
Francesco Zappa Nardelli

Inria, France

Languages 
and 

concurrency

a thorny relationship

Based on work done by or with

 Vafeiadis, Sewell, Sevcik, Sarkar, Ridge, Owens, Morisset, 
Memariam, Maranget, Chakraborty, Braibant, Balabonski, Batty, Alglave

U. Cambridge, U. Kent, MPI-SWS, Inria
1Wednesday 5 August 15



Shared memory                          (according to Wikipedia)

2Wednesday 5 August 15



Shared memory                          (according to Wikipedia)

...relatively easy to program...

...all processors share a single view of data...

...bottleneck to performance...

2Wednesday 5 August 15



Imagine an ideal world

3Wednesday 5 August 15



Imagine an ideal world

Programmers and compilers cooperate 
to make great software

3Wednesday 5 August 15



A simple, and innocuous, optimisation:

Constant propagation

x = 14
y = 7 - x / 2

x = 14
y = 7 - 14 / 2  

Source code

Optimised code
x = 14
y = 0

4Wednesday 5 August 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

Thread 1 Thread 2

Shared memory

5Wednesday 5 August 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

Intuitively this program always prints 0

Thread 1 Thread 2

Shared memory

5Wednesday 5 August 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

  
Thread 1 Thread 2

  

6Wednesday 5 August 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

...the program always writes 1 rather than 0.

  print 1  

  
Thread 1 Thread 2

6Wednesday 5 August 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

...the program always writes 1 rather than 0.

  print 1  

  
Thread 1 Thread 2

A compiler can break your code

6Wednesday 5 August 15



That pesky hardware (1)

Consider misaligned 4-byte accesses:

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

• n-bytes on an n-byte boundary (n = 1,2,4,16)

• P6 or later: … or if unaligned but within a cache line

Question: what about multi-word high-level language values?

int32_t a = 0int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

7Wednesday 5 August 15



That pesky hardware (2)

  Initial shared memory values:   [x]=0   [y]=0

  Per-processor registers:   EAX  EBX 

Can you guess the final register values:  EAX = ?   EBX = ?

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

8Wednesday 5 August 15



  Initial shared memory values:   [x]=0   [y]=0

  Per-processor registers:   EAX  EBX 

Can you guess the final register values:  EAX = 1   EBX = 1

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

That pesky hardware (2)

9Wednesday 5 August 15



Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

  Initial shared memory values:   [x]=0   [y]=0

  Per-processor registers:   EAX  EBX 

Can you guess the final register values:  EAX = 1   EBX = 1

That pesky hardware (2)

10Wednesday 5 August 15



Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

  Initial shared memory values:   [x]=0   [y]=0

  Per-processor registers:   EAX  EBX 

Can you guess the final register values:  EAX = 1   EBX = 1

That pesky hardware (2)

11Wednesday 5 August 15



Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

  Initial shared memory values:   [x]=0   [y]=0

  Per-processor registers:   EAX  EBX 

Can you guess the final register values:  EAX = 1   EBX = 1

That pesky hardware (2)

12Wednesday 5 August 15



  Initial shared memory values:   [x]=0   [y]=0

  Per-processor registers:   EAX  EBX 

Can you guess the final register values:  EAX = 1   EBX = 0

That pesky hardware (2)

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

13Wednesday 5 August 15



Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

  Initial shared memory values:   [x]=0   [y]=0

  Per-processor registers:   EAX  EBX 

Can you guess the final register values:  EAX = 0   EBX = 1

That pesky hardware (2)

14Wednesday 5 August 15



The possible outcomes should be:

That pesky hardware (2)

• EAX : 1, EBX : 1
• EAX : 0, EBX : 1
• EAX : 1, EAX : 0

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

15Wednesday 5 August 15



The possible outcomes should be:

That pesky hardware (2)

• EAX : 1, EBX : 1
• EAX : 0, EBX : 1
• EAX : 1, EAX : 0

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

Let's see...

15Wednesday 5 August 15



The poss

That pesky hardware (2)

• EAX : 1, EBX : 1
• EAX : 0, EBX : 1
• EAX : 1, EAX : 0

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]We can observe 

EAX = EBX = 0

as well

16Wednesday 5 August 15



Hardware store buffering

Store buffers hide the latency of memory writes

17Wednesday 5 August 15



Hardware store buffering

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

18Wednesday 5 August 15



Hardware store buffering

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

W x 1 W y 1

18Wednesday 5 August 15



Hardware store buffering

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

W x 1 W y 1

R x 0R y 0

18Wednesday 5 August 15



Hardware store buffering

Thread 0 Thread 1

MOV [x] ← 1 MOV [y] ← 1

MOV EAX ← [y] MOV EBX ← [x]

W x 1 W y 1

R x 0R y 0

19Wednesday 5 August 15



That pesky hardware (3)

...and differ between architectures...

On x86, we only get
 0   0
 1   1

is printed on the screen. 

Thread 0 Thread 1

x = 1 print y

y = 1 print x

20Wednesday 5 August 15



That pesky hardware (3)

...and differ between architectures...

On IBM Power or ARM 

 1   0

can be printed on the screen. 

