
Reliable Evidence: Auditability by Typing

Nataliya Guts1, Cédric Fournet2,1, and Francesco Zappa Nardelli3,1

1 MSR-INRIA Joint Centre
2 Microsoft Research

3 INRIA

Abstract. Many protocols rely on audit trails to allow an impartial judge to ver-
ify a posteriori some property of a protocol run. However, in current practice
the choice of what data to log is left to the programmer’s intuition, and there
is no guarantee that it constitutes enough evidence. We give a precise definition
of auditability and we show how typechecking can be used to statically verify
that a protocol always logs enough evidence. We apply our approach to several
examples, including a full-scale auction-like protocol programmed in ML.

1 A language-based approach to auditing

Consider a simple protocol where a client A sends an authenticated mail to a server ℬ.
To prove her identity,A signs the message using her secret signing key and appends the
signature to the message:

A −→ ℬ : text , sign(secret key(A), text)

Intuitively, this protocol guarantees the authenticity of the message sent by A. The
server ℬ can verify the signature using A’s public key and, if the test succeeds, ℬ can
be sure of the authenticity of the message. But, in case of dispute between A and ℬ,
does ℬ possess enough evidence to prove authenticity to a third party?

We say that a protocol is auditable with respect to a property if it logs enough
evidence to convince an impartial third party, called a judge, of that property.

In our example, A’s text and signature, if securely stored by ℬ, constitute sufficient
evidence for auditing. Later, a judge can take a decision upon verifying the signature
and, inasmuch as all principals agree on the public key infrastructure for signing, they
also agree that this judge is impartial. Note that the signature alone may not constitute
sufficient evidence: a careless server that discards or alters the received text would not
be able to convince the judge.

Suppose now that, instead of signing the text, A signs a fresh key k, encrypts it
under ℬ’s public key, and encrypts the text under k using non-malleable encryption. In
this case, ℬ can decrypt and authenticate the key k, then decrypt the message, and infer
the authenticity of text. However, an impartial judge cannot attribute the message toA,
since both ℬ and A are able to encrypt data using the key k; the authenticity of text for
A is not auditable. (For mail, this feature is often called deniability [Roe97].)

The concept of auditability is entangled with the figure of the judge. A judge is an
entity that evaluates if some evidence enforces a given property, in an impartial and

To appear in the proceedings of the 14th European Symposium on Research in Computer Security: ESORICS 2009, Michael
Backes, Peng Ning (Eds.) c⃝ Springer-Verlag Berlin Heidelberg 2009.

http://http://conferences.telecom-bretagne.eu/esorics2009

transparent manner. Thus, its decision procedure must be relatively simple, and it must
be known and accepted a priori by all principals concerned by the auditing.

Similarly, fair non-repudiation protocols rely on trusted third parties (TTPs): for
each message, evidence of its origin and receipt of its dispatch is collected by the par-
ticipants and this evidence can be passed to the TTP to resolve disputes [KMZ02].
Judges are similar to offline TTPs: they are invoked a posteriori, only when necessary.
Nevertheless judges never issue their own signatures (unlike transparent TTPs), nor
participate in the protocol.

Auditing is an essential component of secure distributed applications, and the use of
audit logs is strongly recommended by security standards [Pub96, ISO04]. In practice,
most applications selectively store information of why authorisations were granted or
why services were provided in audit logs, with the hope that this data can be later
used for regular maintenance, such as debugging of security policies, as well as conflict
resolution. However, deciding which evidence should be logged to enable reliable and
efficient auditing is left to the programmer’s intuition. As shown above, it is not the
case that all properties that can be verified by a principal at run-time can be audited by
an external judge. Even considering only properties that can be audited, it is unclear if
some given evidence enforces them. Besides, extensive logging may conflict with other
security goals, such as confidentiality and privacy.

The first contribution of this paper is a formal definition of auditable properties
(Sections 2 and 3). We aim to verify concrete protocol implementations, rather than
their abstract models, so we represent protocols as programs written in F# (a dialect
of ML) and we specify their properties using logical formulas. Judges are represented
as trusted F# functions; a new language primitive marks data proposed as evidence for
some property.

