Languages
and
concurrency

- —

a thorny relationship

Francesco Zappa Nardelli

Inria, France

Based on work done by or with
Vafeiadis, Sewell, Sevcik, Sarkar, Ridge, Owens, Morisset,
Memariam, Maranget, Chakraborty, Braibant, Balabonski, Batty, Alglave
U. Cambridge, U. Kent, MPI-SWS, Inria

Wednesday 5 August 15 1

Shared memory (according to Wikipedia)

In computer hardware, shared memory refers to a (typically) large block of random access memory
(RAM) that can be accessed by several different central processing units (CPUs) in a multiple-processor
computer system.

A shared memory system is relatively easy to program since all processors share a single view of data
and the communication between processors can be as fast as memory accesses to a same location. The
issue with shared memory systems is that many CPUs need fast access to memory and will likely cache
memory, which has two complications:

 CPU-to-memory connection becomes a bottleneck. Shared memory computers cannot scale very
well. Most of them have ten or fewer processors.

e Cache coherence: Whenever one cache is updated with information that may be used by other
processors, the change needs to be reflected to the other processors, otherwise the different
processors will be working with incoherent data (see cache coherence and memory coherence). Such
coherence protocols can, when they work well, provide extremely high-performance access to shared
information between multiple processors. On the other hand they can sometimes become overloaded
and become a bottleneck to performance.

Wednesday 5 August 15

Shared memory (according to Wikipedia)

In computer |
(RAM) that c;
computer sys

| memory
...relatively easy to program... ple-processor

A shared memory system is relatively easy to program since all processors share a single view of data

and the
issue |\
memo|

.C - - - JI1Y UU -

are ann bha ac fact ac mamans asancos 3 a same location. The
and will likely cache

...all processors share a single view of data...

DECOITES & DUTIETTETK, SITareq TeTTory compurers cannot scale very

well. Most of them have ten or fewer processors.

e Cache coherence: Whenever one cache is updated with information that may be used by other
processors, the change needs to be reflected to the other processors, otherwise the different
processors will be working with incoherent data (see cache coherence and memory coherence). Such
coherence protocols can, when they work well, provide extremely high-performance access to shared

information between m

and become a bottlene]

...bottleneck to performance...

Wednesday 5 August 15

Imagine an ideal world

Wednesday 5 August 15

Imagine an ideal world

Com pilers .

Prmcnples, Techniques,

\ A_H L)) 4
and Tools

Alfred V. Ah()
Ravi Sethi
Jeffrey D. Ullman

Programmers and compilers cooperate
to make great software

Wednesday 5 August 15 3

Constant propagation

A simple, and innocuous, optimisation:

x = 14
Source code y = 7 - x / 2
X = 14

Optimised code

o

Wednesday 5 August 15

Shared memory concurrency

Shared memory

x =y =20
x =1 1f (x == 1) {
Thread 1 if (v == 1) x = 0 Thread 2
print x y =1}

Wednesday 5 August 15

Shared memory concurrency

Shared memory

x =y =20
x =1 1f (x == 1) {
Thread 1 if (v == 1) x = 0 Thread 2
print x y =1}

Intuitively this program always prints O

Wednesday 5 August 15

Shared memory concurrency
But if the compiler propagates the constant x = 1...
Xx =y =20
x =1

if (y == 1)
print X

Thread 1

Wednesday 5 August 15

Shared memory concurrency

But if the compiler propagates the constant x = 1...

x =y =20
x = 1 1f (x == 1) {
Thread 1 if (y == 1) x = 0 Thread 2
Pprint—x y =1}
print 1

...the program always writes 1 rather than O.

Wednesday 5 August 15

Shared memory concurrency

But if the compiler propagates the constant x = 1...

x =y =20
|

A compiler can break your code

...the program always writes 1 rather than O.

Wednesday 5 August 15 6

That pesky hardware (1)

Consider misaligned 4-byte accesses:

int32 t a = 0

a = 0x44332211 1f (a == 0x00002211)
print "error”

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

® n-bytes on an n-byte boundary (n =1,2,4,16)

® P6 or later: ... or if unaligned but within a cache line

Question: what about multi-word high-level language values?

Wednesday 5 August 15

That pesky hardware (2)

Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread 0O Thread 1

MOV [x] « 1 MOV [y] « 1

MOV EAX « [y] | MOV EBX « [x]

Can you guess the final register values: EAX =7 EBX =7

Wednesday 5 August 15

That pesky hardware (2)

Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread 0O Thread 1

—>

MOV [x] « 1 MOV [y] + 1
MOV EAX ¢ [y]ﬁMOV EBX + [X]

Can you guess the final register values: EAX =1 EBX =1

Wednesday 5 August 15

That pesky hardware (2)

Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread 0O Thread 1

MOV [x] < 1 | MOV [y] + 1¢
MOV EAX « [y] | MOV EBX « [x]

Can you guess the final register values: EAX=1 EBX =1

Wednesday 5 August 15

That pesky hardware (2)

Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread 0O Thread 1

<
* MOV [x] + 1 MOV [y] « 1

MOV EAX + [y] | MOV EBX ¢« [X]

Can you guess the final register values: EAX=1 EBX =1

Wednesday 5 August 15

That pesky hardware (2)

Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread 0O Thread 1

e

MOV [xX] + I\MMOV [v] « 1
MOV EAX +« [y OV EBX + [Xx]

Can you guess the final register values: EAX=1 EBX =1

Wednesday 5 August 15

That pesky hardware (2)

Initial shared memory values: [x]1=0 [y]1=0

Per-processor registers: EAX EBX

Thread 0O Thread 1

*MOV [x] « 1 MOV [y] « 1
MOV EAX + [yAMOV EBX ¢+ [x]l’

Can you guess the final register values: EAX =1 EBX=0

Wednesday 5 August 15

That pesky hardware (2)

Initial shared memory values:

[x]=0 [y]1=0

Per-processor registers: EAX EBX

Thread O

Thread 1

%

MOV [x] « 1
OV EAX « [V]

}

MOV [y] « 1
MOV EBX « [X]

\

Can you guess the final register values: EAX=0 EBX =1

Wednesday 5 August 15

14

That pesky hardware (2)

Thread 0O Thread 1

MOV [x] « 1 MOV [y] « 1

MOV EAX « [y] | MOV EBX « [x]

The possible outcomes should be:

® EAX : 1, EBX : 1
e EAX : 0, EBX : 1
® EAX : 1, EAX : O

Wednesday 5 August 15

s
BT INTEL® CORE ™

That pesky hardware (2)

Thyrand N Thrand 1

MOV
MOV 1]

The po

® EAX
® EAX
® EAX

Wednesday 5 August 15 15

That pesky hardware (2)

NS 0B SLYSA. MA:/

B ToosRzin 1 oo -
S s ©

s

Thyrand N Thrand 1

MOV

MOV 1 We can observe

EAX

EBX = 0
The pg

as well
® EAX

® EAX
® EAX

Wednesday 5 August 15 16

Hardware store buffering

Store buffers hide the latency of memory writes

Thread, Lo Thread,,
T P T i I '
W i W :
' ' .
s R 'R eeoe s R R
- = |
;. ;‘ |
D L.o.- 0 Loo.i
w w
s
= =
® e
- =
B w f W
' | '

Lock [Shared Memory

Wednesday 5 August 15

Thread O Thread 1

MOV [x] + 1 MOV [y] + 1
Hardware store buﬁering MOV EAX « [y] |MOV EBX + [X]

Thread; . 9 Thread,,
i . i T
W ! W : '
' ' |
R R e 00 'R R
= s |
o = |
... o L ___.
0 0
c -
= =
(D (D
-~ o |
L =
Ty lw W
: '
Lock ‘ Shared Memory

Wednesday 5 August 15

Hardware store buffering

Thread O

Thread 1

MOV [x] + 1
MOV EAX + [V]

MOV [y] + 1
MOV EBX « [X]

vy

Thread; 00 Thread,,
i i ‘ .
W 1 W ?
v Y
S eeo e S 'R R
=) =] |
M (M
0 0
c -
— —
W x 11 Wy 1 1‘
W W

Lock

—~

Shared Memory

Wednesday 5 August 15

18

Hardware store buffering

Thread O

Thread 1

MOV [x] + 1
MOV EAX + [V]

MOV [y] + 1
MOV EBX « [X]

vy

Thread;
i i .

w | w |
' '

S eeo e S R R

2 8 | :

o RyO oy - RxO0

S S :

W x 11 \Ny1j

W "

Lock

—~

Shared Memory

Wednesday 5 August 15

18

Thread O Thread 1

MOV [x] + 1 MOV [y] + 1
Hardware store buﬁering MOV EAX « [y] |MOV EBX + [X]

R AL Rix O
Thread; we o Thread,,
i o i T
W S ; W |
Y '
R 'R ceoe 'R 'R
2 s
= = |
¢ (M
0 0
= =
. =
M (D
-~ o
- N
L lW W
L '
Lock l Shared Memory
bl . . 4 \A/ /. A
VvV X1 VY

Wednesday 5 August 15

That pesky hardware (3)

...and differ between architectures...

Thread 0 Thread 1
x =1 print y
y =1 print x

Thread

]

On x86, we only get
0 0
1 1
is printed on the screen.

jayng oM -

- 4

Shared Memory

Thread

]

- Jayng QlUM -

‘

Wednesday 5 August 15

20

That pesky hardware (3)

...and differ between architectures...

Thread 0 Thread 1
x =1 print y
y = 1 print x

Thread,

On IBM Power or ARM

1 0

can be printed on the screen.

Wednesday 5 August 15

21

Wednesday 5 August 15 22

The fundamental problem

|

Compilers

1Y Principles, Techniques
o or ol and Tools = S

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman

Wednesday 5 August 15

The fundamental problem

C()mpllers

Principles, Techmques, |

(((((

Alfred V. Aho
The programmer wants Ravi Sethi

Jeffrey D. Ullman
to understand the code
he writes

Wednesday 5 August 15

The fundamental problem

The programmer wants
to understand the code
he writes

Wednesday 5 August 15

Compilers| |

Principles, Techniques,

and Tools 6

f/,

W
Wiz

4

The compiler
- and the hardware -
try hard to optimise it

23

The fundamental problem

Which are the valid optimisations that the compiler or the hardware can
perform without breaking the expected semantics of a concurrent program?

Which is the semantics of a concurrent program?¢

The programmer wants
to understand the code
he writes

Wednesday 5 August 15

The compiler
- and the hardware -
try hard to optimise it

23

Not new

Multiprocessors since 1964 (Univac 1108A - or Burroughs, in ‘62)

Relaxed Memory since 1972 (IBM System 370/158MP)

Eclipsed for a long time (except in high-end) by advances in performance:

- transistor counts (continuing)
- clock speed (hit power dissipation limit)

- ILP (hit smartness limit?)

