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Abstract
We show how partial redundancy elimination (PRE) can be in-
stantiated to perform provably correct fence elimination for multi-
threaded programs running on top of the x86, ARM and IBM Power
relaxed memory models. We have implemented our algorithm in
the backends of the LLVM compiler infrastructure. The optimisation
does not induce an observable overhead at compile-time and can
result in up-to 10% speedup on some benchmarks.

Keywords Compiler optimisations, Shared-memory concurrency,
Weak-memory models

Categories and Subject Descriptors C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: Parallel Processors; D.3.4 [Pro-
gramming Languages]: Optimization; F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]

1. Motivation for backend fence elimination
Modern multicore and multiprocessor architectures exhibit relaxed
memory, exposing behaviour that arises from hardware optimisa-
tions to the programmer. Each architecture defines its own mem-
ory model, stating precisely which writes can be observed by each
read. Memory models can be as simple as x86-TSO, that governs
the x86 multiprocessors, in which only thread-local write-buffers
can be observed [20], or as complicated as those of ARM and IBM
Power multiprocessors, in which writes propagates to different pro-
cessors in different orders [18]. In addition, each architecture offers
different primitives with different semantics to impose constraints
on relaxed behaviours.

The C11 and C++11 standards attempted to provide a lan-
guage design that enables portable concurrent programming. In
C11/C++11 programs that exhibit racy memory accesses are un-
defined while well-synchronised ones must exhibit only sequen-
tially consistent (e.g. interleaving) behaviours. It is well known
that this design can be implemented efficiently as it enables a
wide range of compiler and backend optimisation [24]. However,
to enable the implementation of portable low-level concurrent al-
gorithms, the C11 and C++11 standards also introduce an escape
mechanism called low-level atomics: low-level atomic accesses
do not race with each other and have their semantics specified
by a memory order attribute. The memory order attributes come

in several strengths. The seq cst attribute requires the compiler
to guarantee a sequentially consistent semantics for the access,
the release/acquire and release/consume attributes enable
a fast implementation of the message-passing idiom. Finally the
relaxed attribute identifies accesses that ought to be mapped di-
rectly to hardware accesses.

While the design of relaxed accesses should not constrain
compiler and hardware optimisations apart for ensuring coher-
ence (even if the current formulation of the standard is unsatis-
factory [22]), all other atomic accesses enforce their semantics by
restricting allowed compiler and hardware optimisations [17]. To
restrict hardware optimisations the compiler inserts memory fences
and other synchronisation instructions in correspondence of atomic
accesses; mappings for C11/C++11 memory accesses to major ar-
chitectures have been proposed [1] and in several cases formally
proved correct [5, 6]. We report the mappings relevant for our
work in Figure 1. In [5] it is shown that these mappings are locally
optimal: if the compiler translates arbitrary C11/C++11 code by
naively mapping memory accesses to assembly instructions fol-
lowing these tables, weakening any of the clauses (e.g. replacing a
hwsync by a weaker lwsync) yields an unsound scheme.

This result however does not preclude that for some programs
an optimising compiler can improve the hardware fence placement
given by the mappings. So the following code:

r = x.load(acquire );
y.store(release , 42);

gets translated to the following ARMv7 pseudo-assembly:

r = x;
dmb ish; // introduced by the acquire access
dmb ish; // introduced by the release access
y = 42;

We will give a precise account of the ARM memory model in Sec-
tion 3.1, but it is easy to show that whenever there are two consec-
utive dmb ish instructions, the second acts as a no-op. As such it
can safely be optimised away without affecting the semantics of the
program in an arbitrary concurrent context. This simple peephole
optimisation has already been implemented in the LLVM ARM
backend [9]. However, more generally, the compiler backend can
rely on thread-local data-flow informations to identify occasions to
optimise the generated code while preserving the expected seman-
tics. Consider for instance the snippet of C11 code below:

int i = x.load(memory_order_seq_cst);
if (foo())

z = 42;
y.store(1, memory_order_release);

and the ARMv7 pseudo-assembly generated by the mappings for
atomic accesses:



C++11 Operation x86 Implementation Power implementation ARMv7 implementation
Non-atomic Load mov ld ldr
Load Relaxed mov ld ldr
Load Consume mov ld; lwsync ldr; dmb ish
Load Acquire mov ld; lwsync ldr; dmb ish
Load Seq Cst mov hwsync; ld; lwsync ldr; dmb ish
Store Relaxed mov st str
Store Release mov lwsync; st dmb ish; str
Store Seq Cst xchg hwsync; st dmb ish; str; dmb ish
Fence Rel/Acq lwsync dmb ish
Fence Seq Cst mfence hwsync dmb ish

Figure 1: C11/C++11 memory-access mappings used by LLVM 4.0 for x86, Power, ARMv7 architectures

int i = x;
dmb ish;
bool a = foo();
if (a)

z = 42;
dmb ish;
y = 1;

In the above code neither of the two dmb ish barriers can be
eliminated. Again, we will make this precise later, but intuitively,
the former fence ensures that the load of x is not reordered with the
store of z, and the latter fence ensures that the write to z is visible
by all processors before the write to y is performed. However this
fence placement is not optimal: when a is false two barriers in a
row would be executed while one would suffice (to prevent the
reordering of the load of x with the write of y), and the pseudo-
code could be optimised as:

int i = x;
dmb ish;
bool a = foo();
if (a) {

z = 42;
dmb ish;

}
y = 1;

Observe that the optimised pseudo-assembly cannot be obtained
by applying a source-to-source transformation to the original C11
program and then applying the reference mappings. This suggests
that a class of fence optimisations can, and must, be implemented
in an architecture-specific backend of a compiler, exploiting the
precise semantics of the target architecture. However, apart from
some peephole optimisations as the already cited one ([9]), at
the time of writing, mainstream compilers are conservative about
optimising atomic accesses or reordering atomic and non-atomic
accesses.