Thread 0 Thread 1

x = 1 print y

y = 1 print x

21Wednesday 5 August 15



22Wednesday 5 August 15



The fundamental problem

23Wednesday 5 August 15



The fundamental problem

The programmer wants 
to understand the code 

he writes

23Wednesday 5 August 15



The fundamental problem

The programmer wants 
to understand the code 

he writes

The compiler 
- and the hardware - 
try hard to optimise it

23Wednesday 5 August 15



The fundamental problem

The programmer wants 
to understand the code 

he writes

The compiler 
- and the hardware - 
try hard to optimise it

Which are the valid optimisations that the compiler or the hardware can 
perform without breaking the expected semantics of a concurrent program?

Which is the semantics of a concurrent program?

23Wednesday 5 August 15



Not new

Multiprocessors since 1964 (Univac 1108A - or Burroughs, in ‘62)

Relaxed Memory since 1972 (IBM System 370/158MP)

Eclipsed for a long time (except in high-end) by advances in performance:

- transistor counts (continuing)

- clock speed (hit power dissipation limit)

- ILP (hit smartness limit?)

24Wednesday 5 August 15



Mass market multiprocessors since 2005

Intel Xeon E7
  up to 20 hardware threads

IBM Power 795 server
  up to 1024 hardware threads

25Wednesday 5 August 15



Mass market multiprocessors since 2005

Intel Xeon E7
  up to 20 hardware threads

IBM Power 795 server
  up to 1024 hardware threads

Programming multiprocessors 
no longer just for specialists

25Wednesday 5 August 15



Topics

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

26Wednesday 5 August 15



Topics

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

26Wednesday 5 August 15



Architectures

Hardware manufacturers document architectures: 

• loose specifications

• claimed to cover a wide range of past and future processor 
implementations. 

Architectures should:

• reveal enough for effective programming;

• without unduly constraining future processor design.

Examples: Intel 64 and IA-32 Architectures SDM, AMD64 Architecture Programmer’s 
Manual, Power ISA specification, ARM Architecture Reference Manual, ...

27Wednesday 5 August 15



28Wednesday 5 August 15



In practice

Architectures described by informal prose:

As we shall see, such descriptions are:

1) vague;          2) incomplete;          3) unsound.

Fundamental problem: prose specifications cannot be used to test 
programs or to test processor implementations.

In a multiprocessor system, maintenance of cache 
consistency may, in rare circumstances, require intervention 
by system software.

(Intel SDM, november 2006, vol3a, 10-5)

29Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

Example: Linux kernel mailing list, 20 nov. - 7 déc. 1999 (143 posts).

A one-instruction programming question, a microarchitecural debate! 

Keywords: speculation, ordering, causality, retire, cache...

30Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test, 
making the optimization very valuable. 
The same optimization cropped up in 

the FreeBSD mailing list.

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test, 
making the optimization very valuable. 
The same optimization cropped up in 

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and 
let them get faster timings. They 

will crash, eventually.

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test, 
making the optimization very valuable. 
The same optimization cropped up in 

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and 
let them get faster timings. They 

will crash, eventually.
According to the Pentium Processor Family Developers 

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to 
optimize performance, the Pentium processor allows memory 

reads to be reordered ahead of buffered writes in most 
situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at 

the pins, reads (cache miss) and writes appear in-order."

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test, 
making the optimization very valuable. 
The same optimization cropped up in 

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and 
let them get faster timings. They 

will crash, eventually.
According to the Pentium Processor Family Developers 

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to 
optimize performance, the Pentium processor allows memory 

reads to be reordered ahead of buffered writes in most 
situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at 

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The 
only enhancement in the PentiumPro 

processor is the added support for 
speculative reads and store-buffer 

forwarding."

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test, 
making the optimization very valuable. 
The same optimization cropped up in 

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and 
let them get faster timings. They 

will crash, eventually.
According to the Pentium Processor Family Developers 

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to 
optimize performance, the Pentium processor allows memory 

reads to be reordered ahead of buffered writes in most 
situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at 

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The 
only enhancement in the PentiumPro 

processor is the added support for 
speculative reads and store-buffer 

forwarding."

I have seen the behavior Linus describes on a 
hardware analyzer, BUT ONLY ON 

SYSTEMS THAT WERE PPRO AND 
ABOVE. I guess the BSD people must still be 
on older Pentium hardware and that's why 
they don't know this can bite in some cases.

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test, 
making the optimization very valuable. 
The same optimization cropped up in 

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and 
let them get faster timings. They 

will crash, eventually.
According to the Pentium Processor Family Developers 

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to 
optimize performance, the Pentium processor allows memory 

reads to be reordered ahead of buffered writes in most 
situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at 

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The 
only enhancement in the PentiumPro 

processor is the added support for 
speculative reads and store-buffer 

forwarding."

I have seen the behavior Linus describes on a 
hardware analyzer, BUT ONLY ON 

SYSTEMS THAT WERE PPRO AND 
ABOVE. I guess the BSD people must still be 
on older Pentium hardware and that's why 
they don't know this can bite in some cases.

Intel guy

It will always return 0. You don't need 
"spin_unlock()" to be serializing.

31Wednesday 5 August 15



1. spin_unlock() Optimization On Intel 
20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" 
Topics: BSD: FreeBSD, SMP 
People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo 
Molnar 
Manfred Spraul thought he'd found a way to shave spin_unlock() down from about 
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" 
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added 
that the same optimization cropped up in the FreeBSD mailing list a few days 
previously. But Linus Torvalds poured cold water on the whole thing, saying: 

It does NOT WORK! 