The second contribution is a method for verifying that some collected evidence suf-
fices to prove a property to a given judge (Section 4). Our method relies on refinement
types, and uses F7 (an extended type-checker for F# [BBF+08]) to statically verify that
a property is auditable. Our approach is tested against several sample protocols, includ-
ing a realistic multiparty partial-information game programmed in F# (Section 5). A
companion paper, the source code for all our protocols, and additional examples are
available from http://www.msr-inria.inria.fr/projects/sec/logs.

2 Modelling security protocols in F7

We build on F7 [BFG08], an existing tool for verifying safety properties in F# pro-
grams, and on RCF [BBF+08], its formal core language. RCF is a typed concurrent
call-by-value lambda calculus with an F# syntax. We only recall its syntax and infor-
mal semantics, and refer to earlier work for a complete definition.

Values, denoted byM , include names, variables, functions, pairs, constructed values
and unit. Expressions, denoted by A and B, include a standard functional core: values,
application, syntactic equality, let binding, pattern matching; and some concurrent con-
structs: name restriction, (�a)A, parallel composition of threads, A ↱ B, asynchronous
send of a message N over a channel M , send M N , and reception of a message over
a channel M , rcv M . In addition, expressions include logical annotations. We let C

2

range over formulas in a first-order logic that includes predicates over values. Formulas
can be assumed (denoted assume C) or asserted (denoted assert C) by programs. (Free
variables of a term M are denoted fv(M).)

An expression represents a concurrent, message-passing computation, which may
return a value. The state of the computation can be represented as an expression in
normal form that includes (1) a multiset of assumed formulas; (2) a multiset of pending
messages; and (3) a multiset of expressions being evaluated in parallel. We use F to
range over the multiset of assumed formulas.

The reduction semantics is defined in terms of a small-step relation over configura-
tions. It contains the usual �-reduction, pattern-matching reduction and communication
reduction, closed under evaluation contexts E, defined as

E ::= [] ∣ let x=E in A∣ (�a : T)E ∣E ↱ B ∣B ↱ E]

The evaluation of assume C extends the current multiset of assumed formulas with C.
Informally, assumes are privileged expressions, recording for instance that a principal
intends to send a message. Conversely, assert records that a principal believes that some
logical property holds at this point. We say that assert C succeeds if, when it is evalu-
ated, the formula C is deducible from the assumed formulas F , denoted F ⊢ C. For
example, the assert in the expression assume C; assert C always succeeds. The assume
and assert expressions always reduce to unit: their role is to specify, rather than to

enforce, run-time properties of a program.

Protocols and roles as programs A protocol can be written in F# as a collection of
functions that represent compliant code for the different roles, possibly sharing some
variables (such as cryptographic keys). This collection of functions and variables can
be structured into modules; the module interfaces are then made available to the envi-
ronment, which can run, and interact with, the roles. The environment models an active
attacker; it is a priori untrusted and should not access some of the shared variables (such
as private keys). In F# the visibility of variables is specified in typed interfaces (as done
in Section 4), but, for clarity, in this section we do not use types and rely instead on
some syntactic sugar.

A protocol, denoted ℒ, is a context that defines public and private let bindings:

ℒ = let a=A inℒ ∣ private let a=A in ℒ ∣ []

Let private(ℒ) (resp. public(ℒ)) be the set of variables declared in ℒ with (resp. with-
out) the private prefix. An opponent, denoted O, is an expression that does not contain
any assert (and audit, defined later) and whose free variables cannot be bound to vari-
ables declared as private. A program is a closed expression of the form ℒ[O] where
ℒ defines the global variables and roles and O is an opponent (as such, it holds that
private(ℒ) ∩ fv(O) = ∅).

To illustrate our setup, we program the authenticated mail of Section 1 relying on
RSA public-key signatures. In the code below, we omit the trusted libraries Crypto and
Net that define functions such as sigkey, verifkey, rsasha1, and verify sig. (Following
the ML syntax, we omit in between top-level definitions.)