Contributions In this paper we show how to instantiate Partial
Redundancy Elimination (PRE) to implement an efficient and prov-
ably correct fence optimisation algorithm for the x86, ARM and
IBM Power architectures, improving and generalising the algo-
rithm proposed for x86 in [23]. Although these architectures imple-
ment widely different memory models, we identified a key property
required for the correctness of our algorithm and we prove formally
that our algorithm is correct with respect the memory model of the
three architectures. We have implemented our optimisation algo-
rithm in the x86, ARM, and Power backends of the LLVM Com-
piler Infrastructure [14]. We evaluate it on some benchmarks, in-
cluding a signal processing application from the StreamIt suite, on
which we observe a speedup up-to 10% on the Power architecture.

The paper is structured as follows:

• in Section 2 we illustrate our algorithm on a running example,
and describe its implementation in the ARM LLVM backend;
• in Section 3 we recall the x86, ARM and Power memory mod-

els, as formalised in [4], and we prove the correctness of our
algorithm;
• in Section 4 we discuss how to tune the algorithm to the IBM

Power and x86 architectures, and in Section 5 we put it at work
on several benchmarks;
• in Sections 6 and 7 we report on related works and discuss

future perspectives.

2. A PRE-inspired fence elimination algorithm
The design of our fence elimination algorithm is guided by the
representation of fences in the “Herding Cats” framework [4] for
weak memory models. This framework, detailed in the next sec-
tion, represents all the allowed behaviours of a program in terms
of the sets of the memory events (atomic read or writes of shared
memory locations) that each thread can perform, and additional
relations between these events. Fence instructions do not gener-
ate events of their own, but are represented as a relation between
events. This relation relates all pairs of memory accesses such that
a fence instruction is executed in between by the sequential seman-
tics of each thread. This implies that any program transformation
that moves/inserts/removes fence instructions while preserving the
fence relation between events is trivially correct. We can even go a
bit further. The model is monotonic with respect to the fence rela-
tion: adding pairs of events to the fence relation can only reduce the
allowed concurrent behaviours of a program. In turn any program
transformation modifying the placement of fence instructions will
be trivially correct provided that it does not remove pairs from the
fence relation between events.

Consider now the snippet of C11/C++11 code below, where x
and y are global, potentially shared, atomic variables and i is a
local (not shared) variable:

int i = x.load(seq_cst);
for (; i > 0; --i) {

y.store(i, seq_cst);
}
return;

and the ARMv7 pseudo-code1 generated by desugaring the loop
and applying the mappings for the atomic accesses:

1 Our optimisation runs on the LLVM IR at the frontier between the middle
end and the architecture specific backend. This IR extends the LLVM IR
with intrinsics to represent architecture specific memory fences; the pseudo-
code we rely-on carries exactly the same informations as the IR over which
our implementation works.



int i = x;
dmb ish;
loop:

if (i > 0) {
dmb ish;
y = i;
dmb ish;
--i;
goto loop;

} else {
return;

}

A sequential execution of this code with x = 2 executes the fol-
lowing instructions:

i = 2; dmb ish; dmb ish; y = 2; dmb ish; i = 1;
dmb ish; dmb ish; y = 1; dmb ish; i = 0; return

resulting in two events related by the fence relation (omitting the
fence arrows from the entry point and to the return point):

W y 2 W y 1
fences

If one fence is removed and the program transformed as in:

int i = x;
loop:

dmb ish;
if (i > 0) {

y = i;
--i;
goto loop;

} else {
return;

}

then a sequential execution of this code with x = 2 executes the
following instructions:

i = 2; dmb ish; y = 2; i = 1;
dmb ish; y = 1; i = 0; dmb ish; return

and both the events generated and the fence relation remain un-
changed, and we are guaranteed that the two programs will have
the same behaviours in any concurrent context. However, in every
run, the latter will execute fewer, potentially expensive, dmb ish
instructions.

2.1 Leveraging PRE
At a closer look, our problem is reminiscent of the Partial Redun-
dancy Elimination (PRE) optimisation. Given a computation that
happens at least twice in the source file (say x+y), PRE tries to in-
sert, move or delete instances of the computation, while enforcing
the property that there is still at least one such instance on each path
between the definitions of its operands (say x and y) and its uses.
Similarly, we want to insert, move or delete fences such that there
is still at least one fence on each path between memory accesses
that were before a fence and those that were after a fence in the
original program.

How to implement PRE is a well-studied problem. Approaches
can be classified into conservative (roughly speaking, the amount
of computation the program does cannot be increased) and specu-
lative. Speculative PRE (SPRE) is allowed to introduce some ex-
tra computation on rarely taken paths in the program to remove
additional computations from the more common paths. We follow
this latter approach because it can offer better results [12] in pres-
ence of accurate profiling information. Such profile-guided optimi-
sations require compiling the program under consideration twice:

first without optimisations, then a second time after having exe-
cuted the program on a representative benchmark with profiling in-
strumentation on. Our algorithm can be adapted to avoid this com-
plex process at a cost in performance, as discussed in Section 7.