Wednesday 5 August 15 24

Mass market multiprocessors since 2005

(inteD) Intel Xeon E7
e B up to 20 hardware threads
—)

IBM Power 795 server
up to 1024 hardware threads

Best quad core phone: 4 contenders

examined

EARLY VIEW HTC One X vs ZTE Era vs LG Optimus 4X HD vs
Huawei Ascend D Quad

B POWERED

Wednesday 5 August 15

25

Mass market multiprocessors since 2005

Intel Xeon E7
up to 20 hardware threads

Programming multiprocessors
no longer just for specialists

Best quad core phone: 4 contenders

examined

EARLY VIEW HTC One X vs ZTE Era vs LG Optimus 4X HD vs
Huawei Ascend D Quad

B POWERED

Wednesday 5 August 15 25

Compilers

1y Prin q)lxl hn| s,

Topics

\It o V. \!
vi Sethi
kfn w D, Ullm:

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

Wednesday 5 August 15

26

Compilers

1y Prin q)lxl hn| s,

Topics

\It o V. \!
vi Sethi
kfn w D, Ullm:

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

Wednesday 5 August 15

26

Architectures

Hardware manufacturers document architectures:
® /oose specifications

® claimed to cover a wide range of past and future processor
implementations.

Architectures should:
® reveal enough for effective programming;

e without unduly constraining future processor design.

Examples: Intel 64 and IA-32 Architectures SDM, AMDG64 Architecture Programmer’s
Manual, Power ISA specification, ARM Architecture Reference Manual, ...

Wednesday 5 August 15

27

Wednesday 5 August 15

intel

In practice

Architectures described by informal prose:

In a multiprocessor system, maintenance of cache
consistency may, In rare circumstances, require intervention

by system software.
(Intel SDM, november 2006, vol3a, 10-5)

As we shall see, such descriptions are:

1) vague; 2) incomplete; 3) unsound.

Fundamental problem: prose specifications cannot be used to test
programs or to test processor implementations.

Wednesday 5 August 15 29

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)

the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than

LY. 3

spin_lock()
a=1;
mb () ;
a=0;

spin_unlock();
return b;

}
Now, OBVIOUSLY the above always has to return 0, right? All accesses to

"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would

obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot

o= = N 3 L1ic4) Lloati BREs | TPV 4L 4

warn you NOT to assume that in-order write behaviour - I bet it won't be the
casd

The
surg

For
hap]
stal
spin

and

bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

own out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.
The only thing you need is to make sure there is a store in "spin_unlock()",

and that is kind of true by the fact that you're changing something to be
observable on other processors.

Example: Linux kernel mailing list, 20 nov. - 7 déc. 1999 (143 posts).
A one-instruction programming question, a microarchitecural debate!

« Keywords: speculation, ordering, causality, retire, cache...

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

Wednesday 5 August 15

30

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

spin_unlock();

spin_lock();

a=1;
/* cache miss satisfied, the "a" line is bouncing back and forth */

b gets the value 1

a=0;
and it returns "1", which is wrong for any working spinlock.

Unlikely? Yes, definitely. Something we are willing to live with as a potential
bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize performance,
the Pentium processor allows memory reads to be reordered ahead of buffered
writes in most situations. Internally, CPU reads (cache hits) can be reordered
around buffered writes. Memory reordering does not occur at the pins, reads
(cache miss) and writes appear in-order." He concluded from this that the second
CPU would never see the spin_unlock() before the "b=a" line. Linus agreed that on
a Pentium, Manfred was right. However, he quoted in turn from the Pentium Pro
manual, "The only enhancement in the PentiumPro processor is the added support
for speculative reads and store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)

the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void){

static int a; /* protected by spinlock */
int b;

But a Pentium is also very uninteresting from a SMP standpoint these days.
It's just too weak with too little per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the core do speculation
(a Pentium doesn't need MTRR's, as it won't re-order anything external to
the CPU anyway, and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above. Using a mov instruction
to unlock does work fine on a 486 or Pentium SMP system, but as of the PPro,
this was no longer the case, though the window is so infintesimally small, most
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks
understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.
The only thing you need is to make sure there is a store in "spin_unlock()",

and that is kind of true by the fact that you're changing something to be
observable on other processors.

spin_lock()
a=1;

mb () ;

a=0;

mb () ;

b = a;
spin_unlock();
return b;

}
Now, OBVIOUSLY the above always has to return 0, right? All accesses to

"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would

obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)

the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the
problem in real life, but is instructive as an example), imaging running the
following test in a loop on multiple CPU's:

int test_locking(void){

static int a; /* protected by spinlock */
int b;

-

We can shave spin_unlock() down from

i ok about 22 ticks for the "lock; btrl $0,%0"

a=1;
/* cache miss satisfied, the "a" line is boung

b gets the value 1

ok asm code, to 1 tick for a simple "movl
$0,%0" instruction, a huge gain.

Unlikely
bugin a

Manfred
Manual,
the Penti
writes in
around b
(cache r A
CPU wo J AN r %% t on
a Pentiw ;

manual, ' Ouest-France U¢
for speculative reads and store-buffer forwarding.” He explained:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

2 4 = o
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks

understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.
The only thing you need is to make sure there is a store in "spin_unlock()",

and that is kind of true by the fact that you're changing something to be
observable on other processors.

spin_lock()
a=1;
mb () ;
a=0;

spin_unlock();
return b;

}
Now, OBVIOUSLY the above always has to return 0, right? All accesses to

"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would

obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;spin_unlock();

as they access completely different data (ie no data dependencies in sight). So
what you could end up doing is equivalent to

CPU#1
CPU#2
b = a; /* cache miss, we'll delay this.. */

The reason for this is that stores can only possibly be observed when all prior
instructions have retired (i.e. the store is not sent outside of the processor
until it is committed state, and the earlier instructions are already committed
by that time), so the any loads, stores, etc absolutely have to have completed
first, cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock have to have been
externally observed for spin_lock to be aquired (presuming a correctly
functioning spinlock, of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn't affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
Linus:

Everybody has convinced me that yes, the Intel ordering rules _are_ strong
enough that all of this really is legal, and that's what I wanted. I've gotten
sane explanations for why serialization (as opposed to just the simple locked
access) is required for the lock() side but not the unlock() side, and that lack
of symmetry was what bothered me the most.

Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.

Thanks, guys, we'll be that much faster due to this..

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and get a
stale value for any of the reads that _should_ have been serialized by the
spinlock.

-

spin_unlock();

about 22 t
asm code, 10

spin_lock();

a=1;
/* cache miss satisfied, the "a" line is boung

b gets the value 1

problem in real life, but is instructive as an example). imaging running the

4% speed-up 1n a benchmark test,
making the optimization very valuable.
We can shl 1he same optimization cropped up in
the FreeBSD mailing list.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)

the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the worst possible thing to
use for this, and you might test whether a simpler "xor+xchgl" might be
better - it's still serializing because it is locked, but it should be the normal 12
cycles that Intel always seems to waste on serializing instructions rather than
22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably never show the

spin_lock()
a=1;

mb () ;

a=0;

mb () ;

b = a;
spin_unlock();
return b;

}
Now, OBVIOUSLY the above always has to return 0, right? All accesses to

"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would

obviously be completely broken, wouldn't you say?

And yes, the above CAN return 1 with the proposed optimization. I doubt you
can make it do so in real life, but hey, add another access to another variable
in the same cache line that is accessed through another spinlock (to get cache-
line ping-pong and timing effects), and I suspect you can make it happen even
with a simple example like the above.

The reason it can return 1 quite legally is that your new "spin_unlock()" isnot
serializing any more, so there is very little effective ordering between the two
actions

b = a;spin_unlock();

as they access completely different data (ie no data dependencies in sight). So

'ﬂgid up doing is equivalent to

, we'll delay this.. */

is that stores can only possibly be observed when all prior
ptired (i.e. the store is not sent outside of the processor
state, and the earlier instructions are already committed
: inpleted

ICK 101 a S1Impli€ "movl

$0,%0" instruction, a huge gain.

Unlikely
bugin a

Manfred
Manual,
the Penti
writes in
around b
(cache mr . A
CPU wo \ r %% t on
a Pentiw

manual, ‘ Ouest-France Q¢
for speculatlve reads and Store-buller rorwarding. € explaimned:

A Pentium is a in-order machine, without any of the interesting speculation
wrt reads etc. So on a Pentium you'll never see the problem.

2 4 = o
kernels don't hit it (Netware 4/5 uses this method but it's spinlocks

understand this and the code is writtne to handle it. The most obvious
aberrant behavior was that cache inconsistencies would occur randomly.
PPro uses lock to signal that the piplines are no longer invalid and the buffers
should be blown out.

I have seen the behavior Linus describes on a hardware analyzer, BUT
ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
people must still be on older Pentium hardware and that's why they don't
know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied to
Linus, pointing out a possible misconception in his proposed exploit. Regarding
the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to be serializing.
The only thing you need is to make sure there is a store in "spin_unlock()",

and that is kind of true by the fact that you're changing something to be
observable on other processors.

Since the instructig
externally observe
functioning spinlog
value of "a" have

In general, IA32 is
doesn't affect this.
processors.

There was a long cl nd by
Linus:

Everybody has co
enough that all of t
sane explanations
access) is required A

of symmetry was .:,—

Oliver made a strovE-T :

explained by just s
writes. I feel comf

Thanks, guys, we'll oo v nar

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the
case in the long run).

The issue is that you _have_ to have a serializing instruction in order to make
sure that the processor doesn't re-order things around the unlock.

For example, with a simplewitp_ the CPT] can lesallv delav a read that
happened inside the critical

stale value for any of the re

spinlock.

spin_unlock();

spin_lock();

a=1;
/* cache miss satisfied, the

b gets the value 1

Unlikely
bugin a

Manfred
Manual,
the Penti
writes in
around b
(cache r
CPU wo
a Pentiu
manual,
for speculative reads and sto

A Pentium is a in-order ma
wrt reads etc. So on a Penti

‘ .
hieversee uic provicu. S N

S TKTOT A STMpIe "moVI

Note that I actually thought this was a legal optimization, and for a while I

had this in the kernel. It crashed. In random ways. spin_lock()

a=1;
mb () ;

Note that the fact that it does not crash now is quite possibly because of either a=0;

spin_unlock();
t b;
we have a lot less contention on our spinlocks these days. That might hide the ;e wen

problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as

an exclusion thing) "a"
the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

Now, OBVIOUSLY the above always has to return 0, right? All accesses to
are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would
obviously be completely broken, wouldn't you say?

g It does NOT WORK!

Let the FreBSD people use it, and
let them get faster timings. They
will crash, eventually.

¢ the optimization very valuable.
ame optimization cropped up in
~ %« the FreeBSD mailing list.

-
-~
(‘

Since the instructig
externally observe
functioning spinlog

= Y = Y value of "a" have
n't hit it (Netware 4/5 uses this method but it's spinlocks

ction, a huge gain.