Let the FreBSD people use it, and let them get faster timings. They will crash, 
eventually. 

The window may be small, but if you do this, then suddenly spinlocks aren't 
reliable any more. 

The issue is not writes being issued in-order (although all the Intel CPU books 
warn you NOT to assume that in-order write behaviour - I bet it won't be the 
case in the long run). 

The issue is that you _have_ to have a serializing instruction in order to make 
sure that the processor doesn't re-order things around the unlock. 

For example, with a simple write, the CPU can legally delay a read that 
happened inside the critical region (maybe it missed a cache line), and get a 
stale value for any of the reads that _should_ have been serialized by the 
spinlock. 

Note that I actually thought this was a legal optimization, and for a while I 
had this in the kernel. It crashed. In random ways. 

Note that the fact that it does not crash now is quite possibly because of either 

 

we have a lot less contention on our spinlocks these days. That might hide the 
problem, because the _spinlock_ will be fine (the cache coherency still means 
that the spinlock itself works fine - it's just that it no longer works reliably as 
an exclusion thing) 
the window is probably very very small, and you have to be unlucky to hit it. 
Faster CPU's, different compilers, whatever. 
 

I might be proven wrong, but I don't think I am. 

Note that another thing is that yes, "btcl" may be the worst possible thing to 
use for this, and you might test whether a simpler "xor+xchgl" might be 
better - it's still serializing because it is locked, but it should be the normal 12 
cycles that Intel always seems to waste on serializing instructions rather than 
22 cycles. 

Elsewhere, he gave a potential (though unlikely) exploit: 

As a completely made-up example (which will probably never show the 
problem in real life, but is instructive as an example), imaging running the 
following test in a loop on multiple CPU's: 

int test_locking(void)  { 

static int a; /* protected by spinlock */ 
int b; 

 
spin_lock() 
a = 1; 
mb(); 
a = 0; 
mb(); 
b = a; 
spin_unlock(); 
return b; 
} 
 

Now, OBVIOUSLY the above always has to return 0, right? All accesses to 
"a" are inside the spinlock, and we always set it to zero before we read it into 
"b" and return it. So if we EVER returned anything else, the spinlock would 
obviously be completely broken, wouldn't you say? 

And yes, the above CAN return 1 with the proposed optimization. I doubt you 
can make it do so in real life, but hey, add another access to another variable 
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even 
with a simple example like the above. 

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot 
serializing any more, so there is very little effective ordering between the two 
actions 

b = a;  spin_unlock(); 

as they access completely different data (ie no data dependencies in sight). So 
what you could end up doing is equivalent to 

CPU#1 
CPU#2 
b = a; /* cache miss, we'll delay this.. */ 

 
spin_unlock(); 
 
 
spin_lock(); 
 
a = 1; 
/* cache miss satisfied, the "a" line is bouncing back and forth */ 
 
b gets the value 1 
 
 
a = 0; 
and it returns "1", which is wrong for any working spinlock. 

Unlikely? Yes, definitely. Something we are willing to live with as a potential 
bug in any real kernel? Definitely not. 

Manfred objected that according to the Pentium Processor Family Developers 
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance, 
the Pentium processor allows memory reads to be reordered ahead of buffered 
writes in most situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at the pins, reads 
(cache miss) and writes appear in-order." He concluded from this that the second 
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on 
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro 
manual, "The only enhancement in the PentiumPro processor is the added support 
for speculative reads and store-buffer forwarding." He explained: 

A Pentium is a in-order machine, without any of the interesting speculation 
wrt reads etc. So on a Pentium you'll never see the problem. 

But a Pentium is also very uninteresting from a SMP standpoint these days. 
It's just too weak with too little per-CPU cache etc.. 

This is why the PPro has the MTRR's - exactly to let the core do speculation 
(a Pentium doesn't need MTRR's, as it won't re-order anything external to 
the CPU anyway, and in fact won't even re-order things internally). 

Jeff V. Merkey added: 

What Linus says here is correct for PPro and above. Using a mov instruction 
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro, 
this was no longer the case, though the window is so infintesimally small, most 
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks 
understand this and the code is writtne to handle it. The most obvious 
aberrant behavior was that cache inconsistencies would occur randomly. 
PPro uses lock to signal that the piplines are no longer invalid and the buffers 
should be blown out. 

I have seen the behavior Linus describes on a hardware analyzer, BUT 
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD 
people must still be on older Pentium hardware and that's why they don't 
know this can bite in some cases. 

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to 
Linus, pointing out a possible misconception in his proposed exploit. Regarding 
the code Linus posted, Erich replied: 

It will always return 0. You don't need "spin_unlock()" to be serializing. 

The only thing you need is to make sure there is a store in "spin_unlock()", 
and that is kind of true by the fact that you're changing something to be 
observable on other processors. 

The reason for this is that stores can only possibly be observed when all prior 
instructions have retired (i.e. the store is not sent outside of the processor 
until it is committed state, and the earlier instructions are already committed 
by that time), so the any loads, stores, etc absolutely have to have completed 
first, cache-miss or not. 