We build on the elegant algorithm for SPRE presented in [19]
(later generalised to conservative PRE in [25]), based on solving a
min-cut problem. Given a directed weighted graph (V,E) with two
special vertices Source and Sink, the min-cut problem consists in
finding a set of edges C ⊆ V such that there is no path from Source
to Sink through E\C and C has the smallest possible weight.

Following [19], our algorithm first builds a graph from the
SSA control-flow graph internally used by LLVM. In the built
graph, nodes identify all program placements before and after each
instructions and there is an edge from after instruction A to before
instruction B with weight w if control went directly from A to B
w times in the profiling information. Two special nodes are added,
called Source and Sink. Edges with weight∞ are added from the
Source node and to the Sink node, following the strategy below.

For each fence instruction in the program,

• connect all the placements before all memory accesses that
precede the fence to Source;
• connect all the placements after all memory accesses that follow

the fence to Sink;
• delete the fence instruction.

Once all fences have been deleted, a min-cut of the result-
ing graph is computed: the min-cut identifies all the places where
fences must be inserted to guarantee that there is still a fence across
every computation path between memory accesses originally sep-
arated by a fence. Each edge in the min-cut identifies two place-
ments in the program, the former after a memory access and the
latter before another memory access: the algorithm inserts a fence
instruction just before the latter memory access.

Algorithm 1 reports the details of our implementation in LLVM,
the entry point is TransformFunction. Our optimisation runs
after all the middle-end transformations; at this level, the IR is
in SSA form but includes the architecture-specific intrinsics for
fence instructions which have been inserted by the expansion of
the C11/C++11 atomic memory accesses. It differs slightly from
the description above inasmuch. Instead of creating two nodes
for every instruction, it lazily constructs nodes (with the LLVM
GetNode functions) at the beginning and end of basic blocks, and
before and after memory accesses. Considering only these points
is correct, because fences commute with instructions that do not
affect memory. The GetNode functions refers to a hash table that
maps locations in the code to nodes: if a node has already been
generated for a location, a pointer to that same node is returned, it
is not duplicated.

2.2 The algorithm on a running example
Let us illustrate our algorithm on the code snippet shown at the
beginning of this section, assuming that some profiling data are
available. Its control-flow graph (CFG) is shown in Figure 2a.

In the first phase, the algorithm considers each fence in order
and builds an ad-hoc flow graph that for each fence connects all the
memory accesses before the fence to all the memory accesses after
the fence. The terms “before” and “after” are relative to the original
control-flow of the function.

In the running example, after processing the first fence, we get
the flow-graph in Figure 2b. The node in green is connected to
the Source and the nodes in red are connected to the Sink. The
percentages next to the edges are weights, set proportionally to the
frequency of execution of these edges in the profiling data. After
processing all the fences, we obtain the flow-graph in Figure 2c.



(a) Original CFG

(b) After processing the first
fence (c) After processing all fences

(d) Example of a min-cut (e) Resulting CFG

(f) Min-cut to minimise code-
size (g) Resulting CFG

Figure 2: Running example of the fence elimination algorithm

At this point, all fences are removed from the program and the
min-cut is computed. Figure 2d shows one possible min-cut on this
graph (through bold red edges).

In the second phase fences are inserted on each edge that is part
of the cut. The resulting optimised CFG is shown in Figure 2e.

This algorithm generates a solution that is optimal in terms
of the number of executions of fences at runtime; in some cases
we might instead minimize the code size. As explained Section 7,
we can modify this by modifying artificially the weights on the
edges. In particular, adding a tiny constant C to each edge breaks
ties among possible min-cuts according to the number of fences in
the generated code. This approach is shown in Figure 2f, with the
resulting CFG in Figure 2g; observe that here the fence in the first
block has been removed.

2.3 Corner cases
Function boundaries on the control-flow graph Our program
transformation is invoked on each function, and currently does not
perform any whole program analysis. In the previous paragraphs

1 Function TransformFunction(fun)
2 for f a fence in fun do
3 nodeBeforeFence←MakeGraphUpwards(f)
4 nodeAfterFence←MakeGraphDownwards(f)
5 if nodeBeforeFence 6= NULL && nodeAfterFence

6= NULL then
6 MakeEdge (nodeBeforeFence,

nodeAfterFence)

7 DeleteFence (f)

8 cuts←ComputeMinCut ()
9 foreach location ∈ cuts do

10 InsertFenceAt(location)

11 Function MakeGraphUpwards(root)
12 basicBlock←GetBasicBlock(root)
13 for inst an instruction before root in basicBlock, going

upwards do
14 if inst a memory access then
15 node←GetNodeAfter(inst)
16 ConnectSource(node)
17 return node

18 node←GetNodeAtBeginning(basicBlock)
19 if basicBlock is first block in function then
20 ConnectSource(node)
21 return node

22 for basicBlock2 a predecessor of basicBlock do
23 node2←GetNodeAtEnd(basicBlock2)
24 inst2←GetLastInst(basicBlock2)
25 node3←MakeGraphUpwards(inst2)
26 if node3 6= NULL then
27 MakeEdge(node3, node2)
28 MakeEdge(node2, node)

29 Function MakeGraphDownwards(root)
30 basicBlock←GetBasicBlock(root)
31 for inst an instruction after root in basicBlock, going

downwards do
32 if inst a memory access or a return instruction then
33 node←GetNodeBefore(inst)
34 ConnectSink(node)
35 return node

36 node←GetNodeAtEnd(basicBlock)
37 for basicBlock2 a successor of basicBlock do
38 node2←GetNodeAtBeginning(basicBlock2)
39 inst2←GetFirstInst(basicBlock2)
40 node3←MakeGraphDownwards(inst2)
41 if node3 6= NULL then
42 MakeEdge(node, node2)
43 MakeEdge(node2, node3)

Algorithm 1: Pseudocode of the fence elimination algorithm



(a) Critical edge in red (b) Breaking the critical edge

Figure 3: Breaking critical edges

we did not detail what to do when the control-flow graph hits the
limits of the function being optimised (either the function entry
point, or a return instruction). Since a function can be called in
an arbitrary context, and a context can perform memory accesses
before and after it, the function boundaries are treated as memory
accesses (see lines 19 and 32), ensuring that fences at the beginning
or end of the function are preserved. Similarly, a function call that
may access the memory is treated as always modifying the memory.

