
Reasoning between
programming languages and architectures

Francesco Zappa Nardelli

Soutenance en vue de l’obtention de l’Habilitation à Diriger des Recherches

16 janvier 2014

http://www.di.ens.fr/~zappa/readings/hdr

Friday 24 January 14

http://www.di.ens.fr/~zappa/readings/hdr
http://www.di.ens.fr/~zappa/readings/hdr

Friday 24 January 14

Illustrate my approach to research

Friday 24 January 14

Illustrate my approach to researchExplain one research project

Friday 24 January 14

Illustrate my approach to researchExplain one research projectShow some code

Friday 24 January 14

1. A Better World

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 1 returns without modifying b

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa
(this program is data-race free)

Thread 1 returns without modifying b

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa
(this program is data-race free)

We expect this program to print 42.

Thread 1 returns without modifying b

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

...sometimes we get 0 on the screen

gcc 4.7 -O2

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

The outer loop can be (and is) optimised away

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

Friday 24 January 14

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %edx # load a into edx
 movl b(%rip), %eax # load b into eax
 testl %edx, %edx # if a!=0
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip) # store eax into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

The compiled code saves and restores b

Correct in a sequential setting, but...

Friday 24 January 14

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Friday 24 January 14

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax

Friday 24 January 14

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b

Friday 24 January 14

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b
- Store eax (0) into b

Friday 24 January 14

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b
- Store eax (0) into b
- Print b: 0 is printed

Friday 24 January 14

 movl a(%rip),%edx
 movl b(%rip),%eax
 testl %edx, %edx
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %eax, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into edx

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into eax
- Store 42 into b
- Store eax (0) into b
- Print b: 0 is printed

...gives unexpected results
in some concurrent contexts!

Friday 24 January 14

Friday 24 January 14

What? Can our program print 0?

Friday 24 January 14

What? Can our program print 0?

No, C11 states that printing 42
is the only correct output

This is a concurrency compiler bugcompiler bug

Friday 24 January 14

What? Can our program print 0?

No, C11 states that printing 42
is the only correct output

This is a concurrency compiler bugconcurrency compiler bug

Friday 24 January 14

We reported it

it was promptly fixed

Friday 24 January 14

World is a better place

Friday 24 January 14

Can we catch more similar bugs
and make the world even better?

World is a better place

Friday 24 January 14

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

Friday 24 January 14

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Friday 24 January 14

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Cannot catch
concurrency compiler bugs

Friday 24 January 14

Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs?

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:
how to test for correctness?

limit case: two compilers generate correct code with disjoint final states

Friday 24 January 14

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Idea

Hunt concurrency compiler bugs

=
 search for transformations of sequential code

not sound in an arbitrary non-racy context

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

Check: only transformations sound
in any concurrent non-racy context

SEQUENTIAL
PROGRAM

Friday 24 January 14

2. Soundness of compiler optimisations in
the C11/C++11 memory model

Friday 24 January 14

World of optimisations

gcc 4.8.1 with -O2 option goes through 163 compilation passes

 computed using -fdump-tree-all and -fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes
 each pass composed of one or more smaller passes

 http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends

Friday 24 January 14

http://www.azulsystems.com/blog/cliff-click/2009-04-
http://www.azulsystems.com/blog/cliff-click/2009-04-

Example: loop invariant code motion

Compiler Writer Semanticist

Friday 24 January 14

Example: loop invariant code motion

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

Friday 24 January 14

Example: loop invariant code motion

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

Friday 24 January 14

tmp

Example: loop invariant code motion

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

Friday 24 January 14

tmp

Example: loop invariant code motion

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

Friday 24 January 14

tmp

Example: loop invariant code motion

...assuming initially y=42...

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ; Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

Friday 24 January 14

tmp

Example: loop invariant code motion

...assuming initially y=42...

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

Friday 24 January 14

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it
correct to eliminate the first store?

Friday 24 January 14

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it
correct to eliminate the first store?

What is the semantics of
concurrent C11/C++11 code?

