO to enforce
end-to-end SC on dedicated hardware.

What is an SC-preserving compiler?

When is a compiler correct?

32Tuesday, January 15, 13

When is a compiler correct?	

i.e. for any execution of the compiled program, there is an execution of
the source program with the same observable behaviour.

Intuition: we represent programs as sets of memory action traces,
where the trace is a sequence of memory actions of a single thread.

Intuition: the observable behaviour of an execution is the subtrace of
external actions.

A compiler is correct if any behaviour of the compiled
program could be exhibited by the original program.

33Tuesday, January 15, 13

Example

Is the transformation from P1 to P2 correct (in an SC semantics)?

34Tuesday, January 15, 13

Example

35Tuesday, January 15, 13

Example

Executions of P1:

35Tuesday, January 15, 13

Example

Executions of P1: Executions of P2:

35Tuesday, January 15, 13

Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

35Tuesday, January 15, 13

Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

It is correct to rewrite P1 into P2, but not the opposite!

36Tuesday, January 15, 13

General CSE incorrect in SC

There is only one execution with a printing behaviour:

37Tuesday, January 15, 13

General CSE incorrect in SC

But a compiler would optimise to:

38Tuesday, January 15, 13

General CSE incorrect in SC

The only execution with a printing behaviour in the optimised code is:

So the optimisation is not correct.

39Tuesday, January 15, 13

Reordering incorrect

Again, the optimised program exhibits a new behaviour:

40Tuesday, January 15, 13

Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

The basic idea: whenever we perform the read r1 = *x in the
optimised program, we perfom both reads in the source program.

41Tuesday, January 15, 13

Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is
correct to rewrite:

The basic idea: whenever we perform the read r1 = *x in the
optimised program, we perfom both reads in the source program.

Can we define a model that:
1) enables more optimisations than SC, and
2) retains the simplicity of SC?

41Tuesday, January 15, 13

Alternative answer: data-race freedom

42Tuesday, January 15, 13

Data-race freedom

Our examples again:

•the problematic transformations
 (e.g. swapping the two writes in
 thread 0) do not change the meaning of single-threaded programs;

•the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

43Tuesday, January 15, 13

Data-race freedom

Our examples again:

•the problematic transformations
 (e.g. swapping the two writes in
 thread 0) do not change the meaning of single-threaded programs;

•the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0
...intuition...

Programming languages provide
synchronisation mechanisms

if these are used (and implemented) correctly,
we might avoid the issues above...

43Tuesday, January 15, 13

 Prohibit data races

Defined as follows:

•two memory operations conflict if they access the same memory
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting
operations corresponding to different threads are adjacent (maybe
executed concurrently).

Example: a data race in the example above:

The basic solution Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

44Tuesday, January 15, 13

 Prohibit data races

Defined as follows:

•two memory operations conflict if they access the same memory
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting
operations corresponding to different threads are adjacent (maybe
executed concurrently).

Example: a data race in the example above:

The basic solution

The definition of data race quantifies only
over the sequential consistent executions

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

44Tuesday, January 15, 13

How do we avoid data races? (focus on high-level languages)

•Locks
 No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) calls
from other threads balance.

•Atomic variables
 Allow concurrent access “exempt” from data races. Called volatile in Java.

Example:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

45Tuesday, January 15, 13

This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();
46Tuesday, January 15, 13

This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

46Tuesday, January 15, 13

This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

Compiler/hardware can continue to reorder accesses

Intuition:
compiler/hardware do not know about threads, but only

racing threads can tell the difference!

46Tuesday, January 15, 13

Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

47Tuesday, January 15, 13

Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!

The writes cannot be executed in any SC execution, so they cannot
participate in a data race.

47Tuesday, January 15, 13

Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!

The writes cannot be executed in any SC execution, so they cannot
participate in a data race.

Data-race freedom is not the ultimate panacea

- the absence of data-races is hard to verify / test (undecidable)
- imagine debugging: my program ended with a wrong result, then
either my program has a bug OR it has a data-race

47Tuesday, January 15, 13

Validity of compiler optimisations, summary

48Tuesday, January 15, 13

Validity of compiler optimisations, summary

 Jaroslav Sevcik
 Safe Optimisations for Shared-Memory Concurrent Programs

PLDI 2011

48Tuesday, January 15, 13

Compilers, programmers & data-race freedom

49Tuesday, January 15, 13

Compilers, programmers & data-race freedom

Can be implemented
efficiently

49Tuesday, January 15, 13

Compilers, programmers & data-race freedom

Intuitive programming
model (but detecting

races is tricky!)
Can be implemented

efficiently

49Tuesday, January 15, 13

Defining programming language memory models

50Tuesday, January 15, 13

Option 1

Don't.
No concurrency.

 Poor match for current trends

51Tuesday, January 15, 13

Option 2

Don't.
No shared memory

A good match for some problems, see e.g. Erlang and MPI.

52Tuesday, January 15, 13

Option 3

Don't.
But language ensures data-race freedom

Possible (e.g. by ensuring data accesses protected by associated
locks, or fancy effect type systems), but likely to be inflexible.

53Tuesday, January 15, 13

Option 3

Don't.
But language ensures data-race freedom

Possible (e.g. by ensuring data accesses protected by associated
locks, or fancy effect type systems), but likely to be inflexible.

 What about these fancy racy algorithms?