Critical edges Algorithm 1 does not precisely detail how fences
are inserted once the min-cut has been computed. If there is a cut
required between the last instruction of a block A and the first
instruction of a block B, there are three possibilities:

• block A is the only predecessor of block B: the fence can be
inserted at the beginning of block B;
• block B is the only successor of block A: the fence can be

inserted at the end of block A;
• if A has several successors, and B has several predecessors,

then the edge between A and B is called a critical edge since
there is no block in which a fence can be inserted ensuring that
it is only on the path from A to B. The critical edge is broke by
inserting an extra empty basic block between A and B.

This last case is illustrated in Figure 3a, inserting a fence at the
location of the red edge is problematic, as inserting it either at
A or at B puts it on a path without the red edge. This is solved
by breaking the red edge in two, with a block in between, as in
Figure 3b. The fence can now be safely inserted in block C.

Why two nodes for the each instruction Algorithm 1 systemati-
cally creates a node before and a node after each instruction. Per-
haps surprisingly, a simpler solution where only one node is created
for each instruction would not be be correct. A simple example il-
lustrates this:

y = 1;
fence;
x = 42;
fence;
y = 2;

We report the flow graphs for this program, two nodes per memory
access on the left, and one node per memory access on the right:

y = 1

W x 42

W x 42

W y 2

Source

Sink

+∞

+∞ 10

10

+∞

+∞

y = 1

W x 42

W y 2

Source

Sink

+∞

+∞

10

10
+∞

+∞

In the flow-graph on the left, the min-cut procedure finds a cut
of finite weight (shown by the dotted lines). The edges in this

cut are exactly where the fences are in the original program, so
the optimisation correctly recognise that the program cannot be
optimised.

If instead there is only one node for the store in the middle
(flow-graph shown on the right), all cuts between Source and Sink
have an infinite weight, and the min-cut procedure would pick a cut
that contains edges involving Source and Sink. Such edges do not
directly correspond to a location in the code, and cannot guide the
successive fence-insertion-along-the-cut phase.

3. Correctness of the algorithm
Reasoning on shared-memory programs running on relaxed mem-
ory architectures is subtle and error prone. In this section we show
that the algorithm is correct by formalising and proving our in-
tuition that the algorithm never removes existing fences between
memory accesses.

3.1 Background: the x86 and ARM/Power memory models
We build on the axiomatic formalisation of the x86 and AR-
M/Power memory models of [4]. In this framework the semantics
of a program is defined in three steps. First the program is mapped
to a set of memory events (e.g. atomic read or writes of shared
memory locations) and several relations among these events. The
intuition is that these events capture all possible memory accesses
performed by the various threads running in an arbitrary concurrent
context. The additional relations capture how several “syntactic”
aspects of the source program lift to, and relate, events. These in-
clude the program order relation (po), that lifts the program order
to the events, and the addr, data, and ctrl relations, that lift address,
data and control dependencies between instructions to events.

Second, candidate executions are built out of the events by
imposing restrictions on which values read events can return, each
execution capturing a particular data-flow of the program. The
restriction are expressed via two relations, called reads-from (rf)
and coherence-order (co). The former associates each read even to
the write event it observes, the second imposes a per-location total
order on memory writes, capturing the base property ensured by
cache coherence. Several auxiliary relation are computed out of rf
and co. The most important is the relation from-read (fr), defined
as rf−1; co, that relates a read to any store that is co-after the one
it reads from. We also compute the projections of rf, fr and co to
the events internal to a thread (the related events belong to the same
thread, denoted by the suffix i) or external (the related events belong
to different threads, denoted by the suffix e) to a thread; in turn we
get the relations rfi, rfe, fri fre and coe.

Third, a constraint specification decides if a candidate execu-
tions are valid or not. HerdingCats is a framework that can be in-
stantiated to different architectures. For this it is parametric in two
relations happens-before (hb), defining the relative ordering of the
events., and propagation order (prop), capturing the relative order-
ing of memory writes to different locations that somehow synchro-
nise. We detail the instantiation of the framework to x86, Power,
and ARM below. The framework then imposes only four axioms
on candidate executions to determine their validity.

The first axiom, SC per location, captures cache coherence: for
every memory location considered in isolation, the model behaves
as if it was sequentially consistent. In formal terms:

acyclic(poloc ∪ com)

where poloc is the program order restricted per location, and com
is the union of the coherency order co, the reads-from relation rf,
and the from-reads relation fr.

The second axiom, no thin air, prevents the so-called out-of-
thin-air reads, where the read of a value is justified by a store
that is itself justified by the original read. Such causality loops are



not observable on any modern hardware. In formal terms, the rule
forbids cycles in happens-before (hb):

acyclic(hb)

The third axiom, observation, guarantees that loads cannot read
from stores that have been overwritten in-between:

irreflexive(fre; prop; hb∗)

In this rule fre is the restriction of fr to an inter-thread relation, hb∗

is the transitive and reflexive closure of hb.
The fourth axiom, propagation, enforces the compatibility of

the coherence order with this prop relation:

acyclic(co ∪ prop)

This is needed because, to capture cumulativity of memory fences,
prop relates both loads and stores on ARM and Power instantiations
of the framework.

