
Exercises - C11, C++11

In the exercices below, you should use the CPPMem tool, available online at:

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

1. Load CPPMem, use the left-most drop down box to select the examples/IRIW test, change all
memory orders to memory_order_relaxed, and press the run button. CPPMem will print an
execution graph of the relaxed behaviour that this test allows.

(a) Play with the tick boxes on the left to turn on and o↵ the printing of relations. Make sure
you look at hb, rf, sc and mo.

(b) Use the following table to “compile” the program to a Power program:

C++0x Operation POWER Implementation
Non-atomic Load ld

Load Relaxed ld

Load Seq Cst sync; ld; cmp; bc; isync

Non-atomic Store st

Store Relaxed st

Store Seq Cst sync; st

Will the new program produce the relaxed behaviour on the Power abstract machine?

(c) Recall that on Power, placing a sync barrier between each pair of reads was su�cient to forbid
this behaviour. Press reset, and then alter the C program so that the last load on each load
thread has order memory_order_seq_cst. How does the “compiled” program change, and
is the relaxed behaviour still allowed on the Power abstract machine? Why is the relaxed
behaviour still allowed in C?

(d) By choosing di↵erent memory orders for each load or store in the C program, forbid the
relaxed behaviour in C. Why does your solution work?

2. Use the left-most drop down box to select the examples/LB test and press run.

(a) Could the SC machine reproduce the execution that CPPMem prints?

(b) Press the next consistent button and inspect each consistent execution. Can all of the execu-
tions be seen on an SC machine?

(c) Use the previous candidate and next candidate buttons to explore the candidate executions.
Find the one with the relaxed behaviour. What predicates in the model fail?

(d) Alter the memory orders in the program so that load-bu↵ering relaxed behaviour can be
witnessed.

3. For each program, enumerate the values that can be read at the commented line, given the com-
mented constraints, and say why:

(a)
atomic_int x = 0;

x.store(1,relaxed);
x.load(relaxed); \\ this reads 1

x.load(relaxed); \\ What values can be read?

(b)
atomic_int x = 0;

x.store(1,relaxed);

x.load(relaxed); \\ What values can be read?

x.store(2,relaxed);

4