Y id this and the code is writtne to handle it. The most obvious In general, IA32 is
/ behavior was that cache inconsistencies would occur randomly. doesn't affect this.
/ lock to signal that the piplines are no longer invalid and the buffers processors.

blown out.
There was a long cl

n the behavior Linus describes on a hardware analyzer, BUT Linus:

N SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD

st still be on older Pentium hardware and that's why they don't Everybody has col
can bite in some cases. enough that all of t

sane explanations
syn, an Architect in an IA32 development group at Intel, also replied to access) is required
nting out a possible misconception in his proposed exploit. Regarding
inus posted, Erich replied:

rays return 0. You don't need "spin_unlock()" to be serializing. explained by just s
writes. I feel comf
hing you need is to make sure there is a store in "spin_unlock()",
kind of true by the fact that you're changing something to be
observable on other processors.

of symmetry was v
E‘, 1/
Oliver made a stro ‘ . -

Thanks, guys, we'll oo v nar

but hey, add another access to another variable

ccessed through another spinlock (to get cache-
pcts), and I suspect you can make it happen even
e above.

Yn 1 with the proposed optimization. I doubt you

lite legally is that your new "spin_unlock()" isnot
is very little effective ordering between the two

erent data (ie no data dependencies in sight). So
lis equivalent to

}y this.. */

is that stores can only possibly be observed when all prior
btired (i.e. the store is not sent outside of the processor
il state, and the earlier instructions are alread committed

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

The issue is not writes being issued in-order (although all the Intel CPU books
warn you NOT to assume that in-order write behaviour - I bet it won't be the

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)

the window is probably very very small, and you have to be unlucky to hit it.
Faster CPU's, different compilers, whatever.

spin_lock()
a=1;
mb () ;
a=0;

spin_unlock();
return b;

}
Now, OBVIOUSLY the above always has to return 0, right? All accesses to

"a" are inside the spinlock, and we always set it to zero before we read it into
"b" and return it. So if we EVER returned anything else, the spinlock would

obviously be completely broken, wouldn't you say?

It does NOT WORK!

A A TQR AN 1

Led 41 I

case in the long run).

The issue is that you _have_ to have a serializing instruction in [
sure that the processor doesn't re-order things around the unlog

For example, with a simple yrite. the CPTT can legallv delav a r:
happened inside the critical
stale value for any of the re

2

/

spin_unlock(); —

‘b4
i |

= Ead

{urn 1 with the proposed optimization. I doubt you
but hey, add another access to another variable
ccessed through another spinlock (to get cache-
cts), and I suspect you can make it happen even
above.

ite legally is that your new "spin_unlock()" isnot
°4 1 is very little effective ordering between the two

According to the Pentium Processor Family Developers .

Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to

optimize performance, the Pentium processor allows memory
reads to be reordered ahead of buffered writes 1n most

4 situations. Internally, CPU reads (cache hits) can be reordered

1 around buftfered writes. Memory reordering does not occur at [

' the pins, reads (cache miss) and writes appear in-order."

~N

101

b - = functioning spinlo " to the
g r == Y = ") ” Y value of "a" have

a 4 bn't hit it (Netware 4/5 uses this method but it's spinlocks
a id this and the code is writtne to handle it. The most obvious In general, IA32 is

behavior was that cache inconsistencies would occur randomly. doesn't affect this.
L lock to signal that the piplines are no longer invalid and the buffers processors.
b blown out.

There was a long cl nd by

A - n the behavior Linus describes on a hardware analyzer, BUT Linus:
I N SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD
i 1st still be on older Pentium hardware and that's why they don't Everybody has col
N can bite in some cases. enough that all of
a sane explanations
(syn, an Architect in an IA32 development group at Intel, also replied to access) is required
C : \ \ nting out a possible misconception in his proposed exploit. Regarding of symmetry was ,:,'

inus posted, Erich replied: 2 - et
3 O uest- F rance P b Oliver made a str:L? D o ly
i /4 ’ rays return 0. You don't need "spin_unlock()" to be serializing. explained by just s Cm/ ds vs

for speculative reads and stoy

A Pentium is a in-order ma
. - <
wrt reads etc. So on a Pentid you i hever sce uic pLuviCl. S B

hing you need is to make sure there is a store in "spin_unlock()",
s kind of true by the fact that you're changing something to be
observable on other processors.

writes. I feel comf

Thanks, guys, we'll oo v nar s

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

Note that I actually thought this was a legal optimization, and for a while I

had this in the kernel. It crashed. In random ways. spin_lock()

a=1;
mb();
Note that the fact that it does not crash now is quite possibly because of either a=0;

spin_unlock();
t b;
we have a lot less contention on our spinlocks these days. That might hide the ;e wen

problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as Now, OBVIOUSLY the above always has to return 0, right? All accesses to
an exclusion thing) "a" are inside the spinlock, and we always set it to zero before we read it into
the window is probably very very small, and you have to be unlucky to hit it. "b" and return it. So if we EVER returned anything else, the spinlock would
Faster CPU's, different compilers, whatever. obviously be completely broken, wouldn't you say?

It does NOT WORK!

{urn 1 with the proposed optimization. I doubt you
but hey, add another access to another variable
ccessed through another spinlock (to get cache-
cts), and I suspect you can make it happen even
above.

The issue is not writes beinf
warn you NOT to assume
case in the long run).

The issue is that you _hav
sure that the processor do

For example, with a simpl
happened inside the critic
stale value for any of the r
spinlock.

From the Pentium Pro manual, "The R
only enhancement in the PentiumPro
processor is the added support for
speculative reads and store-buffer

forwarding."

\ ite legally is that your new "spin_unlock()" isnot
°4 1 is very little effective ordering between the two

bsor Family Developers >
ana; Arroce MNvdorina "fQ_

y

- v

spin_unlock();

yr
p

-
b

2 1d this and the code is writtne to handle it. The most obvious
behavior was that cache inconsistencies would occur randomly.

L | lock to signal that the piplines are no longer invalid and the buffers

b blown out.

A n the behavior Linus describes on a hardware analyzer, BUT

» SYSTEMS THAT WERE PPRO AND ABOVE. I guess the BSD

i 1st still be on older Pentium hardware and that's why they don't

- can bite in some cases.

2 syn, an Architect in an IA32 development group at Intel, also replied to

C ‘ nting out a possible misconception in his proposed exploit. Regarding
inus posted, Erich replied:

a Ouest-France P P

Nianuar, Pt

I

: o w-\f__g."; -
you ﬁm e pLovicit. — e

/4
for speculative reads and stoy

A Pentium is a in-order ma
wrt reads etc. So on a Pentit

- - around buffered writes. Memory re. =
2 ' e the pins, reads (cache miss) and = =

it |

2 4 = o
bn't hit it (Netware 4/5 uses this method but it's spinlocks

rays return 0. You don't need "spin_unlock()" to be serializing.

hing you need is to make sure there is a store in "spin_unlock()",
s kind of true by the fact that you're changing something to be
observable on other processors.

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster timings. They will crash,
eventually.

The window may be small, but if you do this, then suddenly spinlocks aren't
reliable any more.

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as
an exclusion thing)

spin_lock()
a=1;

mb () ;

a=0;

mb () ;

b = a;
spin_unlock();
return b;

}
Now, OBVIOUSLY the above always has to return 0, right? All accesses to

"a" are inside the spinlock, and we always set it to zero before we read it into

-

se, the spinlock would

mization. I doubt you

I have seen the behavior Linus describes on a [e

The issue is not writes beinf
warn you NOT to assume
case in the long run).

From the Pe
only enhanc

The issue is that you _hav
sure that the processor do

For example, with a simpl
happened inside the critic
stale value for any of the r
spinlock.

LA () i)

L

a /) J
Mianuar, P

for speculative reads and stoy

A Pentium is a in-order ma -
wrt reads etc. So on a Pentid you i hever sce uic pr vvIELt.

hardware analyzer, BUT ONLY ON
SYSTEMS THAT WERE PPRO AND)
ABOVE. I guess the BSD people must still be [* |
processor | on older Pentium hardware and that's why
speculativd they don't know this can bite in some cases.

Quest-France

7 g v
are 4/5 uses this method but it's spinlocks
ode is writtne to handle it. The most obvious
at cache inconsistencies would occur randomly.
hat the piplines are no longer invalid and the buffers

Linus describes on a hardware analyzer, BUT
HAT WERE PPRO AND ABOVE. I guess the BSD
der Pentium hardware and that's why they don't
1€ cases.

t in an IA32 development group at Intel, also replied to
ible misconception in his proposed exploit. Regarding
1nus posted, Erich replied:

rays return 0. You don't need "spin_unlock()" to be serializing.
hing you need is to make sure there is a store in "spin_unlock()",

s kind of true by the fact that you're changing something to be
observable on other processors.

make it happen even

"spin_unlock()" isnot
fring between the two

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo

Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about
22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0"
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed-
up in a benchmark test, making the optimization very valuable. Ingo also added
that the same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing, saying:

Note that I actually thought this was a legal optimization, and for a while I
had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly because of either

we have a lot less contention on our spinlocks these days. That might hide the
problem, because the _spinlock_ will be fine (the cache coherency still means
that the spinlock itself works fine - it's just that it no longer works reliably as

spin_lock()
a=1;
mb();
a = 0;

spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0, right? All accesses to

a" are inside the spinlock, and we always set it to zero before we read it into

It does NOT WORK! [

Let the FreBSD people
eventually.

The window may be sm
reliable any more.

The issue is not writes |
warn you NOT to assu
case in the long run).

The issue is that you _|
sure that the processor

For example, with a si
happened inside the cr
stale value for any of th
spinlock.

It will always return (. You don't need
"spin_unlock()" to be serializing.

an exclusion thing)

processor

a /
Nianuar,

/4
for speculative reads and stor

< V-v!' g ‘l"\ e
you flM‘l’lc Pl UUIC& —h‘i ‘-.‘

A Pentium is a in-order ma
wrt reads etc. So on a Pentit

on older Pentium har

Quest-France

observable on other processors.

b g
are 4/5 uses this meth

ode is writtne to hand|
at cache inconsistenci
hat the piplines are no

Linus describes on a h
HAT WERE PPRO A
der Pentium hardware
1€ cases.

t in an IA32 developme
ible misconception in hi
1nus posted, Erich replied:

rays return 0. You don't need "spin_u

hing you need is to make sure there i
s kind of true by the fact that you're ¢

Linus describes on a
BUT ONLY ON
ERE PPRO AND

D people must still be

are and that's why

se, the spinlock would

mization. I doubt you

s to another variable

pinlock (to get cache-
make it happen even

"spin_unlock()" isnot
fring between the two

\
VS So
'fQ.