Instantiation for the x86 architecture The x86-TSO memory
model [20] can be recovered by defining hb = po\WR∪mfence∪
rfe and prop = hb ∪ fr, with mfence being the restriction of
po to pairs of accesses with a mfence instruction in between, and
po\WR the program order relation from which every pair from a
write to a read has been removed. Not including WR in hb enables
observing the read-write reordering typical of the store-buffering
implemented by x86-TSO.

Instantiation for the Power architecture The IBM Power mem-
ory model is significantly more complex. We report the formal def-
inition of hb and prop; these are explained in detail in [4].

fences
def
= (lwsync\WR) ∪ hwsync

propbase
def
= rfe?; fences; hb∗

prop
def
= (propbase ∩WW)

∪ (com∗; propbase∗; hwsync; hb∗)

dp
def
= addr ∪ data

rdw
def
= poloc ∩ (fre; rfe)

detour
def
= poloc ∩ (coe; rfe)

ii0
def
= dp ∪ rdw ∪ rfi

ci0
def
= (ctrl + cfence) ∪ detour

ic0
def
= ∅

cc0
def
= dp ∪ poloc ∪ ctrl ∪ (addr; po)

ii
def
= ii0 ∪ ci ∪ (ic; ci) ∪ (ii; ii)

ci
def
= ci0 ∪ (ci; ii) ∪ (cc; ci)

ic
def
= ic0 ∪ ii ∪ cc ∪ (ic; cc) ∪ (ii; ic)

cc
def
= cc0 ∪ ci ∪ (ci; ic) ∪ (cc; cc)

ppo
def
= (ii ∩ RR) ∪ (ic ∩ RW)

hb
def
= ppo ∪ fences ∪ rfe

In these, lwsync and hwsync are restrictions of po to pairs of ac-
cesses with respectively a lwsync or hwsync (Power’s synchronis-
ing fence instructions) in between. The relation ctrl + cfence refers
to control dependencies which have been reinforced by executing
an isync instruction. Finally the relations ii, ic, ci cc are defined
as the least fixed point of the equations above. The intuition behind
these is that i stands for “initiation” of an access, while c stands for
“commit” of an access.

We point out that, although the model is complicated, the con-
struction of our algorithm ensures that the proof of correctness
of our algorithm only needs to study how shuffling synchronising
fence instructions influences the fences relation between events.

The Herd formalisation of Power has been proved to be at
least as relaxed as, but not equivalent to, the Power model defined
in [18]. In practice, to the best of our knowledge, extensive empiri-
cal testing of both allowed and not-allowed behaviours of the Herd
formalisation of Power did not reveal any unsoundness against ac-
tual Power implementations.

Instantiation for the ARM architecture The instantiation of
HerdingCats for ARM follows the IBM Power one, with three
differences:

• the relation hwsync is replaced by the relation dmb ish, that is
the restriction of po to pairs of accesses with respectively a dmb
ish synchronising barrier in between; similarly the relation
cfence is replaced by the relation isb, that is the restriction of
po to pairs of accesses with respectively a isb instruction in
between;
• the relation lwsync is removed;
• the relation cc0 is redefined as dp∪ctrl∪ (addr; po), losing the

poloc term (the reason for this is detailed at length in [4]).

Again, we stress that the proof of correctness of our algorithm only
needs to focus on dmb ish relation between events.

3.2 Proof of correctness
To show the correctness of our algorithm we first prove a key
lemma that states that we may add a fence on a path that had none,
but never remove all fences from a path that had at least one. This
captures the main intuition that drove our design. The rest of the
proof then proceeds by a monotonicity argument. The proof applies
to ARM, Power, and x86 instantiations of the model.

Lemma 1. For any candidate execution X ′ of a program P ′

obtained by applying TransformFunction to a program P , there
is a candidate execution X of P with fences(X) ⊆ fences(X ′),
and every other part of X is the same as X ′ (including the events,
the po and dependency relations, and the rf and co relations).

Proof. Since the algorithm only affects fence placements, we can
build X from X ′ such that it has the same events, po, depen-
dencies, and rf and co relations. Let a, b be two memory ac-
cesses such that (a, b) ∈ fences(X). By the Herding Cats con-
struction this implies that there is a path through the control-flow
graph that goes first through a, then through a fence f , and fi-
nally through b. Since MakeGraphUpwards stops at the first mem-
ory access encountered (or may stop earlier if it hits the begin-
ning of the function), this path goes through a node connected
to the Source at some point between a and f . Symmetrically, it
goes through a node connected to the Sink between f and b. Be-
cause MakeGraphUpwards and MakeGraphDownwards follow the
control-flow path, these two nodes must be connected along the
path. So the min-cut procedure will have to cut along the path to
separate the Source from the Sink. The algorithm inserts a fence at
this point, ensuring (a, b) ∈ fences(X ′).

This result lifts to executions.

Corollary 1. For any execution E′ of a program P ′ obtained by
applying TransformFunction to a program P , there is an execu-
tion E of P with hb(E) ⊆ hb(E′) and prop(E) ⊆ prop(E′), and
every other part of E is the same as E′.