He went on: 

Since the instructions for the store in the spin_unlock have to have been 
externally observed for spin_lock to be aquired (presuming a correctly 
functioning spinlock, of course), then the earlier instructions to set "b" to the 
value of "a" have to have completed first. 

In general, IA32 is Processor Ordered for cacheable accesses. Speculation 
doesn't affect this. Also, stores are not observed speculatively on other 
processors. 

There was a long clarification discussion, resulting in a complete turnaround by 
Linus: 

Everybody has convinced me that yes, the Intel ordering rules _are_ strong 
enough that all of this really is legal, and that's what I wanted. I've gotten 
sane explanations for why serialization (as opposed to just the simple locked 
access) is required for the lock() side but not the unlock() side, and that lack 
of symmetry was what bothered me the most. 

Oliver made a strong case that the lack of symmetry can be adequately 
explained by just simply the lack of symmetry wrt speculation of reads vs 
writes. I feel comfortable again. 

Thanks, guys, we'll be that much faster due to this.. 

We can shave spin_unlock() down from 
about 22 ticks for the "lock; btrl $0,%0" 
asm code, to 1 tick for a simple "movl 

$0,%0" instruction, a huge gain.

4% speed-up in a benchmark test, 
making the optimization very valuable. 
The same optimization cropped up in 

the FreeBSD mailing list.

It does NOT WORK!

Let the FreBSD people use it, and 
let them get faster timings. They 

will crash, eventually.
According to the Pentium Processor Family Developers 

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to 
optimize performance, the Pentium processor allows memory 

reads to be reordered ahead of buffered writes in most 
situations. Internally, CPU reads (cache hits) can be reordered 
around buffered writes. Memory reordering does not occur at 

the pins, reads (cache miss) and writes appear in-order."

From the Pentium Pro manual, "The 
only enhancement in the PentiumPro 

processor is the added support for 
speculative reads and store-buffer 

forwarding."

I have seen the behavior Linus describes on a 
hardware analyzer, BUT ONLY ON 

SYSTEMS THAT WERE PPRO AND 
ABOVE. I guess the BSD people must still be 
on older Pentium hardware and that's why 
they don't know this can bite in some cases.

Intel guy

It will always return 0. You don't need 
"spin_unlock()" to be serializing.

I feel comfortable again.

Thanks, guys, we'll be that much faster 
due to this..

31Wednesday 5 August 15



Power ISA 2.06 and ARM v7

Key concept: actions being performed.

Used to compute dependencies and to define the semantics of barriers.

A load by a processor (P1) is performed with respect to any 
processor (P2) when the value to be returned by the load can 
no longer be changed by a store by P2.

32Wednesday 5 August 15



Power ISA 2.06 and ARM v7

Key concept: actions being performed.

Used to compute dependencies and to define the semantics of barriers.

A load by a processor (P1) is performed with respect to any 
processor (P2) when the value to be returned by the load can 
no longer be changed by a store by P2.

The definition of performed refers to an hypothetical store by P2.

A memory model should define if a particular execution is allowed.
It is is awkward to make a definition that explicitly quantifies over all 
hypothetical variant executions. 

32Wednesday 5 August 15



Power ISA 2.06 and ARM v7

Key concept: actions being performed.

Used to compute dependencies and to define the semantics of barriers.

A load by a processor (P1) is performed with respect to any 
processor (P2) when the value to be returned by the load can 
no longer be changed by a store by P2.

The definition of performed refers to an hypothetical store by P2.

A memory model should define if a particular execution is allowed.
It is is awkward to make a definition that explicitly quantifies over all 
hypothetical variant executions. See Alglave et al., PLDI, 2011.

32Wednesday 5 August 15



A way out?

33Wednesday 5 August 15



Way out?  Create rigorous memory models

• Unambiguous

• Sound w.r.t. experience

• Consistent with what we know of vendor intentions

34Wednesday 5 August 15



Way out?  Create rigorous memory models

• Unambiguous

• Sound w.r.t. experience

• Consistent with what we know of vendor intentions

   mathematical language

34Wednesday 5 August 15



Way out?  Create rigorous memory models

• Unambiguous

• Sound w.r.t. experience

• Consistent with what we know of vendor intentions

   mathematical language

  rigourous testing of the model against the hardware

34Wednesday 5 August 15



Way out?  Create rigorous memory models

• Unambiguous

• Sound w.r.t. experience

• Consistent with what we know of vendor intentions

   mathematical language

  rigourous testing of the model against the hardware

   interaction with hardware developers

34Wednesday 5 August 15



Mathematical language

• Operational and/or axiomatic models

• About 1k LOS, beyond comfortable pencil-and-paper math

• Events, sets, relations, partial orders 

• No interesting syntax, no binding, no need for fancy types (scarcely HO)

Want reusable specifications!

35Wednesday 5 August 15



LEM: a DSL for discrete-math definitions

You write:

• definitions of types, functions, inductive relations

• with quantifiers, set comprehensions, and top-level type polymorphism
(roughly intersection of HOL4, Isabelle/HOL, and Coq)

LEM gives you:

• type-checking of the definitions

• decent typesetting

• whitespace-preserved prover definitions in HOL4, Isabelle/HOL (&Coq?)

