
Hardware models:
 inventing a usable abstraction for Power/ARM

1Friday, 11 January 13

Hardware models:
 inventing a usable abstraction for Power/ARM

Disclaimer:

 1. ARM MM is analogous to Power MM… all this is your next phone!

 2. The model I will present is (as far as we know) accurate for ARM if
barriers weaker than DMB are not used.

1Friday, 11 January 13

Power: much more relaxed than x86

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

2Friday, 11 January 13

Power: much more relaxed than x86

Forbidden on SC and x86-TSO

Allowed and observed on Power

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

2Friday, 11 January 13

Power: much more relaxed than x86

1. the two writes are performed in opposite order

2. the two reads are perfomed in opposite order

3. propagation of writes ignores order in which they are presented

Three possible reasons (at least) for y = 1 and x = 0:

reordering store buffers

interconnects partitioned by address (cache lines)

load reorder buffers / speculation

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

3Friday, 11 January 13

Power: much more relaxed than x86

1. the two writes are performed in opposite order

2. the two reads are perfomed in opposite order

3. propagation of writes ignores order in which they are presented

Three possible reasons (at least) for y = 1 and x = 0:

reordering store buffers

interconnects partitioned by address (cache lines)

load reorder buffers / speculation

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

Power has all three!

3Friday, 11 January 13

The model overall structure

Some aspects are thread-only, some storage-only, some both.
Threads and storage subsystem are abstract state machines.
Speculative execution in Threads; topology-independent Storage.

Storage Subsystem

Thread Thread…
Read request/Write announce
Barrier ack

Write request
Barrier request

Much more complicated than x86-TSO.
Are you ready?

4Friday, 11 January 13

Each thread loads its code, instructions instances are initially marked in-flight.

In-flight instructions can be committed, not necessarily in program order.

When a branch is committed, the un-taken alternatives are discarded.

Instructions that follow an uncommitted branch cannot be committed.

In-flight instructions can be processed even before being committed (e.g. to
speculate reads from memory, perform computation, ...).

Thread

5Friday, 11 January 13

The storage keeps (among other things):
1. for each thread, a list of the events propagated to the thread.

When receiving a write request, the storage adds the write event to
 the list of the events propagated to the thread who issued the request.

The storage can propagate an observed event to a thread list at any time
 (unless barriers / coherence /... conditions).

Threads can commit writes at any time
 (unless dependency / synch / pending /… conditions).

Storage Subsystem

Thread Thread…
Write announce
Barrier ack

Write request
Barrier request

Storage

6Friday, 11 January 13

The storage keeps (among other things):
1. for each thread, a list of the events propagated to the thread.

When receiving a write request, the storage adds the write event to
 the list of the events propagated to the thread who issued the request.

The storage can propagate an observed event to a thread list at any time
 (unless barriers / coherence /... conditions).

Threads can commit writes at any time
(unless dependency / synch / pending /… conditions).

Storage Subsystem

Thread Thread…
Write announce
Barrier ack

Write request
Barrier request

Storage

Simulation: 1. write_propagation

Thread 0 Thread 1 Thread 2

x = 1 x = 2

y = 1

7Friday, 11 January 13

The storage keeps: ...
2. for each location, a partial order of coherence commitments

Idea 1: at the end of the execution, writes to each location are totally ordered.
Idea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: if a thread executes x=1 and then x=2, another thread cannot first
read 2 and then 1.

Storage

Storage Subsystem

Thread Thread…
Write announce
Barrier ack

Write request
Barrier request

8Friday, 11 January 13

The storage keeps: ...
2. for each location, a partial order of coherence commitments

Idea 1: at the end of the execution, writes to each location are totally ordered.
Idea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: if a thread executes x=1 and then x=2, another thread cannot first
read 2 and then 1.

Storage

Storage Subsystem

Thread Thread…
Write announce
Barrier ack

Write request
Barrier request

Simulation: 2. coherence_propagation

Thread 0 Thread 1

x = 1

x = 2

9Friday, 11 January 13

Threads can issue read-requests at any time (unless dependency / synch / ...).

Issuing a read-request and committing a read are different actions.

Storage can accept a read-request by a thread at any time, and reply with the
most recent write to the same address that has been propagated to the thread.

Remark: receiving a write-announce is not enough to commit a read instruction.

Write-announces can be invalidated, and read-requests can be re-issued.

Storage + Thread

Storage Subsystem

Thread Thread…
Read request/Write announce
Barrier ack

Write request
Barrier request

10Friday, 11 January 13

Threads can issue read-requests at any time (unless dependency / synch / ...).