Wednesday 5 August 15

31

1. spin_unlock() Optimization On Intel Note that I actually thought this was a legal optimization, and for a while I

20Nov1999-7Dec1999 (143 posts) Archive Link: "spin_unlock optimization(i386)" had this in the kernel. It crashed. In random ways. :P;“If“k()

Topics: BSD: FreeBSD, SMP) mb();

glepnl:r Linus Torvalds,Jeff V. Merkey,Erich Boleyn,Manfred Spraul,Peter Samuelson,Ingo Note that the fact that it does not crash now is quite possibly because of either a=0;

Manfred Spraul thought he'd found a way to shave spin_unlock() down from about :bi)z’a ;

22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl $0,%0" spin_unlock();

instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% speed- we have a lot less contention on our spinlocks these days. That might hide the ;etum b

up in a benchmark test, making the optimization very valuable. Ingo also added problem, because the _spinlock_ will be fine (the cache coherency still means

that the same optimization cropped up in the FreeBSD mailing list a few days that the spinlock itself works fine - it's just that it no longer works reliably as Now, OBVIOUSLY the above always has to return 0, right? All accesses to

previously. But Linus Torvalds poured cold water on the whole thing, saying: an exclusion thing) "a" are inside the spinlock, and we always set it to zero before we read it into
y- se, the spinlock would

It does NOT WORK! [\

Let the FreBSD people

mization. I doubt you
eventually. [\) s to another variable
n a pinlock (to get cache-

The window may be sny make it happen even

mense] 1t Will always r¢ I feel comfortable again.

The issue is not writes |
warn you NOT to assuif
case in the long run).

" : .
Tl spin_unlock Thanks, guys, we'll be that much faster A
For example, with a sin ° VS >0
Feppened e - due to this.. Il be

spinlock.

"spin_unlock()" isnot
fring between the two

'fQ.

ode is writtne to hand|
at cache inconsistencie
hat the piplines are no

Linus describes on a hs
HAT WERE PPRO A
der Pentium hardware
~ 1e cases.

t in an IA32 developme
ible misconception in his
1nus posted, Erich replied:

rays return 0. You don't need "spin_u

hing you need is to make sure there is
s kind of true by the fact that you're ¢
observable on other processors.

A Pentium
wrt reads e

Wednesday 5 August 15

31

B POWERED
||||||||
I"
|

.||I

Power ISA 2.06 and ARM v7 iy

Key concept: actions being performed.

A load by a processor (P1) is performed with respect to any
processor (P2) when the value to be returned by the load can
no longer be changed by a store by P2.

Used to compute dependencies and to define the semantics of barriers.

Wednesday 5 August 15 32

.llli

W POWERED
I
I

1

Power ISA 2.06 and ARM v7 iy

Key concept: actions being performed.

A load by a processor (P1) is performed with respect to any
processor (P2) when the value to be returned by the load can
no longer be changed by a store by P2.

Used to compute dependencies and to define the semantics of barriers.

The definition of performed refers to an hypothetical store by P2.

A memory model should define if a particular execution is allowed.

It is is awkward to make a definition that explicitly quantifies over all
hypothetical variant executions.

Wednesday 5 August 15 32

RED

Power ISA

Key concept: acl

A load by a
processor (F
no longer be

Used to computs

The definition o

A memory mod

It is is awkward
hypothetical vaf

Caution

Mind your head

See Alglave et al., PLDI, 2011.

..lli

ct to any
e load can

ntics of barriers.

ore by P2.

n is allowed.
ntifies over all

Wednesday 5 August 15

32

Wednesday 5 August 15

Way out? Create rigorous memory models

« Unambiguous

« Sound w.r.t. experience

 Consistent with what we know of vendor intentions

Wednesday 5 August 15

34

Way out? Create rigorous memory models

« Unambiguous
‘ mathematical language |

« Sound w.r.t. experience

 Consistent with what we know of vendor intentions

Wednesday 5 August 15

34

Way out? Create rigorous memory models

« Unambiguous
‘ mathematical language l

« Sound w.r.t. experience

‘ rigourous testing of the model against the hardware l

 Consistent with what we know of vendor intentions

Wednesday 5 August 15

34

Way out? Create rigorous memory models

« Unambiguous
‘ mathematical language '

« Sound w.r.t. experience

‘ rigourous testing of the model against the hardware '

 Consistent with what we know of vendor intentions

‘ interaction with hardware developers '

Wednesday 5 August 15

34

Mathematical language

Operational and/or axiomatic models

About 1k LOS, beyond comfortable pencil-and-paper math

Events, sets, relations, partial orders

No interesting syntax, no binding, no need for fancy types (scarcely HO)

Want reusable specifications!

Wednesday 5 August 15 35

LEM: a DSL for discrete-math definitions

You write:
- definitions of types, functions, inductive relations

- with quantifiers, set comprehensions, and top-level type polymorphism
(roughly intersection of HOL4, Isabelle/HOL, and Coq)

LEM gives you:
* type-checking of the definitions
* decent typesetting

 whitespace-preserved prover definitions in HOL4, Isabelle/HOL (&Coq?)
« OCaml code (ind.rel.?) (Haskell?)

Wednesday 5 August 15 36

LEM: a DSL for discrete-math definitions

Example taken form the IBM POWER memory model

let write reaching coherence point action m s w

let writes past coherence point' =
s.writes past coherence point union {w} in

let coherence' = s.coherence union
| forall (wother IN (writes not past coherence s)) |

{ (w,wother)
w)) && (wother.w addr = w.w _addr) } in

(not (wother =
<| s with coherence = coherence';
writes past coherence point = writes past coherence point'

|>

let sem of instruction 1 ist

match i with
| Padd set rD rA rB -> op3regs Add set rD rA rB ist

| Pandi rD rA simm -> op2regi And SetCRO rD rA (intToV simm) ist

Wednesday 5 August 15

The ARM / IBM POWER memory model formalisation

Wednesday 5 August 15

37

Executing the specifications

Make the model accessible to programmers

Given a litmus test, compute the model-allowed executions:

* operational: search of abstract maching LTS

* axiomatic: enumerate all candidates, filter by axioms

Lem . OCaml search algonthm) OCaml| Js_of_ocarrll

Lem JavaScript

DEMO [ppcmem]

Wednesday 5 August 15 38

Testing the specifications

§ 8 8%

§ &

1. Systematically generate litmus tests out of the spec

2. Test them on real hardware and compare with the model

Test WRC

Run WRC in model, using ppcmem

Thread 0 Thread 1 Thread 2
a: Wix]=% - b R[x]=1 d: Rly]=1
'.'
DOJ /DOJV
c: Wvl=1 .\r"?; R[x]=0
Test WRC
PPC WRC

"Rfe PodRW Rfe PodRR Fre"
Cycle=Rfe PodRW Rfe PodRR Fre
{

O:r2=x;

l:xr2mx; lixrdmy;
2:r2=y; 2:r4=x;

}

PO | P1 I P2

1i rl;1 | lwz rl,0(x2) | lwz rl,0(x2)
stw rl,0(x2) | 1i r3,1 | lwz r3,0(x4)

| stw r3,0(x4) |

exists
(l:xl=1 /\ 2:rl=1 /\ 2:r3=0)

WRC: Write to Read Causality
Model PowerGS Power6 Power
WRC Allow| = |Ok,44k/2.5G|0Ok, 1.2M/13G|Ok, 25M/104
WRC+data+addr Allow| = No, 0/3.3G| Ok, 705k/13G|Ok, 166k/105
Allow unseen
WRC+syncs Forbid| = Ok, 0/3.3G Ok, 0/17G Ok, 0/157
WRC+sync+addr Forbid Ok, 0/3.3G Ok, 0/17G Ok, 0/157
WRC+lwsync+addr [Forbid| = Ok, 0/3.3G Ok, 0/17G Ok, 0/137
WRC+data+sync Allow| = No, 0/3.3G| Ok, 176k/13G| Ok, 75k/105
Allow unseen
WRC+addr+ctrl Allow| = |Ok,43k/1.3G|Ok, 313k/4.3G| Ok, 4.5M/24
WRC+addr+ctrlisync [Allow | = No, 0/2.1G|Ok, 402k/4.3G| Ok, 69k/25
Allow unseen
WRC+addr+isync Allow| = No, 0/2.1G|Ok, 403k/4.3G| Ok, 49k/25

Allow unseen

Wednesday 5 August 15

39

Testing the specifications

1. Systematically generate litmus tests out of the spec

2. Test them on real hardware and compare with the model

__lJIhuﬁJHHIlf‘

WRC: Write to Read Causality

Rigourous testing and interaction with hardware architects to

validate the formalisation of the memory models

gy 4 A | 1wz rl,0(xr2) | 1lwz rl,0(xr2)
stw rl,0(x2) | 1i r3,1 | lwz r3,0(x4)
| stw r3,0(r4) |
exists
(l:rl=1 /\ 2:rl=1 /\ 2:r3=0)

Allow unseen

WRC+addr+isync

Allow

No, 0/2.1G

Ok, 403k/4.3G

Ok, 49k/25

Allow unseen

Wednesday 5 August 15

39

These are abstract machines

A tool to specify exactly and only the programmer-visible behaviour,
not a description of the implementation internals.

Thread s Thread

A | 'y A '
g LR N) g |]
> > | beh
w W
c c
= =
o 9

- F

hw
Lock Shared Memory

Wednesday 5 August 15

Compilers

1y Prin q)lxl hn| s,

Topics

\It o V. \!
vi Sethi
kfn w D, Ullm:

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

Wednesday 5 August 15

41

Compilers

1y Prin q)lxl hn| s,

Topics

\It o V. \!
vi Sethi
kfn w D, Ullm:

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compiler and optimisations: proof and/or validation

Wednesday 5 August 15

41

The simplest memory model

sequential consistency

Wednesday 5 August 15

Sequential consistency

...the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program...

Lamport, 1979.

Wednesday 5 August 15 43

Compilers, programmers & sequential

Compilers

Principles, Techniques,
] £ -‘ .

Alfred V. Al;)
Ravi Sethi
Jeffrey D. Ullman

Wednesday 5 August 15

44

Compilers, programmers & sequential

Compllers

Principles, Techniques,

Alfred V. Ah() J,.
Ravi Sethi
Jeffrey D. Ullman

Simple and intuitive
programming model

Wednesday 5 August 15

44

Compilers, programmers & sequential

Compllers

Principles, Te(hmqucs, |

Simple and intuitive
programming model

Expensive
to implement

Wednesday 5 August 15

44

A Case for an SC-Preserving Compiler

Daniel Marino’ Abhayendra Singh* Todd MillsteinT Madanlal Musuvathi* Satish Narayanasamy*
I'University of California, Los Angeles “University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases 1n
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

Wednesday 5 August 15 45

A Case for an SC-Preserving Compiler

Daniel Marino! Abhayendra Singh* Todd Millstein| Madanlal Musuvathi* Satish Narayanasamy*

I'University of California, Los Angeles “University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases 1n
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

EXCESSIVE
OVERHEAD

This study assumes that the hardware is SC:
these numbers are optimistic lower bounds.

Wednesday 5 August 15 46

The layman solution i
orbid data-races

W Ak
- 25 Lot
dr =~ R T . 2 It

ot by +
- .