Proof. The relation fences appears in a positive position in the
definition of the hb and prop relations, and every other relation



that appears in their definitions (rfe, com, ppo) is invariant by
our transformation (since they do not depend on fences, and by
Lemma 1 fences are the only part of the program execution that is
transformed).

Given a valid execution of a program, its final state is obtained
by taking the last write event in the co order for each shared
memory location. We state that an optimisation that transform the
program P into the program P ′ is correct if for every final state of
the memory reached by a valid execution of P ′, there exists a valid
execution of P that ends with the same final state.

Theorem 1. The transformation TransformFunction is correct.

Proof. We must show that for any valid execution of a program
after TransformFunction, there is a valid execution of the source
program that has the same final state. Corollary 1 provides an
effective way to construct an execution E of the source program
from an execution E′ of the transformed program. Since co is
unchanged by the construction and the events are identical, the final
state of E and E′ is the same. It remains to show that the execution
is valid, that is, we must check that the four axioms of the Herding
Cats model hold on E. We already know that hb(E) ⊆ hb(E′) and
prop(E) ⊆ prop(E′). We also know that the axioms hold on E′.
It is straightforward to chech that, whenever pairs of elements are
added to prop or hb, the four axioms can only be made false, and
never true. In turn, since they hold on E′ they must also hold on E,
ensuring that E is a valid execution of the source program.

4. Implementation and extensions to other ISAs
We have implemented our optimisation as the first optimisation
pass in the x86, ARM and IBM Power backends of LLVM 4.0.
Min-cut is known to be equivalent to finding a maximum flow in
a flow network (via the max-flow min-cut theorem of [10]), so our
implementation uses the standard push-relabel algorithm of [11] to
compute the min-cut of a graph.

LLVM internally provides the BlockFrequency class, that
exports a relative metrics that represents the number of times a
block executes. By default the block frequency info is derived from
heuristics, e.g., loop back edges are usually taken, but if profile
guided optimisation is enabled then it can rely on runtime profile
information. Our implementation accesses the BlockFrequency
class to compute the weight of the edges (all edges inside a basic
block have the weight of the basic block) of the flow graph.

In Section 2 we have described the ARM implementation. The
IBM Power and x86 passes differ slightly, as detailed below.

Extension to IBM Power As we have seen, the IBM Power mem-
ory model is very similar to the ARM one, but is gives to the
programmer two different synchronising fence instructions. Heavy-
weight fences (instruction hwsync) are equivalent to the dmb ish
instruction on ARM, but IBM Power also provides lightweight
synchronising fences (instruction lwsync) that are faster but offer
strictly less guarantees.

We can adapt our algorithm to IBM Power fence instructions
by running it in two passes. In a first pass, the heavyweight fences
are optimised, while ignoring the lightweight fences. In a second
pass, the lightweight fences are optimised, considering every path
with a heavyweight fence already cut (since heavyweight fences
subsumes lightweight ones). This second pass can be implemented
by adding the following code snippet after both line 17 and line 35
of Algorithm 1:

else if(inst is a heavyweight fence)
return NULL;

This processing in two phases is sound. The first pass preserves
the hwsync relation (by the same argument as before). Then the
second pass may lose parts of the lwsync relation, but it preserves
the fences relation, defined as:

fences
def
= (lwsync\WR) ∪ hwsync

which is the only place where the relation lwsync is used. The proof
then proceeds as before based on the monotonicity of the model
with respect to both the hwsync and fences relations.

Extension to x86 In the x86 memory model fences prevent write-
read reorderings and only matter between stores and loads. This is
evident from the axioms: the relation mfence only appears in the
definition of hb:

hb = po\WR ∪mfence ∪ fre

where po\WR is the program order relation from which every pair
from a write to a read has been removed. So we can relax our
algorithm without affecting its correctness, and make it preserve
WR ∩ mfence rather than mfence. This enables optimising the
program on the left into the program on the right (which would
have not been possible with the original algorithm):

x = 1
mfence
x = 2
mfence
tmp = x
mfence
tmp = y

x = 1
x = 2
mfence
tmp = x
tmp = y

To implement this more aggressive optimisation, we alter our
algorithm to connect the Source to the latest stores before each
fence, and connect the earliest loads after them to the Sink. Algo-
rithm 1 can be modified by replacing “memory access” by “store”
on line 14, and “memory access” by “load” on line 32 of algo-
rithm 1. The proof structure is unaltered: we can still show that for
every execution of the optimised program, there is an execution of
the original program with hb and prop that are no larger.

5. Experimental evaluation
We consider several concurrent algorithms, including Dekker and
Bakery mutual exclusion algorithms, Treiber’s stack, as well as a
more realistic code-base, LibKPN [15]. The code of the first three
benchmarks is taken from [23], with all shared memory accesses
converted to sequentially consistent atomic accesses. The latter is
a much larger C11 program (about 3.5k lines) that implements a
state-of-the-art dynamic scheduler for green threads communicat-
ing through First-In First-Out queues. In the LibKPN code base,
use of atomic qualifiers has been aggressively hand-optimised.

The table in Figure 4 reports on the number of fences deleted
by the x86, ARM, and IBM Power, backend. This is not an ideal
metric for our algorithm, because it does not capture cases where a
fence is hoisted out of a loop: in this case there is one fence deleted
and one inserted, but at run-time a fence per loop iteration might
have been optimised away. However it is easily computable and
gives some indications on the behaviour of the algorithm.