Friday 24 January 14

The C11/C++11 memory model

C11/C++11 are based on the DRF approach:

 racy code is undefined
 race-free code must exhibit only sequentially

 consistent behaviours
 main synchronisation mechanism: lock/unlock

Friday 24 January 14

The C11/C++11 memory model

C11/C++11 are based on the DRF approach:

 racy code is undefined
 race-free code must exhibit only sequentially

 consistent behaviours
 main synchronisation mechanism: lock/unlock

Our first example is data-race free.

Printing 0 is disallowed by the standard.

Friday 24 January 14

The C11/C++11 memory model

C11/C++11 are based on the DRF approach:

 racy code is undefined
 race-free code must exhibit only sequentially

 consistent behaviours
 main synchronisation mechanism: lock/unlock

Escape mechanism for experts, low-level atomics:

 races allowed
 attributes on accesses specify their semantics:

MO_SEQ_CST MO_RELAXEDMO_RELEASE/MO_ACQUIRE

Friday 24 January 14

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

Friday 24 January 14

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

Friday 24 January 14

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

Friday 24 January 14

MO_RELEASE / MO_ACQUIRE

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

Friday 24 January 14

MO_RELEASE / MO_ACQUIRE

sync

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

Friday 24 January 14

MO_RELEASE / MO_ACQUIRE

The release/acquire synchronisation guarantees that:
 the program is DRF
 42 is printed at the end of the execution

Remark: unlock ≃ release, lock ≃ acquire.

sync

Thread 2Thread 1
g = 42;
f.store(1,MO_RELEASE);

while (f.load(MO_ACQUIRE)==0);
printf (“%d”,g)

g = 0; atomic f = 0;

Friday 24 January 14

Same-thread release/acquire pairs

A same-thread release-acquire pair is a pair of
a release action followed by an acquire action

in program order.

An action is a release if it is a possible source of a synchronisation

 unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read

Friday 24 January 14

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

It is safe to eliminate the first store
if there are:

no access to g

no st rel/acq pair
1. no intervening accesses to g
2. no intervening
 same-thread release-acquire pairs

Friday 24 January 14

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

Friday 24 January 14

candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

Friday 24 January 14

candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

same-thread release-acquire pair

Thread 1

Friday 24 January 14

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

Friday 24 January 14

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

Friday 24 January 14

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

The program should only print 1

Friday 24 January 14

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

If we perform overwritten write elimination it prints 0
The program should only print 1

Friday 24 January 14

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

while(f2.load(ACQUIRE)==0);

Friday 24 January 14

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

Friday 24 January 14

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

If only a release (or acquire) is present, then
all discriminating contexts are racy.

It is sound to optimise the overwritten write.

data race

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

Friday 24 January 14

Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

sb

Friday 24 January 14

Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

sb

Theorem

No non-racy context can observe these eliminations.

Proved w.r.t. Batty et al. (POPL 11) formalisation
of the C11/C++11 memory model

Friday 24 January 14

Reorderings and introductions

Correctness criterion for reordering events:
- different addresses
- no synchronisations in-between

Roach-motel reordering (reordering across locks) not observed in practice

Read introductions observed in practice (gcc, clang).

Introduction of eliminable reads proved correct.
Introduction of irrelevant reads does not introduce new
behaviours, but cannot be proved correct in a DRF model.

 Friday 24 January 14

3. From theory to the Cmmtest tool

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

Check: only transformations sound
in any concurrent non-racy context

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

Check: only transformations sound
in any concurrent non-racy context

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

Check: only transformations sound
in any concurrent non-racy context

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound
in any concurrent non-racy context

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound
in any concurrent non-racy context

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

Start with a randomly generated well-defined program

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

Init g3 0
Init g4 1
Init g5 1
Init g6 6

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Init g3 0
Init g4 1
Init g5 1
Init g6 6

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

Friday 24 January 14

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

Can match applying
only correct eliminations and reorderings

Friday 24 January 14

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

If we focus on the miscompiled initial example...