Data-race freedom

Thread O Thread 1
Our examples again: xy = 1 if *x ==
*x = 1 then print *y

® the problematic transformations
(e.g. swapping the two writes in

Observable behaviour: 0

thread 0) do not change the meaning of single-threaded programs

® the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

Wednesday 5 August 15

48

Data-race freedom

Thread O Thread 1

e | u e |

...intuition...

Programming languages provide
synchronisation mechanisms

if these are used (and implemented) correctly,
we might avoid the issues above...

contlicting ways (e.g. one thread writes the datas read by the other).

Wednesday 5 August 15 48

The basic solution

Prohibit data races

Defined as follows:

Thread 0O Thread 1
*Y = 1] if *w ==
*x =1 then print *y

Observable behaviour: 0

® two memory operations conflict if they access the same memory
location and at least one is a store operation;

® 2 SC execution (interleaving) contains a data race if two conflicting
operations corresponding to different threads are adjacent (maybe

executed concurrently).

Example: a data race in the example above:

W, y=1,W, z=1,R, z=1,R;, y=1,P, 1

Wednesday 5 August 15

49

The basic solution I S

*Y= 1f *x == 1

Prohibit data races N

1
1

then print *y

Observable behaviour: 0

Defined as follows:

The definition of data race quantifies only

over the sequential consistent executions

executed concurrently).

Example: a data race in the example above:

th yzl, Wfl (I:1, sz :L':l, th yzl, Ptg 1

Wednesday 5 August 15 49

HOW dO we GVOid dqtq I'CICGS? (high-level languages)

® Locks

No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l)
calls from other threads balance.

* Atomic variables
Allow concurrent access “exempt” from data races (called volatile in Java).

Example:

Thread O Thread 1
*y = 1 lock();
lock(); tmp = *Xx;
*x =1 unlock();

unlock();

if tmp =1
then print *y

Wednesday 5 August 15

50

HOW dO we GVOid dqtq I'CICGS? (high-level languages)

Thread O Thread 1
*y = 1 lock();
lock(); tmp = *Xx;
*x =1 unlock();
unlock(); if tmp = 1
then print *y

This program is data-race free:

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); 1f tmp=1 then print *y

1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
I

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1
lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1;unlock();

lock();tmp = *x;unlock(); *y = 1; 1f tmp=1; lock(); *x = 1; unlock();

Wednesday 5 August 15

HOW dO we GVOid dqtq I'CICGS? (high-level languages)

®lock(),unlock() are opaque for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

®lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); 1f tmp=1 then print *y

1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
I

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1
lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1;unlock();

lock();tmp = *x;unlock(); *y = 1; 1f tmp=1; lock(); *x = 1; unlock();

Wednesday 5 August 15

51

S | || | -

. . vages)
Compiler/hardware can continue to reorder accesses)

Intuition:
compiler/hardware do not know about threads
but only racing threads can tell the difference! be

®lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); 1f tmp=1 then print *y

1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
I

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1
lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1;unlock();

lock();tmp = *x;unlock(); *y = 1; 1f tmp=1; lock(); *x = 1; unlock();

Wednesday 5 August 15

51

Validity of compiler optimisations,

Transformation SC DRF
Memory trace preserving transformations v v
Redundant read after read elimination 7 v
Redundant read after write elimination e v
Irrelevant read elimination v v
Redundant write before write elimination 7 v
Redundant write after read elimination e v
Irrelevant read introduction v X
Normal memory accesses reordering X v
Roach-motel reordering x (v for locks) v
External action reordering X v

* Optimisations legal only on adjacent statements.

Wednesday 5 August 15

Validity of compiler optimisations,

Transformation SC

Memory trace preserving transformations v

Jaroslav Sevcik

Safe Optimisations for Shared-Memory Concurrent Programs

PLDI 2011

Roach-motel reordering X (v'Tor locks

\

External action reordering X
* Optimisations legal only on adjacent statements.

Wednesday 5 August 15 52

Compilers, programmers & data-race

Compilers

& A 2 2, Principles, Techniques,
maw e e, and Tools = ({33

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman

Wednesday 5 August 15

53

Compilers, programmers & data-race

Principles, Techniques,

Compllers

Can be implemented
efficiently

Wednesday 5 August 15 53

Compilers, programmers & data-race

Compllers

Principles, Te(hmques, |

Intuitive programming
model (but detecting
races is tricky!)

Can be implemented
efficiently

Wednesday 5 August 15 53

Another example of DRF program

Exercise: is this program DRF?

Thread 0O Thread 1

1f *x == 1 1if *xy == 1

then *y =1 then *x = 1

Wednesday 5 August 15

Another example of DRF program

Exercise: is this program DRF?

Answer: yes!

The writes cannot be executed in any SC execution, so they cannot

Thread O

Thread 1

if *x == 1

then *y =1

1f *Y ==]

then *x =

1

participate in a data race.

Wednesday 5 August 15

54

Another example of DRF program

Exercise: is this program DRF?

Data-race freedom is not the ultimate panacea

- the absence of data-races is hard to verify / test (undecidable)
- imagine debugging...

my program ended with a wrong result:
my program has a bug OR it has a data-race

my program ended with a correct result:
my program is correct OR it has a data-race

Wednesday 5 August 15 54

bate 80 battue

pate (bi0), v £ (From asare). To lessen by retrenching, | the whole college socounts; — only in . except adiective-
redoctng, of reduciag; abate bence, to lower, moderate, | 1 To Bave such an account. — Bat'teler. n.
5 VOu "Tas, 80 badeone's breath w4 Towaste awny. Shak bl), v ¢ [ON. dMrng 10 grow better.] To
D be ' s LF.batire de l'aile or des arles.] To beat the rive; grow fat; also, to grow fertide; grow rank. == w. L.
€ vuch o . ings with impaticace; I of 1he fakcon, Bawk, en b:a.'-'u.elml.ullt.-.
- A bath, onipsally of dung { b tanncrs alter 1"len, » {F. bdton stick, stall 1. A strip of sawed
! T b{‘ _">‘_'l le've N_':_: to remove the hae and solten ’ : Lmber, used for foonas, etc. 2 strip of wood used for
| o Wieve) b2 tean’ 2.0, » BATEALX | 1 [(F., fr. OF DALLINE across two other pieces, 1o cover 2 crack, vitlem 2
- Madel, Ir. Saf, fr, AS. bar) (Mefly Canada & Lonimana spar, etc, == . Toflarnish or fasten with battens: as, 0
+ Ga samby A boat . & Sat-bottomed boat with tagering ends batlen wp a house, batten down the Datches — bat"ten-er, »
pat’Ssh’ (bItTTsh), n [From nar the animal] Any of | bat"ter (bitTe), v t. [OF. batre, batire. The Ene. woed
as a peculiar pediculate fab (Ogcocephaling is prob. un part freq. from & osnke) 1. To beat with
veageriilne a in the West Infoes, the yving pur successve Dlows; beat 20 aa to brune, sBatter, or demelish
sard (Dactplepterws volitans) of the Athaatic, and a | 2. To wear or impair as by hard wsage. ==v.1. To b
o OF Its W - Cabfornian sUSE T8 (Aetobatis californicur) y repeatedly, oo with violence - 1 A semibau
a S. baw dof. Phloe | patfowl’ (foal, v 8 [From mar a stick T'o capture | mixtuce, &3 for cake or boscult, of flour, hayld, etg
certain s2rong woody T sards At paghl by driving them toward a heht, where they Frant '\ bruise oo the face of a plate or of pe ia the
1 are oetted bat"fowl'er, n. — bat'towl'iag. n form; alse, the [aces or Lipe w0 injared
path (bhth; 9, » . marms (Bdvh) AS Barth]l 1. Act Nl'lfl v.o. & L To skeoe sently backward. as 2 wall or
of subsecting the body, or part of it, clcanhiness, ¢ (B¢ Lke, ==n A= izward .,AI\.': sope of the outer Sace
foet. health, €tc., 1o water, vapor, Dot air, ssud, or the hike | of & wall, wiually with & dimisiabing thickaos
'3 Water or other madiuam for bathing 3. Any d | bat"ter, n. Osze who wiclds a bat: 2 batsmman
n whh obiects are immersed 30 that It may act upon | Batlerdag-ram’, n. M/ An engee of astiquity usually
thers : abvo, the receptacle bolding the hquid. 4. State of | comaistis { » huge irea tipped
seing covered with & fead, as sweat. SAak A place ted or Bung » 2 o
where persons may bathe: Cellog., a bathrcom. 6, A re- | sacd Lo 1
sacle for water ia which to bathe. 7. A buldina ar
f , 5. as i apartments, for bathing: alse (ese. in 34), the
I ' B laborate establobanents of antiguty: as, the Barhs of
bast é * lochetian at Rome. 8. Chem , ofe. A modium, as water
viar 1-“'!1" aur, sand, or oll, for regulatiag Lhe temperatuse of anythung
! placed ia or weoa it also, the vessel containiog sech |

|

.

i
A
ik

:
L]
'

—

i
i
&)
» l‘.‘

it
it
L
";k
i
it

{2 pex

\
}

.
¥

several !

‘.

tH
15t
1

L e el T

l

-~ ‘?—‘wl;»v:-n;‘~ ——

B

-

"
- -

3"

Duriees

Mg, W, Action of one who Saite o the surface. < bath'c-Hth™e ¢ INOVTEY, “It"le CTRAES
YOS, » LG, batAos d

PAT \ir) n (F, fe lay) SASTR
by e Bef b0 1P w , » 8 /4 snches Jooscly . abho, the threa d; tackiee ba-thom'e (\'! Sa.thte

{ s wier ow rehed. See
:.'. :’n;.-. sond vork] N v 2 bow e bas'tiom (hla'chén; bivil.s . (F., fr. I Batinng
Boss Adw. % oL ast semetimes nasss (3 T 30 | £ basfia basthn e 4

o PLIRAL, Yele wrsot of drwperd i AS Segrs, | Dus) A\ N
—_aaeTT o : S AX; comedown battle ery

Poves MNurie .:zb'z-o fasks. ~bas’tioned \ batdk'y i’ (bathys deep) A comd 2| '

D Awy o vumer (<hiad), o) ' 4 meating deep ! deno 2, specil, the sea depihs,
tat !Jx' . [AS. datr) 1. A g bath’y-sphere od of diving sphere for deey
sloch, soiud stck; 2 club; a ¢club serval | study
one ead thicker or broader tha ; o ba'tik TR, battik (b,