54Tuesday, January 15, 13

Option 4

Don't.
Leave it (sort of) up to the hardware

Examples: MLton

MLton is a high performance ML-to-x86 compiler, with concurrency
extensions. Accesses to ML refs will exhibit the underlying x86-TSO
behaviour (compiler guarantees atomicity).

55Tuesday, January 15, 13

Option 5

Do.
Use data race freedom as a definition

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way

 Sarita Adve & Mark Hill, 1990

56Tuesday, January 15, 13

Data race freedom as a definition

 Posix is sort-of DRF

Applications shall ensure that access to any memory
location by more than one thread of control (threads or
processes) is restricted such that no thread of control can
read or modify a memory location while another thread of
control may be modifying it. Such access is restricted using
functions that synchronize thread execution and also
synchronize memory with respect to other threads.	

Single Unix SPEC V3 & others

...again, model in informal prose...

57Tuesday, January 15, 13

Data race freedom as a definition

• Core of the C11/C++11 standard.
Hans Boehm & Sarita Adve, PLDI 2008.

 with some escape mechanism called "low level atomics".
Mark Batty & al., POPL 2011.

• Part of the JSR-133 standard.
Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.

DRF gives no guarantees for untrusted code: a disaster for Java, which
relies on unforgeable pointers for its security guarantees.

JSR-133 is DRF + some out-of-thin-air guarantees for all code.

58Tuesday, January 15, 13

Option 5

Do.
Use data race freedom as a definition

Pro:
 - simple
 - strong guarantees for most code
 - allows lots of freedom for compiler and hardware optimisations

Cons:
 - undecidable premise
 - can't write racy programs (escape mechanisms?)

59Tuesday, January 15, 13

Isn't this all obvious?

60Tuesday, January 15, 13

Isn't this all obvious?

Perhaps it should have
been.

60Tuesday, January 15, 13

Isn't this all obvious?

Perhaps it should have
been.

But a few things went
wrong in the past...

60Tuesday, January 15, 13

1. Uncertainity about details

Is the outcome r1=r2=1 allowed?

r1 := [x];
if (r1=1)
 [y] := 1

r2 := [y];
if (r2=1)
 [x] := 1

||

Initially x = y = 0

61Tuesday, January 15, 13

1. Uncertainity about details

Is the outcome r1=r2=1 allowed?

r1 := [x];
if (r1=1)
 [y] := 1

r2 := [y];
if (r2=1)
 [x] := 1

||

Initially x = y = 0

• If the threads speculate that the values of x and y are 1, then each
thread writes 1, validating the other thread speculation;

• such execution has a data race on x and y;

• however programmers would not envisage such execution when
they check if their program is data-race free…

61Tuesday, January 15, 13

2. Compiler transformations introduce data races

•Many compilers perform transformations similar to the one above
when a is declared as a bit field;

•May be visible to client code since the update to x.b by T2 may be
overwritten by the store to the complete structure x.

And many more interesting examples...

struct s
 { char a; char b; } x;

Thread 1: Thread 2:
x.a = 1; x.b = 1;

Thread 1 is not equivalent to:
 struct s tmp = x;
 tmp.a = 1;
 x = tmp;

FORBIDDEN

62Tuesday, January 15, 13

2b. Compiler transformations introduce data races

•The vectorisation above might introduce races, but

•most compilers do things along these lines (introduce speculative stores).

for (i = 1; i < N; ++i)
 if (a[i] != 1) a[i] = 2;

for (i = 1; i < N; ++i)
 a[i] = ((a[i] != 1)? 2 : a[i]);

FORBIDDEN

63Tuesday, January 15, 13

3. "escape" mechanisms

Some frequently used idioms (atomic counters, flags, …) do not require
sequentially consistency.

Programmers wants optimal implementations of these idioms.

Speed, much more than safety, makes programmers happier.

64Tuesday, January 15, 13

A word on JSR-133

Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

65Tuesday, January 15, 13

Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements.

Programs should never read values that cannot be written by the
program:

the only possible result should be printing two zeros because no other
value appears in or can be created by the program.

66Tuesday, January 15, 13

Out-of-thin-air

Under DRF, it is correct to speculate on values of writes:

The transformed program can now print 42. This will be theoretically
possible in C++11, but not in Java.

The program above looks benign, why does Java care so much about
out-of-thin-air?

67Tuesday, January 15, 13

Out-of-thin-air

Out-of-thin-air is not so bening for references. Compare:

What should r2.run() call?

If we allow out-of-thin-air, then it could do anything!

and

r2.run()

68Tuesday, January 15, 13

Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

A word on JSR-133

The model is intricate, and fails to meet goal 3.

An example: should the source program print 1? can the optimised
program print 1?

Jaroslav Ševččík, David Aspinall, ECOOP 2008

x = y = 0x = y = 0

r1 = x
y = r1

r2 = y
x=(r2==1)?y:1
print r2

x = y = 0x = y = 0

r1 = x
y = r1

x = 1
r2 = y
print r2

HotSpot Optimization

69Tuesday, January 15, 13

The end?

C11/C++11 is not yet implemented by mainstream compilers, and
low-level atomics are hard to use (just google for low-level atomics).

How are interesting concurrent algorithms currently implemented? Usually C
plus asm!

Example: lockfree-lib, by Keir Fraser, starts with some macro definitions...

70Tuesday, January 15, 13

Next lecture: the C11/C++11 memory model

This afternoon, 2pm: exercices...

71Tuesday, January 15, 13

