
Exercises - The x86-TSO model

1. Peterson algorithm is a classic solution to the mutual exclusion problem: in all executions, the
instructions of the critical sections of the two threads are not interleaved.

flag0 = false;

flag1 = false;

flag0 = true; flag1 = true;

turn = 1; turn = 0;

while (flag1 && turn == 1); || while (flag0 && turn == 0);

// critical section // critical section

... ...

// end of critical section // end of critical section

flag0 = false; flag1 = false;

(a) Assume a sequentially consistent execution model and explain informally why the two threads
cannot be inside the critical section at the same time.

(b) Does Peterson algorithm guarantee mutual exclusion if executed on a multiprocessor machine
where store bu↵ers are observable (e.g. x86)? In case, where would you put memory barriers
to ensure the correctness of the algorithm?

2. In terms of the formal SC semantics:

(a) Give two di↵erent transitions, with derivations using the rules in the notes, of the process
t1:(x=(y=z)).

(b) Give a complete transition sequence of the whole-system state <t1:(x=(y=z)), {x=1,y=2,z=3}>.
Is it unique?

(c) By enumerating the possible whole-system transitions (without giving their derivations in
detail), or otherwise, prove that <t1:(x=1);y | t2:(y=1);x, {x=0,y=0}> cannot reach a
state of the form <t1:0 | t2:0, M>.

3. Consider this x86 example. Initially all registers and [x] and [y] are 0.

Thread 0 Thread 1 Thread 2

MOV [x] <- 1 MOV EAX <- [x] MOV [y] <- 1

MOV EBX <- [y] MOV ECX <- [x]

Finally: Thread 1: EAX=1, Thread 1: EBX=0, Thread 2: ECX=0.

(a) Is this allowed with respect to an SC semantics?

(b) Prove whether or not it is allowed with respect to the x86-TSO abstract machine.

4. Download and install the litmus tool from http://diy.inria.fr/sources/litmus-5.01.tar.gz

(you need OCaml> 3.12.0; documentation available from http://diy.inria.fr/doc/litmus.html).
Test the processor of your laptop against the following examples:

X86 SB

{ x=0; y=0; }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

X86 MB

{ x=0; y=0; }

P0 | P1 ;

MOV [x],$1 | MOV EAX,[y] ;

MOV [y],$1 | MOV EBX,[x] ;

exists (1:EAX=1 /\ 1:EBX=0)

1