Issuing a read-request and committing a read are different actions.

Storage can accept a read-request by a thread at any time, and reply with the
most recent write to the same address that has been propagated to the thread.

Remark: receiving a write-announce is not enough to commit a read instruction.

Write-announces can be invalidated, and read-requests can be re-issued.

Storage + Thread

Storage Subsystem

Thread Thread…
Read request/Write announce
Barrier ack

Write request
Barrier request

Simulation: 3. read_satisfy

Simulation: 4. invalidate_read

Thread 0 Thread 1

x = 1 r = x

x = 2

Thread 0 Thread 1

x = 1 r1 = x

r2 = x

Remarks: loads can be speculated; difference between read/write transitions

11Friday, 11 January 13

Coherence by Fiat

Suppose the storage subsystem has seen 4 writes to x:

Suppose just [w1] has propagated to tid and then tid reads x.
• it cannot be sent w0, as w0 is coherence-before the w1 write that (because it is in the writes-

propagated list) it might have read from;
• it could re-read from w1, leaving the coherence constraint unchanged;
• it could be sent w2, again leaving the coherence constraint unchanged, in which case w2

must be appended to the events propagated to tid; or
• it could be sent w3, again appending this to the events propagated to tid, which moreover

entails committing to w3 being coherence-after w1, as in the coherence constraint on the
right above. Note that this still leaves the relative order of w2 and w3 unconstrained, so
another thread could be sent w2 then w3 or (in a different run) the other way around (or
indeed just one, or neither).

12Friday, 11 January 13

Naïve message passing

Allowed and observed on Power

Thread 0 Thread 1

x = 1 while (y==0) {};

y = 1 r = x

Observable behaviour: r = 0

Simulation: 5. message_passing

13Friday, 11 January 13

Load buffering

Thread 0 Thread 1

r1 = x r2 = y

y = 1 x = 1

Observable behaviour: r1 = r2 = 1

rf rf

Forbidden on SC and x86-TSO

Allowed and observed on Power

Simulation: 6. load_buffering
popo

14Friday, 11 January 13

Power ISA 2.06 and ARM v7

Visible behaviour much weaker and subtle than x86.

Basically, program order is not preserved unless:

• writes to the same memory location (coherence)

• there is an address dependency between two loads
data-flow path through registers and arith/logical operations from the value of the first
load to the address of the second

• there is an address or data or control dependency between a load
and a store

as above, or to the value store, or data flow to the test of an intermediate conditional
branch

• you use a synchronisation instruction (ptesync, hwsync, lwsync, eieio,
mbar, isync).

15Friday, 11 January 13

Load buffering with dependencies

Simulation: 7. load_buffering_data_deps

rf rfdata data

Similarly with control dependencies, e.g.:
 Play with examples in the LB directory

16Friday, 11 January 13

However dependencies might not be enough

Exercise: WRC/WRC+addrs

data data

17Friday, 11 January 13

Memory barriers

Power: ptesync, hwsync, lwsync, eieio

ARM: DSB, DMB

18Friday, 11 January 13

Memory barriers

Power: ptesync, hwsync, lwsync, eieio

ARM: DSB, DMB

18Friday, 11 January 13

HWSYNC and LWSYNC

The storage accepts a barrier request (HWSYNC) from a thread.
The barrier request is added to the list of event propagated to that thread.
The thread cannot execute instructions following the barrier instructions without
first receiving the barrier ack.
The storage sends the barrier ack only once all the preceding events have
been propagated to all other threads.

Storage Subsystem

Thread Thread…
Read request/Write announce
Barrier ack

Write request
Barrier request

19Friday, 11 January 13

RWC with HWSYNC

Simulation: WRC/WRC+syncs
20Friday, 11 January 13

RWC with HWSYNC

Simulation: WRC/WRC+syncs

actually, a dependency
here is enough…

WRC/WRC+sync+addr

20Friday, 11 January 13

IRIW

Like SB, this needs two DMBs or syncs (lwsyncs not enough).
21Friday, 11 January 13

Periodic table of behaviour

22Friday, 11 January 13

If you want more...

Go to

http://www.cl.cam.ac.uk/~pes20/ppcmem/

For each test, either find a trace that leads
to the final state, or convince yourself that
such trace does not exists. Some tests are
complicated...

Tomorrow: The C and C++ memory model

23Friday, 11 January 13

http://moscova.inria.fr/~zappa/work/ppcmem/
http://moscova.inria.fr/~zappa/work/ppcmem/

