ardware

POWERG6"
BUILT ON

models:

inven

ting a usable abstraction for

Power/A

=)
LU
o
L
=
o
o
H

SM

Friday, 11 January 13

ardware

POWERG6"
BUILT ON

models:

inven

Disclaimer:

ting a usable abstraction for

Power/A

=)
LU
o
L
=
o
o
H

SM

1. ARM MM is analogous to Power MM... all this is your next phone!

2. The model | will present is (as far as we know) accurate for ARM if
barriers weaker than DMB are not used.

Friday, 11 January 13

Power: much more relaxed than x86

Thread 1

Thread 0O
x = 1
y =1

while (y==0) {};

r=

X

Observable behaviour: r = 0

Thread O

a: W[x]=1

po
b: Wly]=1

Power: much more relaxed than x86

Thread 0O

Thread 1

x =1
y =1

while (y==0) {};

r

X

Observable behaviour: r = 0

Thread 1

c: Rly]=1

>
//

po

i

rf d: R[x]=0

Forbidden on SC and x86-TSO

Allowed and observed on Power

Friday, 11 January 13

Power: much more relaxed than x86

Three possible reasons (at least) fory = 1andx = 0:

Thread O Thread 1
x =1 while (y==0) {};
y =1 r = X

Observable behaviour: r = 0

1. the two writes are performed in opposite order
reordering store buffers

2. the two reads are perfomed in opposite order
load reorder buffers / speculation

3. propagation of writes ignores order in which they are presented
interconnects partitioned by address (cache lines)

Friday, 11 January 13

Power: much more relaxed than x86

Three pos

Power has all three!

1. the two writes are performed in opposite order
reordering store buffers

2. the two reads are perfomed in opposite order
load reorder buffers / speculation

3. propagation of writes ignores order in which they are presented
interconnects partitioned by address (cache lines)

Friday, 11 January 13

The model overall structure

Thread . Thread
Write request Read request/Write announce
Barrier request Barrier ack
A 4 \ 4

Storage Subsystem

Some aspects are thread-only, some storage-only, some both.

Threads and storage subsystem are abstract state machines.

Speculative execution in Threads; topology-independent Storage.

Much mwore comptwa&d Ehain x¥&-=TS0.
Are you reacij?

Friday, 11 January 13

‘ Thread '

) 7:1——> ?,2—» ’I,3—> Z,l—

16— 17

7;8—>7;9<

110— 11— 112

113

Each thread loads its code, instructions instances are initially marked in-flight.
In-flight instructions can be committed, not necessarily in program order.
When a branch is committed, the un-taken alternatives are discarded.
Instructions that follow an uncommitted branch cannot be committed.

In-flight instructions can e processed even before being committed (e.g. to
speculate reads from memory, perform computation, ...).

Friday, 11 January 13

Storage

Thread

Write request
Barrier request

Write announce
Barrier ack

Thread

| |

Storage Subsystem

The storage keeps (among other things):
1. for each thread, a list of the events propagated to the thread.

When recelving a write request, the storage adds the write event to

the list of the events propagated to the thread who issued the request.

The storage can propagate an observed event to a thread list at any time
(Unless barriers / coherence /... conditions).

Threads can commit writes at any time
(unless dependency / synch / pending /... conditions).

Friday, 11 January 13

‘ Storage ' Thread Thread

T \Alvito Lo T

Simulation: 1. write_propagation

Thi Thread O Thread 1 Thread 2
1.7 x =1 X = 2
y =1
W
th
The storage can propagate an obsServed event to a tread NSt at any ame

(unless barriers / coherence /... conditions).

Threads can commit writes at any time
(Unless dependency / synch / pending /... conditions).

Friday, 11 January 13

Storage Thread .. Thread

Write request Write announce
Barrier request Barrier ack

Storage Subsystem

The storage keeps: ...
2. for each location, a partial order of coherence commitments

[dea 1. at the end of the execution, writes to each location are totally ordered.

Idea 2: during computation, reads and propagation of writes must respect the
coherence order (reduce non-determism of previous rules).

Intuition: it a thread executes x=1 and then x=2, another thread cannot first
read 2 and then 1.