LLVM’s x86 backend does not map sequentially consistent
atomic writes to mov; mfence but relies on the locked xchg
instruction, which is believed to be faster. We thus modified the
x86 backend to implement an alternative mapping for sequentially
consistent accesses: either mov; mfence is used for all stores, or
mfence; mov is used for all loads. We report on both mappings.

The compile time overhead due to running our optimisation is
not measurable and buried in statistical noise, even when compiling
larger applications like LibKPN.



Benchmark Configuration Fences before optimisation after optimisation inserted deleted

Bakery ARM 18 16 0 2
Bakery Power 24 19 10 15
Bakery x86: all seq-cst, mfence after stores 4 3 0 1
Bakery x86: all seq-cst, mfence before loads 10 2 1 9
Dekker ARM 11 9 1 3
Dekker Power 10 9 5 6
Dekker x86: all seq-cst, mfence after stores 4 3 0 1
Dekker x86: all seq-cst, mfence before loads 3 2 2 3

Treiber’s stack ARM 14 13 2 3
Treiber’s stack Power 14 12 4 6
Treiber’s stack x86: all seq-cst, mfence after stores 2 1 0 1
Treiber’s stack x86: all seq-cst, mfence before loads 4 2 2 4

LibKPN ARM: default 110 110 4 4
LibKPN ARM: all seq-cst 451 411 11 51
LibKPN Power: default 92 90 2 4
LibKPN Power: all seq-cst 448 394 54 108
LibKPN x86: default 25 22 4 7
LibKPN x86: all seq-cst, mfence after stores 189 144 5 50
LibKPN x86: all seq-cst, mfence before loads 326 137 25 214

Figure 4: Fence instructions found in the assembly code before and after the optimisation pass

Observe that on x86 our algorithm mimics the results of the
x86-tailored fence optimisation presented in [23].

For LibKPN we test both the hand-optimised version and a ver-
sion where all atomic accesses are replaced by seq cst accesses.
On the hand-optimised code, our algorithm still finds opportuni-
ties to move and delete a few fences, e.g. reducing it from 25 to
22 on x86, or to move a few around according to the profiling in-
formations available. As our optimisation cannot be expressed as
a source to source program transformation it is possible that a few
fences can be eliminated or moved, even if the qualifier annota-
tions were “optimal”. The test where all LibKPN atomic accesses
are downgraded to seq cst might suggest that, despite eliminat-
ing a fair number of redundant fences, the optimisaiton pass cannot
generate code competitive with a hand-tuned implementation.

To investigate this point, and to evaluate the runtime speedup (or
slowdown) induced by our of fence optimisation pass, we evaluate
the execution time of several LibKPN benchmarks. These include
both microbenchmarks to test some library constructions, and a
larger signal processing application, called radio, taken from the
streamIt benchmark suite2 and ported to LibKPN. For testing we
used a commodity x86 Intel Xeon machine with 12-cores (no
hyper-threading), and a 48-cores IBM Power7 (IBM 8231-E2C).
Unfortunately we do not have an ARM machine for testing.

Microbenchmarks timings do not benefit from running our opti-
misations. We conjecture that these stress-test tight loops involving
synchronisation and barriers, and as such do not leave much space
for improvement of the fence placement. Replacing all the atomic
qualifiers with seq cst atomics does not degrade the performance
measurably either: this supports our conjecture.

The larger benchmark is much more informative. We report
the average and standard deviation (in parentheses) of the perfor-
mances observed (smaller is better), over 100 invocations of the
benchmark:

x86 64 IBM Power7
original code, not optimised: 252 (67) 1872 (852)
original code, optimised: 248 (55) 1766 (712)
all seq cst, not optimised: 343 (57) 3170 (1024)
all seq cst, optimised: 348 (46) 2701 (892)

2 http://groups.csail.mit.edu/cag/streamit/

The large standard deviation observed is due to the dependance of
the benchmark on the scheduling of threads. As a result on x86
performance change due to fence optimisation is hidden in statisti-
cal noise, matching the experiments in [23]. Similarly performance
improvement due to passing profiling informations rather that rely-
ing on the default heuristics is also hidden in statistical noise (e.g.
we observe 246 (53) for x86 64 on original code, optimised). On
Power the results are more encouraging: speedup is observable and
it is up to 10% on the code written by a non-expert programmer
who systematically relies on the sequentially-consistent qualifier
for atomic accesses.

6. Related work
Fence optimisation as a compiler pass When we started this
work, the only fence elimination algorithm implemented in LLVM
was described in [9]. This is an ARM-specific pass, that proposes
both the straightforward elimination of adjacent dmb ish instruc-
tions in the same basic block with no memory access in-between
(trivially performed by our algorithm too), and a more involved
inter-block algorithm. This second algorithm was not integrated
into LLVM, making it hard to understand and evaluate. It does not
seem to have been proven correct either, and does not take into
account profiling information. More generally compilers are ex-
tremely cautious when it comes at optimising memory barriers: the
paper [17] reports on how a correct optimisation on C11 low-level
atomics was undone by GCC developers because it was breaking
the GCC4.7 internal invariant “never optimise an atomic access”.

Vafeiadis and Zappa Nardelli [23] defined two algorithms
(called FE1 and FE2) for removing redundant mfence instructions
on x86 and proved them correct against the operational description
of the x86-TSO memory model. The definition of the optimisations
is specific to x86 and the correctness proof leverages complicated
simulation-based techniques. Additionally, they proposed a PRE-
like step that saturates with mfences all branches of conditionals,
in the hope that FE2 will later optimise these away later. Their
algorithm does not take into account any profiling information.
Our algorithm, once tailored for x86 as described in Section 4,
subsumes both their optimisation passes, and additionally takes
into account profiling informations while performing partial redun-



dancy elimination. Our correctness proof, building on an axiomatic
model, turns out to be much simpler than theirs.