Friday 24 January 14

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

Friday 24 January 14

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

reference
semantics

Load a 1

Friday 24 January 14

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

Load a 1
Load b 0
Store b 0

gcc -O2 memory tracereference
semantics

Load a 1

Friday 24 January 14

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

Load a 1
Load b 0
Store b 0

gcc -O2 memory trace

 Cannot match some events detect compiler bug

reference
semantics

Load a 1

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

 Subtleties:
 - dependencies between eliminable events

 - some optimisations (e.g. merging of accesses) cannot be expressed
 in the C11/C++11 formalisation

 - the tool also ensures that the compilation of atomic accesses is
 preserved by the optimiser

Friday 24 January 14

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

only transformations sound in any
concurrent (non-racy) context?

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

 Subtleties:
 - dependencies between eliminable events

 - some optimisations (e.g. merging of accesses) cannot be expressed
 in the C11/C++11 formalisation

 - the tool also ensures that the compilation of atomic accesses is
 preserved by the optimiser

Going from theory

to a tool that scales to real compilers

is a

full-time job

Friday 24 January 14

4. Impact on the non-academic world

Friday 24 January 14

1. Some GCC concurrency bugs

Some concurrency compiler bugs found

in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.
Remark: these bugs break the Posix thread model too.

All promptly fixed.

Friday 24 January 14

1. Some GCC concurrency bugs

Some concurrency compiler bugs found

in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.
Remark: these bugs break the Posix thread model too.

All promptly fixed.

Good timing
 Existing compilers are being adapted to the C11/C++11 standard

 > Just to get this straight, am I to assume that the default code
 > generation for GCC is a single threaded environment?

 It certainly is, though we are getting more careful about this stuff
 in recent years and generally only read data-races are ok.

Friday 24 January 14

1. Some GCC concurrency bugs

Some concurrency compiler bugs found

in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.
Remark: these bugs break the Posix thread model too.

All promptly fixed.

Good timing
 Existing compilers are being adapted to the C11/C++11 standard

 > Just to get this straight, am I to assume that the default code
 > generation for GCC is a single threaded environment?

 It certainly is, though we are getting more careful about this stuff
 in recent years and generally only read data-races are ok.

Friends
Previous work introduced us to several gcc developers

that pushed for our bug reports to be fixed.

Friday 24 January 14

2. Checking compiler invariants

Baked this invariant into the tool and found a counterexample...

GCC internal invariant: never reorder with an atomic access

atomic_uint a;
int32_t g1, g2;

int main (int, char *[]) {
 a.load() & a.load ();
 g2 = g1 != 0;
}

ALoad a 0 4
ALoad a 0 4
Load g1 0 4
Store g2 0 4

Load g1 0 4
ALoad a 0 4
ALoad a 0 4
Store g2 0 4

...not a bug, but fixed anyway

Friday 24 January 14

ALoad a 0 4
Load g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

ALoad a 0 4
Store g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

?

3. Detecting unexpected behaviours

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

uint16_t g

for (; g==0; g--); g=0;

If g is initialised with 0, a load gets replaced by a store:

Friday 24 January 14

ALoad a 0 4
Load g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

ALoad a 0 4
Store g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

?

3. Detecting unexpected behaviours

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

uint16_t g

for (; g==0; g--); g=0;

If g is initialised with 0, a load gets replaced by a store:

Spin-off

Collaboration with ThreadSanitizer developers to detect
 false positives due to memory access introductions.

Friday 24 January 14

5. Behind the scenes

Friday 24 January 14

Low-level software

Hardware

ArchitecturesApplications

Low-level software

Language definitions

Friday 24 January 14

Hardware memory models

x = y = 0x = y = 0

x = 1 y = 1
print y print x

Dekker algorithm

Friday 24 January 14

Hardware memory models

x = y = 0x = y = 0

x = 1 y = 1
print y print x

Should not terminate printing 0 0.

Dekker algorithm

Friday 24 January 14

Hardware memory models

x = y = 0x = y = 0

x = 1 y = 1
print y print x

Should not terminate printing 0 0.

Let's see...

Dekker algorithm

Friday 24 January 14

Hardware memory models

x = y = 0x = y = 0

x = 1 y = 1
print y print x

The output 0 0 can be
observed on x86 and on
ARM/Power.

Dekker algorithm

Friday 24 January 14

Hardware memory models

x = y = 0x = y = 0

x = 1 y = 1
print y print x

The output 0 0 can be
observed on x86 and on
ARM/Power.