] ;Ar wsed 23 Baseball, cncket, et baluk ol of executing collor desiena, as «
: ! B MM pames, 3 racket 3. ! Y Sy coating with wazx parts not to be yed; abso denig ‘ . me
Letmnentied Back Baa (M) ::ch-e, iqu&all‘ elc, & bats=an ‘ executed fabne so decorated. — ba'tik, v ¢ battle cruiser
Sans ey Soridene, the | Batfer;abo, act of or turn at Batting T bat’ing ' prep. Wik the exception of ; excep] the high
small men t Ao Mack hase l:"rau dolomion), | 4 A o, phece, mass, or wa . ba-tiste’ st " 1 fabwic Ul wal
ol e striped bave Kocons seralin ofcarorphster. 6. Ussally baer. y ba ‘ton’
S0 (e bone . | Cotaon batting of & poor grade ured Aol
F. om0t boawe] 1 A bass oe | Jor Alag mattresses, etc ; — usuall - of ofice end wi ads cut off bor 91 ! - P
wie & The lownst st in &’l 8. Collag. A stroke; a shasp : sinislerwise as k of bastandy Muse ' B T shutthecex Batth-
B0 b 2l vnce wepag srd " ;lhﬁ.ru(olm:-b\c.';.z! 7 ITain or wasd with whic lead " e, &3 for an orch i . l‘-.:".‘ ol LR on ares
.'"‘f::i 1156, To stril . ba-tre f“'."","] 1 bat’tle-ment (-miat), » (ME. datilment, batelment
with 2 i BATCTING 0 sirike or dat with e ¢ W . SNKRp A parapet with open spaces, surmounting the walls
‘lonhl.—v . To use a bat, as in baschal: et I an - narrowly, salientian ba-tra’chian, » ot fortibed baibdines. later
|08l n. (Corrypt. fr. ME dakke, appar. of S¢ a) b all, cncket, et cci., one whose turs it is 1o ba S bat'tle-ment. oty
| "Asy of 3 order (Ciroo- » appar. of Scasd. origa . CAC SDecH., Gae 1 _ bat’Ue-ment.ed (méo

.:;‘O The sutcropgiag | ::,.’ g:lxcau] T ". bat"tall.ous (L3'1-10s), od; bataill Archaic. | patitle-plane’ (plish. »
) -l i g their fore (~ \ Arrayed or caper 3 ‘ fast '}”,‘- powered military
Seone: ‘MM '.‘k !'“\(1‘;01! |Ir;”"')]'-.‘ = J g ¥ _-\/ bat-ta'tia (haarilty yi«thlyd), | battaplra nﬂ'x"Anf‘ mousting & gun or *
only -~ batialia e ¢ 14 rder ol .| !
mﬂimﬁc of trye 3 -'/*t/ 2 Obs, A mar army or armed ¢ b;;'l‘le shdp’ ¢shlp’), m. Nagp, “"W¥
R (AS. 3o . bat.tal"ton (bd.ei¥yian), ' lom, fr One of aclag of the largest and Batdements. 4, 4 Merbons:
£1 1 The Dot (s rebetarh. (M9 Vi o i e orapeied (o uct tamrtiry o oy farotn: | et v e i RN
of bread baked at cne time 2 A qmrgd 3. Mil. A tactical unit, as of a beadauarters and two or | Bat.tue’ AI18Y: biaF: F. bi'ti). n (F., fr. battve to
OF ODE OPeration, as of dough for 4 baking. 3.4 IOCe Companics beat] 1. Hunting. Act of beating woods, bushes, otc.,

gmd Al oae operalion; group takes 8o Bat'tel (bEt"'l), n. Oxford Univ., Eng. College accounts | for game; act of capturing game »o drives. 2. Waates
i 48, & baded of detters. for provisons from the kitchen and buttery; also, loosely, | slaughter, as of belpless crowds

(7), dvent, Sod, 'd_i-nt, makér; ice, B ;tnu; Ko sog; thes, thin; oatlre, verdle (115); x mch ia G, ieh, ach; bon; yet; zh = x in axure,
ol; clibe, Qoite, Gm, Up, coctis, mobk Numbere refes 1o §) ls Galde to Precunciation. Exglanstions of Abbreviations, cic., preoede Vocabulary. | Foreige Weed,

wasuring depths |

N'lh;‘)\ bi’this), » pth.) l.-‘.;:,.‘v’- .

¥, lalse pathos

bat'tle . ON

bat'tie-ax’, bat'tle-axe’, n

e th
' | aht

bat'tiedore (A3t"Ld3r; T, n. [Aggpar. fr. Pr !

Mo tod ng.] A lieht U

Wednesday 5 August 15 55

Option 1

Don't.

No concurrency.

Implemented by highly-successful programming languages (OCaml)

Poor match for current trends

Wednesday 5 August 15

56

Option 2

Don't.

No shared memory

A good match for some problems (see Erlang, MPI, ...)

Wednesday 5 August 15

57

Option 3

Don't.

But language ensures data-race freedom

Possible:
- syntactically ensuring data accesses protected by associated locks

- fancy effect type systems (don’t miss Pottier’s lecture on Friday)

Not suitable for general purpose programming.

Wednesday 5 August 15

58

Option 4

Don't.

Leave it (sort of) up to the hardware

Example:

MLton, a high performance ML-to-x86 compiler with concurrency
extensions

Accesses to ML refs exhibit the underlying x86-TSO behaviour
(atomicity is guaranteed though)

Wednesday 5 August 15

59

Option 5

Do.

Use data race freedom as a definition

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way

Sarita Adve & Mark Hill, 1990

e/

Wednesday 5 August 15 60

Option 5

Do.

Use data race freedom as a definition

Pro:
- simple
- strong guarantees for most code
- allows lots of freedom for compiler and hardware optimisations

Cons:
- undecidable premise
- can't write racy programs (escape mechanisms?)

Wednesday 5 August 15

61

Ada 83

[ANSI-STD-1815A-1983, 9.11] For the actions performed by a program that uses shared

variables, the following assumptions can always be made:

* If between two synchronization points in a task, this task reads a shared variable
whose type is a scalar or access type, then the variable is not updated by any other
task at any time between these two points.

* If between two synchronization points in a task, this task updates a shared variable
whose task type is a scalar or access type, then the variable is neither read nor
updated by any other task at any time between these two points.

The execution of the program is erroneous if any of these assumptions is violated.

Data-races are errors

Wednesday 5 August 15

62

Posix Threads Specification

[IEEE 1003.12008, Base Definitions 4.11] Applications shall ensure that access to any
memory location by more than one thread of control (threads or processes) is
restricted such that no thread of control can read or modity a memory location while
another thread of control may be modifying it.

Data-races are errors

Wednesday 5 August 15

63

C++ 2011 / Clx

[C++ 2011 FDIS (WG21/N3290) 1.10p21] The execution of a program contains a
data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results

in undefined behavior.

Data-races are errors

Wednesday 5 August 15

64

C++ 2011 / Clx

[C++ 2011 FDIS (WG21/N3290) 1.10p21] The execution of a program contains a
data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results

in undefined behavior.

How to use C/C++ to implement
low-level system code?

Data-races are errors

64

Wednesday 5 August 15

Escape lanes
for expert programmers

Low-level atomics in C11/C++11

std: :atomic<int> flag@(@),flagl(@),turn(d);
void lock(unsigned index) { \
1f (0 == index) { . . .
flag0.store(l, std::memory_order_relaxed); Atomic variable declaration

turn.exchange(l, std::memory_order_acq_rel);

while (flagl.load(std: :memory_order_acquire)
& 1 == turn.load(std: :memory_order_relaxed))
std: :this_thread: :yield(Q);
} else {

flagl.store(1l, std::memory_order_relaxed); New s)lnl'qx
turn.exchange(@, std::memory_order_acq_rel);

for memory accesses
while (flag@.load(std: :memory_order_acquire)
&& 0 == turn.load(std: :memory_order_relaxed))

std: :this_thread: :yield();
}
}

void unlock(unsigned index) { Qualiﬁer
1f (@ == 1index) {
flag@.store(@, std::memory_order_release);
} else {

flagl.store(@, std::memory_order_release);

h
¥

Wednesday 5 August 15

66

The qualifiers

MO SEQ CST

MO RELEASE / MO _ACQUIRE

MO RELEASE / MO CONSUME

MO RELAXED

LESS RELAXED

MORE RELAXED

Wednesday 5 August 15

67

The qualifiers

MO SEQ CST

MO RELEASE / MO _ACQUIRE

MO RELEASE / MO CONSUME

MO RELAXED

LESS RELAXED

Sequential consistent accesses

MORE RELAXED

Wednesday 5 August 15

67

The qualifiers

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

MO RELEASE / MO CONSUME

MO RELAXED
MORE RELAXED

Wednesday 5 August 15 67

The qualifiers

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

MO RELAXED

MORE RELAXED

Wednesday 5 August 15 67

The qualifiers

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

MO_RELAX| No synchronisation; direct access to hardware I

MORE RELAXED

Wednesday 5 August 15 67

MO_SEQ_CST

The compiler must ensure that MO SEQ CST accesses have
seguentially consistent semantics.

Thread O Thread 1

X.store(1l,MO SEQ CST) y.store(1l,MO SEQ CST)
rl = y.load(MO SEQ CST) | r2 = x.load(MO SEQ CST)

The program above cannot end withrl = r2 = 0.
Sample compilation on x86: Sample compilation on Power:
store: MOV; MFENCE store: HWSYNC; ST

load: MOV load: HWSYNC; LD: CMP; BC:; ISYNC

Wednesday 5 August 15

MO_RELAXED

MO_RELAXED accesses can be reordered by compiler/hardware

Thread O

Thread 1

X.store(1l,MO RELAXED)
rl = y.load (MO RELAXED)

y.store(1l,MO RELAXED)

r2 =

x.load (MO RELAXED)

The program above canend withrl = r2 = 0.

Sample compilation on x86: Sample compilation on Power:

store: MOV store: ST
load: MOV load: LD

Wednesday 5 August 15

69

MO_RELEASE / MO_ACQUIRE

Supports a fast implementation of the message passing idiom:

Thread O Thread 1

Xx.store(1l,MO RELAXED) rl = y.load(MO ACQUIRE)
y.store(1l,MO RELEASE) r2 X.load (MO RELAXED)

The program above cannotend withrl = 1 and r2 = 0.
Accesses to the data structure can be reordered/optimised (MO RELAXED,).

Sample compilation on x86: Sample compilation on Power:

store: MOV store: LWSYNC; ST
load: MOV load: LD; CMP; BC; ISYNC

Wednesday 5 August 15 70

MO_RELEASE / MO_CONSUME

Supports a fast implementation of the message passing idiom on Power:

Thread O Thread 1

X.store(1,MO RELAXED) 1 rl = y.load(x,MO CONSUME)
y.store(&x,MO RELEASE) r2 = (*rl).load(MO RELAXED)

The program above cannotend withrl = 1 and r2 = 0.

The two loads have an address dependency, Power won't reorder them.

Sample compilation on x86: Sample compilation on Power:

store: MOV store: LWSYNC; ST
load; MOV load: LD

Wednesday 5 August 15 71

e ¢y p— — N — p—
. «! |

ot ot e | WY SRS WS) W W — e
R |

The C11/C++11 memory model formalisation

[demo]

e { } = -

l | |
: l

l

| I

! I

|

l P

s

l >

| ..

