Tutorial Problems
Formal Verification Techniques for GPU Kernels

Alastair F. Donaldson

January 2013

1. Consider the following example GPU kernel:

__kernel void foo(__local int =*A, local int =*B) {
Altid] = B[tid];
B[tid/2] = A[tid + 1]1;
barrier();
Altid] = A[tid + 1];
B[tid] = B[A[tid + 21]1;

}

Suppose this kernel is executed by two threads. Identify all the possible
data races that might arise during execution, assuming that a, 8 and c
point to disjoint arrays and that no array bounds exceptions occur.

Explain how temporary variables and extra barriers could be inserted to
eliminate the data races, using as few barriers as possible.

2. Consider the following example GPU kernel:

_ _kernel void foo(__local int =*A) {
int temp;
int 1 = 1;
while (i < tid) {
temp = A[tid - 1i];
barrier();

Altid] = A[tid] + temp;
barrier();
i =1 = 2;

}
}

This kernel suffers from barrier divergence. Explain what the problem is.

The programmer had intended to write a kernel where on each loop iter-
ation half of the threads stop executing the loop body. How could this
kernel be re-written to achieve this correctly?



3. Consider this simple kernel:

__kernel void foo(__local int A, __local int %B, __local int =
C) |
Altid] = B[tid];
Bltid + 1] = C[tid + 1];
Cltid + 1] = A[tid];

}

Write down the sequential program generated by the GPU Verify technique
in order to verify this kernel. You do not need to present bodies for the
LOG, CHECK Or barrier procedures.

Explain how any data race bugs are detected by GPUVerify’s race checking
instrumentation for this example.

4. Treating reads from the shared state abstractly can lead to GPUVerify
falsely reporting a data race in a kernel that is actually correct. Write a
simple kernel which illustrates this.

5. GPUVerify does not perform array bounds checking. It is possible that
lack of bounds checking could lead to the tool reporting false negatives
with respect to data race analysis. Explain, using an example, how this
could happen.