• OCaml code (ind.rel.?) (Haskell?)

36Wednesday 5 August 15



LEM: a DSL for discrete-math definitions

You write:

• definitions of types, functions, inductive relations

• with quantifiers, set comprehensions, and top-level type polymorphism
(roughly intersection of HOL4, Isabelle/HOL, and Coq)

LEM gives you:

• type-checking of the definitions

• decent typesetting

• whitespace-preserved prover definitions in HOL4, Isabelle/HOL (&Coq?)

• OCaml code (ind.rel.?) (Haskell?)

Example taken form the IBM POWER memory model

let write_reaching_coherence_point_action m s w =
  let writes_past_coherence_point' =
    s.writes_past_coherence_point union {w} in
  let coherence' = s.coherence union
    { (w,wother) | forall (wother IN (writes_not_past_coherence s)) |
      (not (wother = w)) && (wother.w_addr = w.w_addr) } in
  <| s with coherence = coherence';
            writes_past_coherence_point = writes_past_coherence_point' |> 

let sem_of_instruction i ist =
  match i with
  | Padd set rD rA rB -> op3regs Add set rD rA rB ist
  | Pandi rD rA simm -> op2regi And SetCR0 rD rA (intToV simm) ist

36Wednesday 5 August 15



The ARM / IBM POWER memory model formalisation

37Wednesday 5 August 15



Given a litmus test, compute the model-allowed executions:

• operational: search of abstract maching LTS

• axiomatic: enumerate all candidates, filter by axioms

Executing the specifications

Lem OCaml OCaml JavaScriptLem search algorithm js_of_ocaml

Make the model accessible to programmers

DEMO [ppcmem]

38Wednesday 5 August 15



1.  Systematically generate litmus tests out of the spec

2. Test them on real hardware and compare with the model

Testing the specifications

39Wednesday 5 August 15



1.  Systematically generate litmus tests out of the spec

2. Test them on real hardware and compare with the model

Testing the specifications

Rigourous testing and interaction with hardware architects to

validate the formalisation of the memory models

39Wednesday 5 August 15



These are abstract machines

A tool to specify exactly and only the programmer-visible behaviour, 
not a description of the implementation internals.

≠hw

⊇
beh

40Wednesday 5 August 15



Topics

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

41Wednesday 5 August 15



Topics

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

41Wednesday 5 August 15



The simplest memory model

sequential consistency

42Wednesday 5 August 15



Lamport, 1979.

Sequential consistency

...the result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 

order specified by its program...

43Wednesday 5 August 15



Compilers, programmers & sequential 

44Wednesday 5 August 15



Compilers, programmers & sequential 

Simple and intuitive 
programming model

44Wednesday 5 August 15



Compilers, programmers & sequential 

Simple and intuitive 
programming model

Expensive 
to implement

44Wednesday 5 August 15



An SC-preserving compiler, obtained by 
restricting the optimization phases in 
LLVM, a state-of-the-art C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs from the SPLASH-2, PARSEC, 
and SPEC CINT2006 benchmark suites.

  
  

  

4% ?

45Wednesday 5 August 15



EXCESSIVE 
OVERHEAD

An SC-preserving compiler, obtained by 
restricting the optimization phases in 
LLVM, a state-of-the-art C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs from the SPLASH-2, PARSEC, 
and SPEC CINT2006 benchmark suites.

This study assumes that the hardware is SC:
these numbers are optimistic lower bounds.

  
  

  

46Wednesday 5 August 15



The layman solution
forbid data-races

47Wednesday 5 August 15



Data-race freedom

Our examples again:

• the problematic transformations 
   (e.g. swapping the two writes in  
   thread 0) do not change the meaning of single-threaded programs

• the problematic transformations are detectable only by code that 
allows two threads to access the same data simultaneously in 
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

48Wednesday 5 August 15



Data-race freedom

Our examples again:

• the problematic transformations 
   (e.g. swapping the two writes in  
   thread 0) do not change the meaning of single-threaded programs

• the problematic transformations are detectable only by code that 
allows two threads to access the same data simultaneously in 
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0
...intuition...

Programming languages provide 
synchronisation mechanisms

if these are used (and implemented) correctly, 
we might avoid the issues above...

48Wednesday 5 August 15



      Prohibit data races

Defined as follows:

• two memory operations conflict if they access the same memory 
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting 
operations corresponding to different threads are adjacent (maybe 
executed concurrently).

Example: a data race in the example above:

The basic solution Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

49Wednesday 5 August 15



      Prohibit data races

Defined as follows:

• two memory operations conflict if they access the same memory 
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting 
operations corresponding to different threads are adjacent (maybe 
executed concurrently).

Example: a data race in the example above:

The basic solution

The definition of data race quantifies only 

over the sequential consistent executions

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

49Wednesday 5 August 15



How do we avoid data races? (high-level languages)

•Locks
No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) 
calls from other threads balance.

•Atomic variables
  Allow concurrent access “exempt” from data races (called volatile in Java).

Example: 

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

50Wednesday 5 August 15



This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();
51Wednesday 5 August 15



This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as 
potentially modifying any location, memory operations cannot be 
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware 
reordering across them and global orderering

51Wednesday 5 August 15



This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as 
potentially modifying any location, memory operations cannot be 
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware 
reordering across them and global orderering

Compiler/hardware can continue to reorder accesses  

Intuition: 
compiler/hardware do not know about threads
but only racing threads can tell the difference!