Friday, 11 January 13

‘ Storage ' Thread

Write request

T Write announce

Thread

T

Simulation: 2. coherence_propagation

Thread O

Thread 1

x = 1

X = 2

Friday, 11 January 13

Storage + Thread Thread Thread
Write request Read request/Write announce
Barrier request Barrier ack

Storage Subsystem

Threads can issue read-requests at any time (unless dependency / synch / ...).
Issuing a read-request and committing a read are different actions.

Storage can accept a read-request by a thread at any time, and reply with the
most recent write to the same address that has been propagated to the thread.

Remark: receiving a write-announce is not enough to commit a read instruction.

Write-announces can be invalidated, and read-requests can be re-issued.

Friday, 11 January 13 10

‘ Storage + Thread I

Write request
Rarrier reqliect

Thread

Read request/Write announce
Barrier ack

Thread

|

Simulation: 3. read_satisfy

Thread O

Thread 1

X 1
X = 2

r = X

Simulation: 4. invalidate read

Thread 0O Thread 1
x =1 rl = x
r2 = x

\ Remarks: loads can be speculated; difference between read/write transitions

Friday, 11 January 13

11

Coherence by Fiat

Suppose the storage subsystem has seen 4 writes to x:

Wy Wy
’wl/\ HJQ\
W9 w3 wy w3

Suppose just [w1] has propagated to tid and then tid reads x.

e it cannot be sent w(Q, as w(is coherence-before the w1 write that (because it is in the writes-
propagated list) it might have read from;

e it could re-read from w1, leaving the coherence constraint unchanged;

e it could be sent w2, again leaving the coherence constraint unchanged, in which case w2
must be appended to the events propagated to tid; or

e it could be sent w3, again appending this to the events propagated to tid, which moreover
entails committing to w3 being coherence-after wi, as in the coherence constraint on the
right above. Note that this still leaves the relative order of w2 and w3 unconstrained, so
another thread could be sent w2 then w3 or (in a different run) the other way around (or
indeed just one, or neither).

Friday, 11 January 13

12

Nalve message passing

Thread O

a: W[x]=1

po
b: Wly]=1

Thread O Thread 1
x =1 while (y==0) {};
y =1 r = X

Observable behaviour:r=0

Thread 1

c: Rly]=1

>
//

po

i

rf d: R[x]=0

Allowed and observed on Power

Simulation: 5. message_passing

Friday, 11 January 13

L.oad buffering

Thread O Thread 1
rl = x r2 =y
y =1 x =1

Il

Observable behaviour: r1 = r2

Thread 0 Thread 1

Forbidden on SC and x86-7S0O
a: Rly|=1 c: R[x]=1
Allowed and observed on Power
PO rf rf PO
Y Y Simulation: 6. load_buffering
b: Wx]=1 d: Wly|]=1

Test LB (d1): Allowed (basic data)

Friday, 11 January 13

Power ISA 2.06 and ARM v7

Visible behaviour much weaker and subtle than x86.

Basically, program order is not preserved unless:
® writes to the same memory location (coherence)

® there Is an address dependency between two loads

data-flow path through registers and arith/logical operations from the value of the first
load to the address of the second

® there Is an address or data or control dependency between a load
and a store

as above, or to the value store, or data flow to the test of an intermediate conditional
branch

® \/OU USe a synchronisation instruction (ptesync, hwsync, lwsync, eieio,
mbar, isync).

Friday, 11 January 13 15

Load buffering with dependencies

LB+deps ARM
Thread 0 Thread 1
LDR R2, [R5] LDR R2, [R4]
AND R3, R2, #0 AND RS3, R2, #0
STR R1, [R3,R4] STR R1, [R3,R5]

Initial state: 0:R1=1 A 0:R4=x A 0:R5=y
A 1:R1=1 A 1:R4=x A 1:RE=y
Forbidden: 0:R2=1 A 1:R2=1

Thread 0 Thread 1 | SlmU/at/Ol’?' 7 /Oad_bUffel’/nQ_O’ata_O’e,OS
a: Rly|]=1 ¢ R[x|=1 o . .
Similarly with control dependencies, e.g.:
e v : f e Play with examples in the LB directory
b: Wx]=1 d: \-‘\"'v:y]:l

Test LB+deps (d5): Forbidden (basic data)

Friday, 11 January 13

However dependencies might not be enough

Thread 0
a: W[x|]=1 > b: Rx|=1
rf
data
Y
c: Wly|=2

Test WRCH-deps (isalv2): Allowed (basic data)

Exercise: WRC/WRC+addrs

rf

T—
rf

‘ Thread 2 ‘

d: Rly|=2

data

v
e: R[x|=0

17

Memory barriers

Power: ptesync, hwsync, lwsync, eieio

ARM: DSB, DMB

For each applicable pair a;,b; the memory barrier ensures that a;
will be performed with respect to any processor or mechanism,
to the extent required by the associated Memory Coherence Re-
quired attributes, before b; is performed with respect to that pro-
cessor or mechanism.