3

private let seed = rsaKeyGen ()
private let ska = sigkey seed
let pka = verifkey (rsaPub seed)

let princA () =
let text = "Hey" in
assume (Send("A",text));
send c (text, rsasha1 ska text)

let princB () =
let text,sign = recv c in
if verify sig pka text sign
then assert (Send("A",text));
text

The code first defines the secret key ska and the verification key pka for principal A.
The secret key is declared private, to prevent the environment to sign messages. The
principal A, implemented by princA, creates a signed message and sends it over the
channel c. The principal ℬ, implemented by princB, receives the message and its sig-
nature, and verifies if the signature is valid for the message issued by A. We call the
protocol above ℒmail (we omit the standard library modules ℒCrypto and ℒNet it de-
pends on). The predicate Send(a,x) encodes at the logical level that the principal a sent
the message x. Since the principal A is compliant, all the other participants trust her to
add Send("A","Hey") to the set of valid formulas using the assume primitive. If the
signature verification succeeds, then the server can expect this property to hold, which
is specified by asserting it.

Pinpointed expressions To formalise auditability we need to track precisely the sub-
stitutions that are applied to some sub-expressions of a program. Technically, we extend
the syntax of expressions with pinpointed expressions, denoted A�, where � is a finite
substitution of values for variables. The definition of substitution used for evaluation is
then modified to extend � rather than propagate through A:

(A�){M/x} = A(�; {M/x}) .

Once a pinpointed expression gets in head position inside an evaluation context, the de-
ferred substitution � is applied to A, resuming the computation via the rule A� → A�.
Just before this reduction, � contains exactly the substitutions applied by the context to
the sub-expressionA. It is easy to see that the expressionA and the expression obtained
by replacing a sub-expression A′ of A with A′ (a pinpointed expression with an empty
substitution) reduce to the same value.

Safety and Robust Safety A program is safe if, in all evaluations all its assertions
succeed [BBF+08]. We recast this definition using pinpointed assertions:

Definition 1. The formulaC is safe in the programA[assert C] when, for all reductions

A[assertC]→∗ E[assertC�]

where E is an evaluation context with assumed formulas F , we have F ⊢ C�. A pro-
gram is safe when all its assertions are safe. A protocol ℒ is robustly safe if, for all
opponents O, the program ℒ[O] is safe.

Note that when assert is evaluated the substitution � records the actual values for the
free variables of the formula C.

4

For example, using the protocol ℒmail, the program ℒmail[princA () ↱princB ()] is
safe. The only occurrence of assert is in the code of princB, and it is evaluated after
reception on channel c. Only princA sends a message on c, with content "Hey", and
only after assuming Send("A","Hey")}. These reductions lead to a configuration

E
[
assert (Send("A",text)){"Hey"/text}

]
with multiset of assumed formulas F = {Send("A","Hey")}, so we trivially have F ⊢
Send("A","Hey"). More interestingly, ℒmail is also robustly safe. Since robust safety
quantifies over all environments that interact with the protocol, we might imagine a
malicious opponent that after launching princB sends the message ("A","Hey") over
the public channel c. However, the signature verification performed by ℬ guarantees
that the message received on the public channel c has been sent by A, and in turn that
the formula Send("A","Hey") has been previously assumed.

3 A Definition of Auditability

Informally, a program is auditable if, at any audit point, an impartial judge is satisfied
with the evidence produced by the program.

We extend RCF with the primitive audit C L. This allows the programmer to spec-
ify the program points that require auditing for property C, using the value L as evi-
dence. In practice, although we do not enforce it, the evidence produced by L should
be safely logged by the program. Similarly to assert, this primitive plays a role only in
the specification of properties: audit C L always reduces to unit.

To simplify the presentation, we focus on programs with a single audited property,
a single judge, and a single audit request point. Let C be this property, and suppose
that fv(C) = x̃. Our definitions generalise easily to several distinct properties and audit
requests, possibly sharing the same judge.

We represent the judge as a function, named judge, taking as arguments the actual
values of the free variables of C and the evidence, and evaluating a boolean expres-
sion J that computes the judge’s decision. The judge function in a protocol should be
defined by a public binding of the form let judge x̃ e = J . For sanity, we require that J
does not assume any property or access any private binding of the protocol.