1

Wednesday 5 August 15

72

...what about reasoning?

v

Wednesday 5 August 15

73

Compilers

1y Prin q)lxl hn| s,

Topics

\It o V. \!
vi Sethi
kfn w D, Ullm:

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compilers and optimisations: proof and/or validation

Wednesday 5 August 15

74

Compilers

1y Prin q)lxl hn| s,

Topics

\It o V. \!
vi Sethi
kfn w D, Ullm:

1. Formalisation of hardware memory models

2. Design and formalisation of programming languages

3. Compilers and optimisations: proof and/or validation

Wednesday 5 August 15

74

CompCertlISO

Idea: the programming language faithfully mimics the processor model.

THE

= The C-TSO programming language:
o TS0O acC-like language with a TSO semantics

PROGRAMMING for memory accesses.
LANGUAGE _

A semantic preserving compiler
CompCertTSO
building on CompCert 1.5

Intel processors implement the x86-TSO MM

Wednesday 5 August 15 75

CompCertlISO

CompCert 1.5 proves that all behaviours of the source program are
behaviours of the compiled program (building simulation relations).

The converse follows from determinacy of the semantics.

Problem: in CompCertTSO the semantics is not deterministic...

CminorSel

Machconc |——) x86

CFG generation

Wednesday 5 August 15 76

Semantic engineering

Proof sketch

Want: whole-system upward simulation
Have: Leroy's per-thread downward simulations
1. replace implicit memory accesses with explicit labels

ol 2. port Leroy's proof to the labellised semantics

« surprisingly easy for many phases
« tedious for explicitly small-stepped phases (could not reuse CompCert's proof)

{ 3. Turn per-thread downward simulations to per-thread upward simulations

4. Turn per-thread upward simulations to whole-system upward simulations

5 C th hol 1 If R is a threadwise downward simulation from S to T, S is
- LOMPOsSE hE WNOIE SyStem L recep- tive, and T is determinate, then there is a threadwise

upward simulation that contains R.

77

Wednesday 5 August 15

Semantic engineering

Want: w

Have: L{ ClightTSO small-step semantics

has about 90 reduction rules
1. repla

0] 2. port L . . —y
How to formalise programming language definitions?

* surpl
e tedic

3. Turn y

4. Turn per-thread upward simulations to whole-system upward simulations

If R is a threadwise downward simulation from S to T, S is
recep- tive, and T is determinate, then there is a threadwise
upward simulation that contains R.

5. Compose the whole system

Wednesday 5 August 15 77

The Ott tool Complement to LEM, specialised for formalising
programming language definitions and semantics.

--- 1 Assign
vli.[(pl:tyl)= __].k lenv --mem(write pl c v2)--> skip.k lenv

Latex
type_to_chunk {y; = Some c

cast_value_to.chunk ¢ v = »
STEPASSIGN

o - [p1 tyl:_] « K |p mem (write p; cvz)) Skip g Ip

Proof assistant

| StepAssign : forall (vl:val) (pl:pointer) (tyl:type) (k:cont) (env:env)
(c:memory chunk) (v2:val),
type to chunk tyl = Some ¢ ->
cast value to chunk ¢ vl = v2 ->
cl step (SKval vl env (EKassign2 (Vptr pl) tyl k)) (TEmem (MEwrite pl c
(SKstmt Sskip env k)

Wednesday 5 August 15 78

The Ott tool Complement to LEM, specialised for formalising
programming language definitions and semantics.

ClightTSO is formalised in Ott 5::;;{51-@3& Assign
we get an interpreter as a biproduct

L atex

cast_value_to.chunk ¢ v = »

STEPASSIGN

o - [pl ty =—] g Ip mem (write p; ¢ '02)> Skip g |p

Proof assistant

| StepAssign : forall (vl:val) (pl:pointer) (tyl:type) (k:cont) (env:env)
(c:memory chunk) (v2:val),
type to chunk tyl = Some ¢ =->
cast value to chunk ¢ vl = v2 ->
cl step (SKval vl env (EKassign2 (Vptr pl) tyl k)) (TEmem (MEwrite pl c
(SKstmt Sskip env k)

Wednesday 5 August 15 78

CompCertTSO

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l«

Cminor

instructionlselection

CminorSel

CFG generation

RTL

l const prop.

RTL

[o

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—) x86

[POPL 2011]

Wednesday 5 August 15

79

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l,

Cminor

instruction\l:selection

CminorSel

CFG generation

RTL

»l« const prop.

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—)

x86

SAS 2012

Wednesday 5 August 15

80

Example of fence elimination in action

FENCE FENCE nop

PRE FE2 nop

AL A

if if if

lfso ifnot

lfso ifnot
nop nop nop FENCE

FENCE

store

l

return

FENCE

store

return

return

Wednesday 5 August 15

81

Example of fence elimination in action

FENCE FENCE nop

Proof of correctness requires a
novel bisimulation-based proof technique
(need to guess if “in the future” a fence instruction will be executed).

nop nop nop FENCE nop FENCE
return store return store return

FENCE

FENCE

nop

Wednesday 5 August 15

(o b I
—
—
O
e
-
O
-Q
O
e
O
>

Wednesday 5 August 15

Shared memory

1nt a =
1nt b =

Thread 1 Thread 2

int s; b = 42;
for (s=0; s'=4; s++) { printf("%d\n", b);
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Can you guess the output?

Wednesday 5 August 15 83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
0,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
0,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

83

Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s'=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b

Wednesday 5 August 15

83

Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b

Thread 2 is not affected by Thread 1 and vice-versa

Wednesday 5 August 15

83

Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b

Thread 2 is not affected by Thread 1 and vice-versa

C11 states that this program must print 42

Wednesday 5 August 15

83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

83

Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 5 August 15

84

Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s'=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

gcc 4.7 -O2

...sometimes we get @ on the screen

Wednesday 5 August 15

84

int s;
for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

Wednesday 5 August 15

85

int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %

Wednesday 5 August 15

int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

gcc 4.7 -O2
¥

The outer loop can be (and is) optimised away

movl Db(%rip), %ebx # load b into ebx

testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2

movl %ebx, b(%rip) # store ebx into b
xorl %eax, %eax # store 0 into eax

ret # return

Wednesday 5 August 15

85

int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %

Wednesday 5 August 15

int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %

Wednesday 5 August 15

int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 7 jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %

Wednesday 5 August 15

int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H Sk

Wednesday 5 August 15

int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
xorl S%eax, %eax
ret

H* H Ik

Wednesday 5 August 15

The compiled code saves and restores b

Correct result in a sequential setting

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H Sk

Wednesday 5 August 15

Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n"

, b);

Wednesday 5 August 15

86

Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax

Wednesday 5 August 15

86

Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax
- Read b (@) into ebx

Wednesday 5 August 15

86

Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax

- Read b (@) into ebx
- Store 42 into b

Wednesday 5 August 15

86

Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
movl a(%rip),%eax b = 42;
movl b(%rip),%ebx printf("%d\n", b);
testl %eax, %eax
jne L2
movl $0, b(%rip)
ret
L2: - Read a (1) into eax
movl %ebx, b(krip) - Read b (@) into ebx
)r'(ce)zl reax, %eax - Store 42 into b

- Store ebx (@) into b

Wednesday 5 August 15 86

Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip),%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax

- Read b (@) into ebx

- Store 42 into b

- Store ebx (@) into b
- Print b: @ is printed

Wednesday 5 August 15

86

The horror, the horror... a subtle compiler bug!

Wednesday 5 August 15

Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random %
Generator

C prong\

clang -03

w)lts l

- e
< — vote
ﬁ majority

minority

Wednesday 5 August 15 88

Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random @

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

vidllig “Vv vidilyg Vo ses

w)lts 1 /

a e
ﬁ< — vote
majority

minority

Wednesday 5 August 15 88

Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random (@Q

Reported hundreds of bugs

Cannot catch
concurrency compiler bugs

"=

«—vote ————
majority minority

— s - N
< O
O\ _ y
A O
0 t " >
J l N

Wednesday 5 August 15

Hunting concurrency compiler bugs?

How to deal with hon-determinism?

How to generate non-racy interesting programs¢

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:

how to test for correctness?
limit case: two compilers generate correct code with disjoint final states

Wednesday 5 August 15

89

ldea

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

\

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Hunt concurrency compiler bugs

search for transformations of sequential code
not sound in an arbitrary non-racy context

Wednesday 5 August 15

90

Random % SEQUENTIAL

—>
Generator PROGRAM

optimising
compiler
under test

reference

semantics
EXECUTABLE
tracing
REFERENCE
MEMORY p > MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

Wednesday 5 August 15

91

Soundness of compiler optimisations
the C11/C++11 memory model

Wednesday 5 August 15] 92

Elimination of overwritten writes

b l Under which conditions is it
correct to eliminate the first store?

Store g 2

Wednesday 5 August 15

93

A same-thread release-acquire pair is a pair of
a release action followed by an acquire action
in program order.

An action is a release if it is a possible source of a synchronisation

unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read

Wednesday 5 August 15 94

Elimination of overwritten writes

Store g 1 It is safe to eliminate the first store
sb l if there are:

no access to g
1. no Intervening accesses to g

2. no intervening
© 1 same-thread release-acquire pair

no st rel/acq pair

Store g 2

Wednesday 5 August 15

95

The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1
g =1;
fl.store(1,RELEASE);

while(f2.1load(ACQUIRE)==0);
g = Z;

Wednesday 5 August 15

96

The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 candidate overwritten write
g =1;

fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);

g = Z;

Wednesday 5 August 15

96

The soundness cond

ition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 candidate overwritten write

g =1;
fl.store(1,RELEASE); <

while(f2.load(ACQUIRE)=
g = 2,

0. = same-thread release-acquire pair
=4);

Wednesday 5 August 15

96

The soundness condition

g =0,

Thread 1

g =1;
fl.store(1,RELEASE);

while(f2.1load(ACQUIRE)==0);

g = 2;

Shared memory

atomic fl1l = f2 = 0;

Thread 2

while(fl.1load(ACQUIRE)==0);
printf(“%d”, g);
fZ2.store(1,RELEASE);

Wednesday 5 August 15

97

The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° /) ,
f1:StOFe<1,RELEASE), printf(“%d”, g);

f2.store(1,RELEASE);

Thread 2 is non-racy

Wednesday 5 August 15 97

The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g =1; SyNGC while(f1.1load(ACQUIRE)==0):
fl.store(1,RELEASE);

f2.store(1,RELEASE);

Thread 2 is non-racy
The program should only print 1

Wednesday 5 August 15 97

The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g=1; synS_, while(f1.1load(ACQUIRE)==0):

fl.StOFG(l,RELEASE); printf(“%d” g).