Fence synthesis based on whole program analysis Several re-
search projects, including [13], [7], [3], [16], and [2], attempt to
recover sequential consistency, or weaker safety specifications, by
inserting fences in racy programs without atomics annotations.
These projects attempt to compute optimal fence insertions but rely
on whole program analyses: as such these are not directly imple-
mentable as optimisation passes in a compiler that performs sep-
arate compilation. Also they are too expensive to perform in a
general-purpose compiler.

Despite the complementary goals, we remark that the algorithm
in [3] is related to ours: to solve the global optimisation problem it
uses an integer linear program solver, of which min-cut is a special
case, and correctness follows along similar lines. Our algorithm
can thus be seen as a variant of theirs, that trades-off optimality
for the ability to apply in modular compilation, and to make use of
atomics annotation by the programmer. It is interesting to remark
that [3] gives an explicit cost to each fence and lets the solver decide
on how to mix them, instead of the heuristic based on profiling
informations we rely on. Obviously, this is only possible because
they do an optimisation based on solving an ILP problem, instead
of the simpler min-cut procedure we rely on.

Working inside a compiler, the work by Sura et al. [21], show
how to approximate Sasha and Snir’s delay sets and synthesising
barriers so that a program has only SC behaviours: they performs
much more sophisticated analyses than the ones we propose, but do
not come with correctness proofs.

7. Perspectives
We have proposed, proved correct, and implemented in LLVM,
a backend fence optimisation pass. Our optimisation pass can-
not be implemented as a source-to-source transformation in the
C11/C++11 memory model, but builds on the precise semantics
of the barrier instructions in each targeted architecture. As shown
in [8], the LLVM concurrency semantics itself is subtly different
from the C11/C++11 memory model , motivating even further the
study of ad-hoc backend optimisations. We have seen that in prac-
tice the pass can be effective in removing redundant barriers in-
serted by the conservative programmer that relies on strong qual-
ifiers (e.g. seq cst) for the atomic accesses. This is a promising
result, as recent progress in understanding relaxed memory models
paves the way for progress in this area, still largely unexploited by
mainstream compilers.

It would be interesting to further investigate experimentally
in which cases there is a benefit in replacing the xchg mapping
for sequentially consistent stores used by LLVM with the mov;
mfence mapping backed by an aggressive fence optimisation pass.
More generally, large benchmarks to test performance of concur-
rent C11/C++11 code bases are still missing, and highly needed to
perform a more in-depth performance evaluation.

Our algorithm can be improved in several ways, detailed below.

Interprocedural analysis As mentioned in Section 2.3, our algo-
rithm is intra-procedural and treats any function call that may touch
memory as a memory access. It is possible to slightly improve this
by building function dictionaries. For this, starting from the leaves
of the call-graph, we can annotate each function with:

• whether all paths from the first instruction hit a fence before a
memory access or return instruction;
• whether all paths flowing backwards from a return instruction

hit a fence before a memory access or the starting instruction.

Then, anytime a function call is encountered while looking for an
access after (resp. before) a fence, and the first (resp. second) flag
is set on that function, that path can be cut.

Leveraging coherency It is possible to implement a more aggres-
sive optimisation if the algorithm keeps track of the C11/C++11
atomic access responsible for inserting each fence instruction. Con-
sider a release store to a variable x on ARM: this is compiled to a
dmb ish barrier followed by the store instruction. Since the seman-
tics of release forces only to order previous accesses with this store
and not with every later access, and accesses to the same location
are already ordered locally (by the SC-per-loc rule of the Herding
Cats framework), it is possible to ignore all accesses to x when
looking for memory accesses to connect the Source node to.

The same idea can be applied to acquire or sequentially con-
sistent loads. In particular, this would allow sinking the fence out
of the loop when a loop contains only an acquire load, having the
effect of transforming:

while (!x.load(acquire)) {};

into the more efficient:

while(!x.load(relaxed)) {};
fence(acquire);

Optimising for code size Following an idea from [19], it is possi-
ble to optimise for code size instead of runtime. Our algorithm can
be easily adapted by using the constant 1 for the weight of all edges,
instead of the frequency in the profiling information. The min-cut
procedure will then minimise the number of fences in the gener-
ated code. A tradeoff between code-size and runtime can easily be
obtained by using a hybrid metric (this idea comes from [19]).

A conservative variant of the algorithm As presented above, our
algorithm is fundamentally speculative: it relies on the profiling
information and can significantly worsen the performance of the
code if this information is unreliable.

However any path that goes through a location dominated or
post-dominated by a fence necessarily goes through that fence (by
definition of dominators and post-dominators). Consequently, it
is safe to put fences in all of these locations: there is no risk of
introducing a fence on a path that had none. We conjecture that we
can get a conservative variant of this algorithm by connecting the
first node (resp. the last node) of any block in MakeGraphUpwards
(resp. MakeGraphDownwards) that has at least one predecessor
(resp. successor) that is not post-dominated (resp. dominated) by
the original fence to the source (resp. the sink).

The paper [25] proposes a better solution to get a conserva-
tive algorithm, relying on dataflow analyses. Unfortunately this ap-
proach is hard to integrate with our currently implemented algo-
rithm.

Artefact availability Our implementation of the optimisation, to-
gether with the code of the benchmarks, is available from http:
//www.di.ens.fr/~zappa/projects/llvmopt.
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