Auditability for the authenticated mail In the introduction we suggested that in the
authenticated mail example the property Send("A",text) is not only safe but also au-
ditable. For a given text sent by the client (e.g. "Hey"), the associated signature consti-
tutes the evidence to enforce the property Send("A",text){"Hey"/ text}. We can then
replace the assert (Send("A",text)) executed by prinB with the audit request audit (Send
("A",text)) sign. In this example the PKI is trusted by all participants: a judge that,
given a text and a signature, returns true if and only if the signature is valid can be
deemed impartial (or correct). Observe that the signature always suffices to convince
the judge: we say that it constitutes complete evidence.

The key property that distinguishes auditing from asserting properties, is that the
judge can be called in any context where the public key of the client is known: for
instance, a third party can invoke the judge to confirm the outcome of the transaction.

5

We can update the code of the authenticated mail protocol and add the definition of
the judge.

let judge text e =
verify sig pka text e

let princB () =
let text,sign = recv c in
if verify sig pka text sign then

audit (Send("A",text)) sign;
send d (text,sign); text

The judge function just validates the signature passed in as evidence. As discussed
above, it is correct for the property Send("A",text). The audit (Send("A",text)) sign
statement executed by princB succeeds if the evidence sign suffices to convince the

judge, as is the case here. Thus, the property Send(a,x) is auditable in this example. The
principal princB then publishes the evidence on the channel d.

Auditability, formally Given a program ℒ[O], we rewrite it as a two-hole context
applied to the body J of the judge (let judge x̃ e = J) and to the evidence L provided
in the audit statement. With a slight abuse of notation we denote it as A[J, L]. Our
definition says that a (well-formed) program is auditable for a property C if it defines
an impartial judge for C (correctness), and if the evidence provided in the audit call
suffices to convince the correct judge of the validity of the property (completeness).

Definition 2. Let ℒ be a protocol with a (public) declaration let judge x̃ e = J and a
statement audit C L in its scope. Let O be an opponent. Let A be a two hole context
such that A[J, L] = ℒ[O]. The program ℒ[O] is auditable when

(Well-formedness) (a) the declared variables of ℒ are not rebound; (b) J and L do
not contain assumes. (c) fv(J) ∩ private(ℒ) = ∅;

(Correctness) if A[J, L] →∗ E[J�] for some evaluation context E with assumed for-
mulas F , and J� →∗ true, then we have F ⊢ C�; and

(Completeness) if A[J, L] →∗ E[L�] for some evaluation context E, then we have
(let e = L in J)� →∗ true.

The protocol ℒ is auditable when the program ℒ[O] is auditable for all opponents O.

Let us illustrate the definition above for the authenticated mail protocol, with some
opponent code that receives the audit evidence on channel d then invokes the judge:

ℒmail[princA () ↱ princB () ↱ (let text,e = recv d in if not (judge text e) then "bad")]

With this particular opponent, the judge is called after the server successfully completes,
and thus after the client’s assume, so the judge is correct when it returns true. The
evidence is also complete: at the audit point, if we pass the actual evidence to the judge
we get

(let e = sign in verify sig pka text e)�

for some substitution � that substitutes "Hey" for text, the result of rsasha1 ska text
for sign, a cryptographic function for verify sig, and a matching keypair for ska and
pka. This expression reduces to true by the definition (and the F# implementation) of
the verification of asymmetric signatures.

6

In some cases the conditions required for correctness can be trivially satisfied. A
judge that always returns false is correct; however in this case no evidence can satisfy
the judge, and thus the protocol cannot be complete. Also, if the judge is not called, then
correctness is vacuously satisfied. Correctness and completeness are complementary
properties: giving evidence to an unreliable judge makes no sense, nor does conducting
a trial with insufficient evidence. Note that a judge is correct if and only if it is safe to
assert the audited property whenever the judge returns true.

Opponents and partial compromise The environment O models a potentially hos-
tile attacker, which can access all public values and roles of the protocol, and control
public communications. In addition, an attacker may corrupt a subset of the principals
to gain access to their private resources (like signing keys). Interestingly, in this case
the remaining compliant principals may remain auditable: a signature by a principal,
compliant or not, constitutes audit evidence.