51Wednesday 5 August 15



Validity of compiler optimisations, 

52Wednesday 5 August 15



Validity of compiler optimisations, 

  Jaroslav Sevcik

  Safe Optimisations for Shared-Memory Concurrent Programs

PLDI 2011  

52Wednesday 5 August 15



Compilers, programmers & data-race 

53Wednesday 5 August 15



Compilers, programmers & data-race 

Can be implemented 
efficiently

53Wednesday 5 August 15



Compilers, programmers & data-race 

Intuitive programming 
model (but detecting 

races is tricky!)

Can be implemented 
efficiently

53Wednesday 5 August 15



Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

54Wednesday 5 August 15



Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!  

The writes cannot be executed in any SC execution, so they cannot 
participate in a data race.

54Wednesday 5 August 15



Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!  

The writes cannot be executed in any SC execution, so they cannot 
participate in a data race.

Data-race freedom is not the ultimate panacea 

  - the absence of data-races is hard to verify / test (undecidable)

  - imagine debugging...

      my program ended with a wrong result:
         my program has a bug OR it has a data-race

      my program ended with a correct result:
         my program is correct OR it has a data-race

54Wednesday 5 August 15



Defining programming language memory models

55Wednesday 5 August 15



Option 1

Don't.

No concurrency.

Implemented by highly-successful programming languages (OCaml)

Poor match for current trends

56Wednesday 5 August 15



Option 2

Don't.

No shared memory
  

A good match for some problems (see Erlang, MPI, …)

57Wednesday 5 August 15



Option 3

Don't.

But language ensures data-race freedom
  

Possible:

- syntactically ensuring data accesses protected by associated locks

- fancy effect type systems (don’t miss Pottier’s lecture on Friday)

Not suitable for general purpose programming.

58Wednesday 5 August 15



Option 4

Don't.

Leave it (sort of) up to the hardware
  

Example: 

MLton, a high performance ML-to-x86 compiler with concurrency 
extensions 

Accesses to ML refs exhibit the underlying x86-TSO behaviour 
(atomicity is guaranteed though)

59Wednesday 5 August 15



Option 5

Do.

Use data race freedom as a definition
  

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way
                      Sarita Adve & Mark Hill, 1990

60Wednesday 5 August 15



Option 5

Do.

Use data race freedom as a definition
Pro: 
   - simple
   - strong guarantees for most code
   - allows lots of freedom for compiler and hardware optimisations

Cons:
   - undecidable premise
   - can't write racy programs (escape mechanisms?)

61Wednesday 5 August 15



Data-races are errors

62Wednesday 5 August 15



Data-races are errors

63Wednesday 5 August 15



Les data-races sont des erreursData-races are errors

64Wednesday 5 August 15



Les data-races sont des erreursData-races are errors

How to use C/C++ to implement 
low-level system code?

64Wednesday 5 August 15



Escape lanes 
for expert programmers

65Wednesday 5 August 15



Low-level atomics in C11/C++11
std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {
    if (0 == index) {
        flag0.store(1, std::memory_order_relaxed);
        turn.exchange(1, std::memory_order_acq_rel);

        while (flag1.load(std::memory_order_acquire)
            && 1 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    } else {
        flag1.store(1, std::memory_order_relaxed);
        turn.exchange(0, std::memory_order_acq_rel);

        while (flag0.load(std::memory_order_acquire)
            && 0 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    }
}

void unlock(unsigned index) {
    if (0 == index) {
        flag0.store(0, std::memory_order_release);
    } else {
        flag1.store(0, std::memory_order_release);
    }
}

Atomic variable declaration

New syntax 
for memory accesses

Qualifier

66Wednesday 5 August 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

67Wednesday 5 August 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

67Wednesday 5 August 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

67Wednesday 5 August 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

67Wednesday 5 August 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

67Wednesday 5 August 15



MO_SEQ_CST

The compiler must ensure that MO_SEQ_CST accesses have 
sequentially consistent semantics.

Thread 0 Thread 1

x.store(1,MO_SEQ_CST) y.store(1,MO_SEQ_CST)

r1 = y.load(MO_SEQ_CST) r2 = x.load(MO_SEQ_CST)

The program above cannot end with r1 = r2 = 0.

Sample compilation on x86: 
store: MOV; MFENCE
load: MOV

Sample compilation on Power: 
store: HWSYNC; ST
load: HWSYNC; LD; CMP; BC; ISYNC

68Wednesday 5 August 15



MO_RELAXED

MO_RELAXED accesses can be reordered by compiler/hardware

Thread 0 Thread 1

x.store(1,MO_RELAXED) y.store(1,MO_RELAXED)

r1 = y.load(MO_RELAXED) r2 = x.load(MO_RELAXED)

The program above can end with r1 = r2 = 0.

Sample compilation on x86: 
store: MOV
load: MOV

Sample compilation on Power: 
store: ST
load: LD

69Wednesday 5 August 15



MO_RELEASE / MO_ACQUIRE

Supports a fast implementation of the message passing idiom:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(MO_ACQUIRE)

y.store(1,MO_RELEASE) r2 = x.load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86: 
store: MOV
load: MOV

Sample compilation on Power: 
store: LWSYNC; ST
load: LD; CMP; BC; ISYNC

Accesses to the data structure can be reordered/optimised (MO_RELAXED).