Write buffers hide the latency
of writes to memory but are
observable by concurrent code.

Dekker algorithm

Friday 24 January 14

Memory models differ between architectures

x = f = 0x = f = 0

x = 1 print f
f = 1 print x

message passing

Friday 24 January 14

Memory models differ between architectures

x = f = 0x = f = 0

x = 1 print f
f = 1 print x

message passing

Should not terminate printing 1 0.

Friday 24 January 14

Memory models differ between architectures

x = f = 0x = f = 0

x = 1 print f
f = 1 print x

message passing

Should not terminate printing 1 0.

Let's see...

Friday 24 January 14

Memory models differ between architectures

x = f = 0x = f = 0

x = 1 print f
f = 1 print x

message passing

The output 0 0 can be
observed on

ARM/Power but not on x86.

Friday 24 January 14

 X86
 Sarkar, Owens, Sewell, Zappa Nardelli

ARM/Power
 Alglave, Maranget, Sarkar, Sewell, Williams

C11/C++11
 Batty, Owens, Sarkar, Memarian, Sewell, Weber

Soundness of optimisations in JSR-133 and C11/C++11
 Sevcik, Morisset, Pawan, Zappa Nardelli

Model checker for C11/C++11 atomics
 Norris, Demsky

Testing against the models (doable)

Establishing models (done, almost)

Friday 24 January 14

Verification above the models (in its infancy)

Compilation scheme from C11/C++11 to Power/ARM and X86
 Sarkar, Owens, Memarian, Batty, Sewell, Owens

Verified compilation from a concurrent C-like language to X86
 Sevcik, Vafeiadis, Zappa Nardelli, Jagannathan, Sewell

 doing for C11/C++11 would be much harder, doing it for GCC would be impossible

Fence-elimination optimisations
 Vafeiadis, Zappa Nardelli

X86 lock algorithms, work-stealing algorithms on X86 and Power/ARM
 Owens, Lê, Morisset, Guatto, Cohen, Zappa Nardelli

...

Friday 24 January 14

Take-up in Industrial Concurrency Community?

Handled the real behaviour

Found some bugs

Ongoing dialogue with
language designers

and developers

Friday 24 January 14

Take-up in Industrial Concurrency Community?

Handled the real behaviour

Found some bugs

Ongoing dialogue with
language designers

and developers

Still, many open problems.

Friday 24 January 14

Take-up in Industrial Concurrency Community?

Handled the real behaviour

Found some bugs

Ongoing dialogue with
language designers

and developers

Still, many research opportunities!

Friday 24 January 14

6. The Big Picture

Friday 24 January 14

Safe
marshalling

Tool support for semantics

2003 2005 2007 2009 2010 2012 2014

PhD

Static and dynamic typing

Concurrent
separation
logic

Hardware
memory
models

Certified
compilation

Compiler
testing

Audit logs

Friday 24 January 14

TCS’04

Safe
marshalling

Tool support for semantics

2003 2005 2007 2009 2010 2012 2014

PhD

Static and dynamic typing

Concurrent
separation
logic

Hardware
memory
models

Certified
compilation

Compiler
testing

Audit logs

Concur’01

FSTTCS’02

ICALP’03

TCS’04

ICFP’05

JACM

Inf. Comp.

ICFP’07

JFP

ESOP’08

ESOP’08 ESORICS’09

POPL’10

POPL’09
POPL’11

JFP

CACM

PLDI’13

SAS’11 JACM

OOPSLA’13

PPoPP’13

Friday 24 January 14

Safe
marshalling

Tool support for semantics

2003 2005 2007 2009 2010 2012 2014

PhD

Static and dynamic typing

Concurrent
separation
logic

Hardware
memory
models

Certified
compilation

Compiler
testing

Audit logs

Friday 24 January 14

Safe
marshalling

Tool support for semantics

2003 2005 2007 2009 2010 2012 2014

PhD

Static and dynamic typing

Concurrent
separation
logic

Hardware
memory
models

Certified
compilation

Compiler
testing

Audit logs

Friday 24 January 14

Questions?

Friday 24 January 14