Compromised participants can be represented in our setting by extending the proto-
col with definitions that export their private resources. Suppose that, in the authenticated
mail example, A is compromised. Its secret key becomes public, and the code below is
added to the end of the protocol:

let leaked key = assume (∀x. Send("A",x)); ska

The attacker can now choose any message and sign it with A’s signature:

send c ("Bleah", rsasha1 leaked key "Bleah")) ↱ princB ()

The compromise ofAmust be reflected in the logical world. The meaning of the formula
Send("A",x) was that “principal A sent message x”, and it was possible to certify this
action by verifying the relevant signature. However, now arbitrary messages sent by
the attacker can be signed with A’s key. The assume (∀x. Send ("A",x)) evaluated just
before exporting the private key of A captures this fact. In general, before exporting
the private resources of a compromised participant, it is necessary to “saturate” all the
properties related to the compromised participant, as done here (in a modal logic, this
would be equivalent to assuming the formulaA says false [FGM07]). Observe that, in a
protocol run where A was compromised and the environment issued the attack above,
if an audit for the property Send("A","Bleah") is requested, then the server can still
provide enough evidence to the judge: the protocol is still auditable.

An attacker might also invoke directly a judge and provide some bogus evidence to
accuse a compliant principal. However, Definition 2 states that a judge is correct only if
it always takes the right decision, independently of the origin of the evidence. So, this
attack is deemed to fail.

Auditable properties Even if typical evidence includes some collection of signed data,
the judge does not necessarily rely on cryptography. To audit the arithmetic property
“2n− 1 is not prime”, with two integers as evidence, a correct judge simply checks that
these integers are greater than 1 and their product is equal to 2n − 1. Similarly, if an
access control database is trusted by the judge and by all principals, then the compliance
of granted or denied accesses can be verified against the corresponding database entries,
and no evidence must be provided.

7

Some properties, like deniable authentication in the second example of Section 1,
cannot be audited. In general, all deniable properties are not auditable, and all auditable
properties are undeniable (luckily properties enforced by most of the protocols are nei-
ther deniable nor undeniable). Privacy constraints might also prevent auditing: if x is
secret, then a propertyC where x appears as cleartext in the evidence cannot be audited.

Datatypes that guarantee audit properties We previously showed that it is possi-
ble to audit cheating (write-after-commit attacks) on an implementation of write-once
cells [FGZN08]. We can prove that the described distributed protocol that globally com-
pares log entries behaves as a correct judge, and that the information stored in the dis-
tributed log constitutes complete evidence.

4 Static analysis of auditability

In the previous sections we relied on assume, assert, and audit statements to relate the
states of a program to logic formulas. In this section we describe how the refinement
types of RCF and the associated typechecker for ML, called F7 [BFG08], can be used
to statically verify the correctness of the judge and the completeness of the evidence.

Review of refinement types Refinement types associate logical formulas with program
expressions: the type of an expression A is of the form x: T { C } where x binds the
value ofA, T is a type being refined (e.g. an ordinary ML type), and C is a formula that
holds when A returns (e.g. a property of x).

In the mail example, the type x: string {Send("A",x)} is inhabited by all strings
M such that the property Send("A",M) follows from the assumed formulas. So, the
string "Hey" sent by A has this type, since the property follows from the preceding
assume. The string returned by ℬ also has this type: the signature verification ensures
that the property follows from the preceding assume.

Refinements that appear in the arguments of a function specify preconditions that
must hold when the function is invoked, while the refinement of the return type speci-
fies a postcondition that will hold when the function returns. Hence, the role princB is
a function that can be typed as unit→ text:string{Send("A",text)}: no preconditions
are required to run princB, and the returned string text will satisfy Send("A",text). Al-
though all formulas in our examples so far are just facts (representing protocol events),
in general formulas also include policy rules. Consider, for instance, a variant of our ex-
ample where ℬ also enforces an authorisation policy after authenticating the message:
a message may be forwarded to a mailing list only if the sender is a member of that list:

assume (∀x,t,l. (Send(x, t) ∧CanPost(x,l))→Post(l,t)

and we may type princB as

unit {CanPost("A","comp.risk")} → text:string {Post("comp.risk",text)}

Now princB can only be invoked in a context where CanPost("A","comp.risk") holds.
An assert C statement is well-typed in a typing environment where C logically fol-

lows from the formulas of the environment. Conversely, an assume C statement is al-
ways well typed, with C as a postcondition.