Thread 2 is non-racy
The program should only print 1

If we perform overwritten write elimination it prints @

Wednesday 5 August 15

97

The soundness condition

g =0,

Thread 1

g =1;
fl.store(1,RELEASE);

while(f2.1load(ACQUIRE)==0);

g = 2;

Shared memory

atomic fl1l = f2 = 0;

Thread 2

sy while(fl.load(ACQUIRE)==0);

printf(“%d”, g);
fZ2.store(1,RELEASE);

Wednesday 5 August 15

98

The soundness condition

Shared memory

g = 0; atomic f1l = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° /) ,
fl.StOFG(l,RELEASE), printf(“%d”, g);

, fZ2.store(1,RELEASE);
g = ¢,

Wednesday 5 August 15

98

The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° /) ,
fl.StOFG(l,RELEASE), printf(“%d”, g);

2 Jata race f2.store(1,RELEASE);
g = 2;

If only a release (or acquire) is present, then
all discriminating contexts are racy.
It is sound to optimise the overwritten write.

Wednesday 5 August 15

98

Eliminations: bestiary

Store g vi Store g vi Store g v Read g v

NN

no access to g no access to g no access to g no access to g no access to g

no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair

L]

Store g vz Store g w1 Read g v Read g v Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

Wednesday 5 August 15 99

Also correctness statements for

reorderings, merging, and introductions of events.

Store g vi Store g vi Store g v Read g v
sb l Sbl sb sbl sbl
\
no access to g no access to g no access to g no access to g no access to g
no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair
sb l sbl sbl sbl sbl

Store g vz Store g w1 Read g v Read g v Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

Wednesday 5 August 15 99

From theory to the Cmmtest tool

Random % SEQUENTIAL

—>
Generator PROGRAM

optimising
compiler
under test

reference

semantics
EXECUTABLE
tracing
REFERENCE
MEMORY —> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

Wednesday 5 August 15 101

and

CSmith
extended with locks

SEQUENTIAL
PROGRAM

atomics optimising
compiler

under test

reference

semantics

EXECUTABLE

tracing

REFERENCE

MEMORY p > MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

Wednesday 5 August 15

101

extend(écstlr:/]\j??h locks SEQUENTIAL
: PROGRAM o
and atomics optimising
compiler

under test

reference

semantics

EXECUTABLE

binary
Instrumentation
REFERENCE

MEMORY —> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

Wednesday 5 August 15 101

extend(écstlrc\;t?h locks SEQUENTIAL
: PROGRAM o
and atomics optimising
compiler

under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary . |
instrumentation | binary |
INnstrumentation

REFERENCE

MEMORY MEMORY

M
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context

Wednesday 5 August 15 102

CSmith
. SEQUENTIAL
extended W|th locks |m—p PROGRAM o
and atomics optimising
compiler

under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary .
instrumentation | binary | |
Instrumentation

REFERENCE

MEMORY MEMORY

TRACE E 3 TRACE
OCaml tool

1. analyse the traces to detect eliminable actions
2. match reference and optimised traces

Wednesday 5 August 15 102

const unsigned int g3 = QUL;
long long g4 = 0Ox1;

int go = 6L;

volatile unsigned int g5 = 1UL;

void func_1(void){
int *18 = &go;
int 136 = Ox5E9DO70OFL;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
gS5++;
int *1102 = &136;
for (g6 = 4; g6 < (-3); g6 += 1);
1102 = &gb6;
*¥1102 = ((*18) && (1107 << 7)*(*1102));

Start with a randomly generated well-defined program

Wednesday 5 August 15 103

const unsigned int g3 = @QUL; void func_1(void){

long long g4 = Ox1; int *18 = &go;

int gb = oL; int 136 = Ox5E9DO70OFL;

volatile unsigned int g5 = 1UL; unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
go++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

Wednesday 5 August 15 103

void func_1(void){

Init g3 0 int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70OFL ;
FTP 9 unsigned int 1107 = OxAA37C3ACL;
Init g5 1 g4 &= g3;
Init g6 6 g5++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

Wednesday 5 August 15 103

void func_1(void){

Init g3 0 int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70OFL ;
FTP 9 unsigned int 1107 = OxAA37C3ACL;
Init g5 1 g4 &= g3;
Init g6 6 g5++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

reference ¥
semantics

Load g4 1
Store g4 0
Load g5 1
Store g5 /2
Store go 4
_.oad gb 4
_.oad gb 4
_.oad gb 4
Store go 1
Load g4 0

Wednesday 5 August 15 103

reference
semantics

Load

Store
Load

Store
Store
_oad
_oad
_oad

Store
Load

g4
g4
g>

S e e i i I B S

void func_1(void){
int *18 = &gob;
int 136 = Ox5E9DO70OFL ;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
g5++;
int *1102 = &136;
for (go = 4; g6 < (-3); gb += 1);
1102 = &go;
*¥1102 = ((*18) && (1107 << 7)*(*1102));

h
‘{”,ff”’~\\‘\\\\§‘gcc—CIZrnenumyfnace

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0

Wednesday 5 August 15

103

reference
semantics

RaW*
RaW*

~OW*

t» RaW*
:'.l'v RAR*
x RaR*

RaW*

Load

Store
Load

Store
Store
_oad
_oad
_oad
Store
Load

g4
g4
g>

S e e i i I B S

void func_1(void){
int *18 = &gob;
int 136 = Ox5E9DO70OFL ;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
g5++;
int *1102 = &136;
for (go = 4; g6 < (-3); gb += 1);
1102 = &go;
*¥1102 = ((*18) && (1107 << 7)*(*1102));

h
‘{”,ff”’~\\‘\\\\§‘gcc—CIZrnenumyfnace

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0

Wednesday 5 August 15

103

void func_1(void){

Init g3 0 int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70OFL ;
FTP 9 unsigned int 1107 = OxAA37C3ACL;
Init g5 1 g4 &= g3;
Init g6 6 g5++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

reference }
semantics gcc -O2 memory trace

—RaW*—tLoad—gé4—1
Store g4 0 >

RaW* Load g5 1 Load g5 1

Store g5 2 Store g4 0

~OW*—Store—g64—— Store go 1

érRaWi—Eeeé——g64 Store g5 2

' RaR* Load 564 Load g4 0
* RoR* _Load—_g6_4
Store go 1

RaW* Load g4 0

Wednesday 5 August 15 103

void func_1(void){
Init g3 0 int *18 = &g6;

Can match applying
only correct eliminations and reorderings

b

reference }
semantics gcc -O2 memory trace

—RaW*—tLoad—gé4—1
Store g4 0 >

RaW* Load g5 1 Load g5 1

Store g5 2 Store g4 0

~OW:—Store—g64—— >tore go 1

o RaW*Load—g6-4 Store g5 2

' RaR* Load 564 Load g4 0
" RaR*_Load 6.4
Store go 1

RaW* Load g4 0

Wednesday 5 August 15 103

int a = int s;
int b = 0; for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

=

If we focus on the miscompiled initial example...

Wednesday 5 August 15 104

int a = int s;
int b = 0; for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

=

Wednesday 5 August 15 104

int a = 1; int s;
int b = 0; for (s=0; s'!'=4; s++) {
if (a==1)
return NULL;
for (b=0; b>=26; ++b)
}
reference
semantics

Load a 1

Wednesday 5 August 15 104

int a = 1; int s;
int b = 0; for (s=0; s'!'=4; s++) {
if (a==1)
return NULL;
for (b=0; b>=26; ++b)
¥
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
Load b O

Store b 0

Wednesday 5 August 15 104

Cannot match some events — detect compiler bug

}
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
Load Db 0

Store b 0

Wednesday 5 August 15 104

Applications

Wednesday 5 August 15 105

1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found
in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.

Wednesday 5 August 15 106

2. Checking compiler invariants

GCC internal invariant: never reorder with an atomic access

Baked this invariant into the tool and found a counterexample...

atomic_uint a;

int32_t gl, gZ;

AlL.oad
AlL.oad
Load

Store

a
a
gl
g2

o O O O

...not a bug, but fixed anyway

int main (int, char *[]) {
a.load() & a.load Q);

g2 =gl '= 0;
¥
O--___ _ _o Load gl O
°‘~f2r’j§‘"° Aload a 0
- ~T--0 ALoad a 0
O-——=—-=—===- -0 Store g2 O

Wednesday 5 August 15

107

3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); —> g=0;

Correct or not?

Wednesday 5 August 15 108

3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); —> g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g 0) : (Store g 0

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

Wednesday 5 August 15 109

3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); —> g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g 0) : (Store g 0

False positives in Thread Sanitizer

Wednesday 5 August 15 109

The formalisation of the C11 memory model
enables compiler testing... what else?

Wednesday 5 August 15

Proving the correctness of mappings for atomics
hitps://www.cl.cam.ac.uk/ ™ pes20/cpp/cppOxmappings.html

C/C++11 Operation

ARM implementation

Load Relaxed:

Idr

Load Consume:

Idr + preserve dependencies until next kill_dependency
OR

Idr; teq; beq; isb

OR

Idr; dmb

Load Acquire:

1dr; teq; beq; isb
OR
Idr; dmb

Load Seq Cst:

Idr; dmb

Store Relaxed:

str

Store Release:

dmb:; str

Store Seq Cst:

dmb; str; dmb

Cmpxchg Relaxed (32 bit):

_loop: ldrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop

Cmpxchg Acquire (32 bit):

_loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; isb

Cmpxchg Release (32 bit):

dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop;

Cmpxchg AcgqRel (32 bit):

dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, mewval, [rptr]; teq rres, 0; bne _loop; isb |

Cmpxchg SeqCst (32 bit):

dmb; _loop: Idrex roldval, [rptr]; mov rres, O; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; dmb

Acquire Fence:

dmb

Release Fence:

dmb

AcqRel Fence:

dmb

SeqCst Fence:

dmb

Wednesday 5 August 15

111

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

' G
while (flag.load(acquire)) BN m “ a

1}

’

. Loop
ldr ro, [ri]
dmb 1sh

bnz .loop

4‘.100p

ldr ro, [ri]

bnz .loop
dmb 1sh

Wednesday 5 August 15 112

Take-up in Industrial Concurrency Community?

handled the real behaviour - found some bugs - published some papers

* Fixed up ISO C/C++11 Standard

Standard text and our maths in sync

* Fixed and verified C/C++11 to POWER compilation scheme
compilers have to agree on this

* Clarified POWER and ARM architectural intent
ongoing dialogues with the architects

* Found concurrency bugs in gcc, proposing optimisation schemes
ongoing dialogue with gcc developers

Wednesday 5 August 15 113

The memory models of modern
hardware are better understood

Programming languages attempt
to specify and implement
reasonable memory models.

Researchers and programmers
are now interested in these
problems.

Wednesday 5 August 15

114

The memory models of modern
hardware are better understood

Still, many open problems...

G problems.

)

Wednesday 5 August 15 114

The memory models of modern
hardware are better understood

Still, many research opportunities!

)

problems.

Wednesday 5 August 15

114

Thank you! Questions?

Wednesday 5 August 15