70Wednesday 5 August 15



MO_RELEASE / MO_CONSUME

Supports a fast implementation of the message passing idiom on Power:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(x,MO_CONSUME)

y.store(&x,MO_RELEASE) r2 = (*r1).load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86: 
store: MOV
load: MOV

Sample compilation on Power: 
store: LWSYNC; ST
load: LD

The two loads have an address dependency, Power won't reorder them.

71Wednesday 5 August 15



The C11/C++11 memory model formalisation
                                                                              [demo]

72Wednesday 5 August 15



Enough about formalising...
...what about reasoning?

73Wednesday 5 August 15



Topics

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compilers and optimisations: proof and/or validation

74Wednesday 5 August 15



Topics

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compilers and optimisations: proof and/or validation

74Wednesday 5 August 15



CompCertTSO

Idea: the programming language faithfully mimics the processor model.

Intel processors implement the x86-TSO MM 

TSO
The C-TSO programming language:
  a C-like language with a TSO semantics 
  for memory accesses.

A semantic preserving compiler
  CompCertTSO
building on CompCert 1.5

75Wednesday 5 August 15



CompCertTSO

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction  selection

CFG generation

CompCert 1.5 proves that all behaviours of the source program are 
behaviours of the compiled program (building simulation relations).

The converse follows from determinacy of the semantics.

Problem: in CompCertTSO the semantics is not deterministic... 

76Wednesday 5 August 15



CompCertTSO

[POPL 2011]

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction  selection

CFG generation

Proof sketch

Want: whole-system upward simulation

Have: Leroy's per-thread downward simulations

1. replace implicit memory accesses with explicit labels

2. port Leroy's proof to the labellised semantics
• surprisingly easy for many phases
• tedious for explicitly small-stepped phases (could not reuse CompCert's proof)

3. Turn per-thread downward simulations to per-thread upward simulations

4. Turn per-thread upward simulations to whole-system upward simulations

5. Compose the whole system upward simulations.

Semantic engineering

If R is a threadwise downward simulation from S to T, S is 
recep- tive, and T is determinate, then there is a threadwise 
upward simulation that contains R.

77Wednesday 5 August 15



CompCertTSO

[POPL 2011]

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction  selection

CFG generation

Proof sketch

Want: whole-system upward simulation

Have: Leroy's per-thread downward simulations

1. replace implicit memory accesses with explicit labels

2. port Leroy's proof to the labellised semantics
• surprisingly easy for many phases
• tedious for explicitly small-stepped phases (could not reuse CompCert's proof)

3. Turn per-thread downward simulations to per-thread upward simulations

4. Turn per-thread upward simulations to whole-system upward simulations

5. Compose the whole system upward simulations.

Semantic engineering

ClightTSO small-step semantics 
has about 90 reduction rules

How to formalise programming language definitions?

If R is a threadwise downward simulation from S to T, S is 
recep- tive, and T is determinate, then there is a threadwise 
upward simulation that contains R.

77Wednesday 5 August 15



The Ott tool Complement to LEM, specialised for formalising 
programming language definitions and semantics.

Latex

Proof assistant

78Wednesday 5 August 15



The Ott tool Complement to LEM, specialised for formalising 
programming language definitions and semantics.

Latex

Proof assistant

ClightTSO is formalised in Ott 
we get an interpreter as a biproduct

78Wednesday 5 August 15



CompCertTSO

[POPL 2011]

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction  selection

CFG generation

79Wednesday 5 August 15



ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

FE1

PRE

FE2

RTL

RTL

RTL

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction  selection

CFG generation

CompCertTSO + fence optimisations

SAS 2012
80Wednesday 5 August 15



Example of fence elimination in action

PRE FE2

81Wednesday 5 August 15



Example of fence elimination in action

PRE FE2
Proof of correctness requires a 

novel bisimulation-based proof technique
(need to guess if “in the future” a fence instruction will be executed).

81Wednesday 5 August 15



What about C11?

82Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Can you guess the output?

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 1 returns without modifying b

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

Thread 1 returns without modifying b

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

C11 states that this program must print 42

Thread 1 returns without modifying b

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

83Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

84Wednesday 5 August 15



...sometimes we get 0 on the screen 

gcc 4.7 -O2

int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

84Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

The outer loop can be (and is) optimised away

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

85Wednesday 5 August 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

The compiled code saves and restores b

Correct result in a sequential setting

85Wednesday 5 August 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

86Wednesday 5 August 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

86Wednesday 5 August 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx

86Wednesday 5 August 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b

86Wednesday 5 August 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b

86Wednesday 5 August 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b
- Print b: 0 is printed

86Wednesday 5 August 15



The horror, the horror...  a subtle compiler bug!

87Wednesday 5 August 15



Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

88Wednesday 5 August 15



Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

88Wednesday 5 August 15



Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Cannot catch
concurrency compiler bugs

88Wednesday 5 August 15



Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs?