® A includes all applicable storage accesses by any such
processor or mechanism that have been performed with
respect to P1 before the memory barrier is created.

® B includes all applicable storage accesses by any such
processor or mechanism that are performed after a Load
instruction executed by that processor or mechanism has
returned the value stored by a store that is in B.

Friday, 11 January 13

18

Memory bat

Power: ptesync, hy

ARM: DSB, DMB

For each
will be pe
to the ext¢
quired att
cessor or
® Ain
proc

resg

® B
proc

iInstr

Caution

Mind your head

returned the value stored by a store that is in B.

‘es that a;
achanism,
rence Re-
) that pro-

y such
ad with
d.

any such
ar a Load
Inism has

Friday, 11 January 13

18

HWSYNC and LWSYNC

Thread .. Thread
Write request Read request/Write announce
Barrier request Barrier ack

Storage Subsystem

ne storage accepts a barrier request (HWSYNC) from a thread.

ne barrier request is added to the list of event propagated to that thread.

ne thread cannot execute instructions following the barrier instructions without
first receiving the barrier ack.

The storage sends the barrier ack only once all the preceding events have
been propagated to all other threads.

Friday, 11 January 13

RWC with HWSYNC

‘ Thread 0 Thread 1 Thread 2

a: Wlx|=1 " b R[x]=1 d: Rly]=1

SYIQ SYIC

v — v
c: Wly|=1 rf e: R[x|=0

Test WRC+syncs (m3s): Forbidden (basic data)

Simulation: WRC/WRC+syncs

Friday, 11 January 13

20

RWC with HWSYNC

Thread 0 Thread 1

a: Wlx|=1 " b R[x]=1

SynNa

v —
c: Wly|=1 rf

Thread 2

d: Rly]=1

\
e: R[x]=0

Test WRC+syncs (m3s): Forbidden (basic data)

Simulation: WRC/WRC+syncs

SyngQ \

actually, a dependency
here is enough...

WRC/WRC+sync+addr

Friday, 11 January 13

IRIW

Thread 0 Thread 1 Thread 2 Thread 3
: Wixl=1—"""hbh: Rix|=1 d: Wly|l=1—"""e: R|y|=1
a: WIx| " x| [v] . y]
addr f addr
‘\L \
rf c: R[y]=0 f: R[x]=0
Test IRIW+addrs: Allowed
IRIW+addrs Pseudocode
Thread O Thread 1 Thread 2 Thread 3
x=1 rl—=X y=1 3=y
r2=%*(&y+rl-rl) rd=%*(&x+r3-r3)

Initial state: x=0 A y=0 A z=0

Allowed: 1:r1=1 A 1:r2=0 A 3:r3=1 A 3:r4=0

Like SB, this needs two DMBs or syncs (lwsyncs not enough).

Friday, 11 January 13

21

Periodic table of behaviour

POWER and ARM Litmus Tests

Mep:/ivww. el cam. ac . Wb/ peedippc upplesental

Cabarenc s

Vot b
-

Cadt] o g b dien ColtW: riaocn Sondten
Tomas

. e
-

1= [

e Toat 4
S

. Tomes o

e
I 5 -y

- e

Com®: coparl fotdonn CoWw oo

oy e A vage
PPOO00 010 Sawies e thoass” &

T s -
b e e L oa P L

P b ——]
2 L . . e
g | .
- - e
wrl
..