8

Typing cryptography The library Crypto in the F7 distribution provides a refinement-
typed symbolic implementation for standard cryptographic functions. In particular, the
types for public-key signature operations let us specify matching logical conditions be-
tween signers and verifiers that exchange messages over some untrusted channel, used
as preconditions before signing, and as postconditions after signature verification. Let
payload be a plain ML type (without refinement formula) that expresses the structure
of a message. Let signed abbreviate the refinement type p:payload {C} for some for-
mula C. The functions for signing and verifying payloads can be typed as:

val rsasha1: signed sigkey→ signed→ dsig
val verify sig: signed verifkey→ p:payload→ dsig→ b:bool { b=true⇒C }

The type dsig is the type of signatures. The types signed sigkey and signed verifkey are
the type of keys used to compute and verify signatures for values of type signed. The
function rsasha1 computes a signature of a payload value that satisfies the precondi-
tion C. The function verify sig takes as parameter a verification key, a payload value,
and a signature; it dynamically checks whether this is a valid signature for that value and
returns the Boolean outcome. The postcondition states that, if the verification succeeds,
then property C holds for p, hence that p can be given the more precise refinement type
signed. Informally, this postcondition is correct if all signers are also well-typed and the
signature scheme is cryptographically secure.

Typing opponents The opponents that interact with a protocol do not have to be well-
typed: they are untrusted and we should not (artificially) limit their power.

To this end, the type system has a universal type [Aba99], written Un, to represent
data that may flow to and from the opponent. We recall below the main type safety
theorem.

Theorem 1 ([BBF+08]). If ∅ ⊢ ℒ[public(ℒ)] : Un, then ℒ is robustly safe.

The typing judgment � ⊢ A states that expression A is well-typed in the typing
environment � . The intuition is that � safely approximates the set of formulas that
hold whenever A is evaluated. Thus, if A contains well-typed asserts, then these asserts
will succeed in all executions of A. In the theorem, since ℒ[public(ℒ)] is typed as Un,
each of its publicly declared expressions must also have type Un, and for any opponent
O we also have ∅ ⊢ ℒ[O] : Un guaranteeing that ℒ[O] is safe.

With the theorem above, we can show that our authenticated email protocol is ro-
bustly safe: (1) we type it, in particular for cryptography by instantiating payload to
string (the type of text) and signed to text:string {Send("A",text)}; and (2) we check
that all its variables exported to the environment have a public type. Both checks are
automatically performed by the F7 typechecker.

Auditability via typechecking We show that types can also be used to statically verify
the auditability of a property in a well-formed protocol (Definition 2). This relies on
being able to assign (and verify) precise types to the judge function and to the functions
it uses. We first discuss correctness for the judge, then completeness for the evidence.

9

Correctness A judge is a public function that returns a boolean value. The untrusted
environment should be able to call it, so its arguments should have type Un. (In partic-
ular, the evidence values themselves are not trusted until they are verified by the judge.)
The correctness condition says that the judge returns true only when the target audited
property holds; this can be expressed as a post-condition on its result. We obtain the
following type declaration for the judge:

val judge: x̃: Ũn→ e:Un→ b:bool { b=true⇒C}

and every expression that can be given this type is a correct judge function.

Completeness Definition 2 states that some evidence is complete for an audit request
if a call to the judge in the same context and with the same evidence returns true. This
requires that: (1) the judge terminates, and (2) if the judge terminates, it returns true.

Termination of the judge function must be proved manually. Termination is hard
to prove in general, but pragmatically we limit ourselves to judges that are sequences
of calls to deterministic functions that terminate unconditionally: either non-recursive
functions, or recursive functions of linear-time complexity (e.g. cryptographic func-
tions) in their inputs. So termination is not a real issue.

We must then show that the context of every audit provides enough guarantees on
the gathered evidence to ensure that the judge returns true. This amounts to writing a
success condition for the judge; typechecking is then used to verify that the condition
holds at every audit point. We emphasise that these annotations need not be trusted, as
their correctness is checked by typing.