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours: 
how to test for correctness?

limit case: two compilers generate correct code with disjoint final states

89Wednesday 5 August 15



C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

C/C++ compilers can only apply transformations sound 
with respect to an arbitrary non-racy concurrent context

Idea

Hunt concurrency compiler bugs 

=
 search for transformations of sequential code 

not sound in an arbitrary non-racy context

90Wednesday 5 August 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

Check: only transformations sound 
in any concurrent non-racy context

SEQUENTIAL
PROGRAM

91Wednesday 5 August 15



Soundness of compiler optimisations in 
the C11/C++11 memory model

92Wednesday 5 August 15



Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it 
correct to eliminate the first store?

93Wednesday 5 August 15



A same-thread release-acquire pair is a pair of 
a release action followed by an acquire action

in program order.

An action is a release if it is a possible source of a synchronisation

 unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation 

lock mutex, acquire or seq_cst atomic read 

94Wednesday 5 August 15



Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

It is safe to eliminate the first store 
if there are:

no access to g

no st rel/acq pair
1. no intervening accesses to g
2. no intervening 
       same-thread release-acquire pair

95Wednesday 5 August 15



g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

96Wednesday 5 August 15



candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

96Wednesday 5 August 15



candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

same-thread release-acquire pair

Thread 1

96Wednesday 5 August 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

97Wednesday 5 August 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

97Wednesday 5 August 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

The program should only print 1

97Wednesday 5 August 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

If we perform overwritten write elimination it prints 0
The program should only print 1

97Wednesday 5 August 15



sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

while(f2.load(ACQUIRE)==0);

98Wednesday 5 August 15



sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

98Wednesday 5 August 15



sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

If only a release (or acquire) is present, then 
all discriminating contexts are racy.

It is sound to optimise the overwritten write.

data race

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

98Wednesday 5 August 15



Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb

99Wednesday 5 August 15



Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb

Also correctness statements for

reorderings, merging, and introductions of events.

99Wednesday 5 August 15



From theory to the Cmmtest tool

100Wednesday 5 August 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

Check: only transformations sound 
in any concurrent non-racy context

101Wednesday 5 August 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

Check: only transformations sound 
in any concurrent non-racy context

101Wednesday 5 August 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

101Wednesday 5 August 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

102Wednesday 5 August 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

102Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

Start with a randomly generated well-defined program

103Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

103Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

103Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

103Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

103Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

103Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

103Wednesday 5 August 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

Can match applying 
only correct eliminations and reorderings

103Wednesday 5 August 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

If we focus on the miscompiled initial example...

104Wednesday 5 August 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

104Wednesday 5 August 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

reference
semantics

Load a 1

104Wednesday 5 August 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory tracereference
semantics

Load a 1

104Wednesday 5 August 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory trace

     Cannot match some events           detect compiler bug

reference
semantics

Load a 1

104Wednesday 5 August 15



Applications

105Wednesday 5 August 15



1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found 
in the latest version of GCC.

Store introductions performed by loop invariant motion or 
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.

106Wednesday 5 August 15



2. Checking compiler invariants

Baked this invariant into the tool and found a counterexample...

GCC internal invariant: never reorder with an atomic access

atomic_uint a; 
int32_t g1, g2;

int main (int, char *[]) {
  a.load() & a.load ();
  g2 = g1 != 0; 
}

ALoad  a   0  4
ALoad  a   0  4
Load   g1  0  4
Store  g2  0  4

Load   g1  0  4
ALoad  a   0  4
ALoad  a   0  4
Store  g2  0  4

...not a bug, but fixed anyway

107Wednesday 5 August 15



3. Detecting unexpected behaviours

Correct or not?

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

108Wednesday 5 August 15



3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

109Wednesday 5 August 15



3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

False positives in Thread Sanitizer

109Wednesday 5 August 15



The formalisation of the C11 memory model 
enables compiler testing...  what else?

110Wednesday 5 August 15



Proving the correctness of mappings for atomics
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

111Wednesday 5 August 15

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html


Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

  while (flag.load(acquire))
   {}

.loop
  ldr r0, [r1]
  dmb ish
  bnz .loop

.loop
  ldr r0, [r1]
  bnz .loop
  dmb ish

112Wednesday 5 August 15



Take-up in Industrial Concurrency Community?

handled the real behaviour  -  found some bugs  -  published some papers

• Fixed up ISO C/C++11 Standard
     standard text and our maths in sync

• Fixed and verified C/C++11 to POWER compilation scheme
     compilers have to agree on this

• Clarified POWER and ARM architectural intent
     ongoing dialogues with the architects

• Found concurrency bugs in gcc, proposing optimisation schemes
     ongoing dialogue with gcc developers

113Wednesday 5 August 15



The memory models of modern 
hardware are better understood

Programming languages attempt 
to specify and implement 

reasonable memory models.

Researchers and programmers 
are now interested in these 

problems.

114Wednesday 5 August 15



The memory models of modern 
hardware are better understood

Programming languages attempt 
to specify and implement 

reasonable memory models.

Researchers and programmers 
are now interested in these 

problems.

Still, many open problems...

114Wednesday 5 August 15



The memory models of modern 
hardware are better understood

Programming languages attempt 
to specify and implement 

reasonable memory models.

Researchers and programmers 
are now interested in these 

problems.

Still, many research opportunities!

114Wednesday 5 August 15



Thank you!  Questions?

115Wednesday 5 August 15