C-——_—

* oe o b - i | WWC e i - e
S P v e — o s
At e vy PR L

e, | —
. e . e . o . -
s -

X - oo o ghngsen odgn

0 va ek s s | WC AN Sy e RIW. LA e
o Ty Fonet 4 — o r — Pt -t et »
. -l . “ . Ml e L . ‘ » et '..J‘" B]
ey R | i g |)
e . e v . s ..l L L]

- e - Vo

" oans | WIS oa L™ .
e A R Ce— T — P 1 Pt v
. “ . . Wty) . 3 B e
o ey | by el
. el .o . -1 e .. e " et

L T e S ———
WRELIW e A -
Tt S— Tt 0
B S o . ‘
= T
'« -
-

T4 2W cain -‘h-qhg- WRN DWW, line wnlh bt - etpn MM —-h.-s-n-n
- Tt e - e 2 Thanty Tt ¥
-I.""' 7_:~ o Soed - '] __»V‘:-l .n.-h. o-: -*& n:.n
. . -1 . -u-i—‘ e "

St 1w N — - N ———

AT — L7 :

(L R Sendn ity - Wi Lagm - ol ad
~— Tomnt 3 P s e L R
L ey “ relsbne Wiidag o« s den o | ol

- " e e (PRS0 g | < hapnc < e
» et . "o LT A R e For AN s DA A Nempne ol e
LY Pawn itk a0 of wige Som e (et dor) et e - D b

C-adgn Jhmad 3en
CRAFT « the “mendn” snostes seed haching
T #)
BA A iy b ey - KRy
T b Tomaw | T ¥
- - . kY =1 - _’ -
e
. et . W o e
S A - ——— -
2 Ao nmachy byyne - WWidep - Wi
Pownss & T 4 Tomt 2
.I,.__‘_ 'y - - ‘J.A
.t ?I.;"‘ " whes
Al
Ore rl (Mo
WeRWC: i N moads MaynC - aync - e 150 vy D
o wyne - MW - yme
Pt Pt 1 Touue 1 Pt oo | T 1
LR, U L . -1 . ' . -t - Wt
1 =< . e L
L . e .t Na . » e PR = PR =
T W T b8
Do ook moody Mmync - ayne - mne DA o NS Ty TR - B
o e WG - e
Pt 0 Pt 1 o 2 e Pt 1 a2
- e L Y L LT ¥ -3 - -t
g oy R
.-t . Wt . .o .. . e
- o ne
83 casth ' B e T 8.5 cocn v L s
o e - By
Thmat ¢ Towat 3 Thowe 3 Tt Townad | ot 3
LR U S 3 . RES sl -3
s s
LA . N o L e » gy . et -c'mt
S-hn o s
oL nifon D R e] 1IW s D e
Tomet Tt & Thous 2 Tt Thnet | Thouet 3
. o e) e .-rk‘ - R L L
s T
LR . W L LA H w1 " -t
T N A
Thowe o |
NS A A ety Widep Wdep Wit
Townas & Tows 3

C=a -T; -

- el

T g
T 10

U e)
PPOAM (o PO Setater | PROCA (o PPONL) Wowse
- ——t [
ol & ot 1.8
-l -l -
. e . ot . e
K
- -
e A
o AN
e - —

[Rugimer Shacowng

3w
.
,--‘-
-

Ty (rier sewns on Thowad 0) Wownd | MP4uyncsne (regater rease on Thined 1) sfowed
Thoned & Thnad 3 Thonw 8 Thonwt 3
. En - Wh-1 » et
| - T
» Wit « wider . e SR
AR Tt W g 1
IRTW ¢ adirs twue - -t
Pl 0 Thonwt 3 Thmat 2 Tomad ¥
. 3 s

L G g
o ol

. Wt a-u-x -~

-

. .W "e
Tt PO+ aii v

Tt t T 3
- Wiy LPs
“ "™
. . L e
g
. Wyl

Friday, 11 January 13

22

f you want more...

a: R [_\':—‘2

Go to
http://www.cl.cam.ac.uk/~pes20/ppcmem/ .= & wu
For each test, either find a trace that leads R

to the final state, or convince yourself that
such trace does not exists. Some tests are

complicated...

\J

d: R[z]=0

Test RSW (ppol):

Tomorrow: The C and C++ memory mode/

Thread 1

e \\'[z: 1

T
no

Allowed (basic data)

Friday, 11 January 13

23

http://moscova.inria.fr/~zappa/work/ppcmem/
http://moscova.inria.fr/~zappa/work/ppcmem/