Typically a judge is a sequence of verifications: its success condition is the conjunc-
tion of the success condition for each of them. We need some additional refinements
for public-key signatures, so that typechecking guarantees the success of future signa-
ture verifications once a signature has been verified. We introduce a predicate IsDsig
(vkey, p, sg) where vkey, p, and sg are of type signed verifkey, payload, and dsig re-
spectively. This predicate records key-data-signature triples for which the cryptographic
primitive verify sig is guaranteed to succeed. The postcondition of verify sig is now a
conjunction that captures the two uses of the function: either we do not know whether
it will succeed and if it returns true we learn one IsDsig fact; or we know the relevant
IsDsig fact and we deduce that it will return true.

val verify sig : vkey:signed verifkey→ p:payload→ sg:dsig→ b:bool
{ b=true⇒ (C ∧ IsDsig(vkey, p, sg)) ∧ (IsDsig(vkey, p, sg)⇒ b=true) }

(We modified the symbolic implementation of verify sig in the Crypto library by in-
serting an assume (IsDsig(vkey, p, sg)) just before returning true, so that it can be type-
checked with the new refinement. Since the verification is deterministic, this is justified
by our interpretation of the predicate IsDsig.)

For example, our judge for authenticated mail calls verify sig once, and it can now
be re-typed with a success clause:

val judge : text:string→ e:dsig→ b:bool
{ (b=true⇒ (Send("A",text) ∧ IsDsig(pka,text,e)) ∧ (IsDsig(pka,text,e)⇒ b=true) }

In general, once we have identified a success condition D for the judge, with x̃ and e as
free variables for D, the judge should be typechecked against the refined type

10

val judge : x̃: Ũn→ e:Un→ b:bool { (b=true⇒ (C ∧D)) ∧ (D⇒ b=true) }

Typechecking must then guarantee that D holds for the evidence used in the actual
audit request. To enforce it in F7 code that includes the audit primitive audit C L, we
declare audit as a function typed with precondition D:

private val audit : x̃: Ũn→ e:Un {D }→ unit

(This function is trivially implemented as let audit x̃ e = ()). With these type annota-
tions, typechecking plus unconditional termination of the judge guarantee auditability:

Theorem 2. Let ℒ be a well-formed protocol with a judge function that always termi-
nates and an audit statement audit C L in its scope (with fv(C) = {x̃}).

Let � be the typing environment audit : x̃: Ũn→ e:Un { D }→ unit for some for-
mula D (with fv(D) ⊆ {x̃, e}). The protocol ℒ is auditable for C if we have

1. � ⊢ ℒ[public(ℒ)] : Un and
2. � ⊢ ℒ[judge] : x̃ : Ũn→ e:Un→ b:bool{ (b=true⇒ (C ∧D)) ∧ (D⇒ b=true) }

These annotations tend to be verbose but easy to write. For example, in the authen-
ticated mail, we have val audit: text:string→ e:dsig {IsDsig(pka,text,e)} → unit and,
since ℬverifies the signature just before the audit request, IsDsig(pka,text,sign) holds
when the audit command is typed.

5 Application: a protocol for n-player games

We design, implement, and verify a multiparty protocol with non-trivial auditable prop-
erties. Our protocol supports distributed games between n players and a server. The
game may be instantiated to rock-paper-scissors, online auctions (as programmed in
our code), leader elections, and similar partial-information protocols. For simplicity,
we assume that the game is symmetric between all players and that it can be played in
one round. The protocol participants are willing to cooperate but they want to reveal as
little information as possible; in particular they do not reveal their moves until everyone
has played (as e.g. in the Lockstep protocol [BL01]).

At the end of the game, depending on the moves for all players, one player wins,
and expects to be recognised as the winner—this is our main target auditable property.

Informal description of the protocol The protocol has two roles, the player and the
server; each run involves n+1 principals, n players plus one server. The same principal
may be involved multiple times in the same run, as several players plus possibly the
server. The protocol assumes a basic public-key infrastructure, with a public-signature
keypair for each principal.

The protocol has three rounds, each with a message from every player to the server,
followed by a message from the server multicast to every player:

11

Ai −→ S : Ai Hello
S −→ Ai : id, Ã, {id, Ã}S Start the game
Ai −→ S : Hi, {id,Hi}Ai Commit move, where Hi = ℎasℎ(Ai, id,Mi,Ki)

S −→ Ai : H̃, {id,H}A, {id, H̃}S Commit list
Ai −→ S : Mi,Ki Reveal move
S −→ Ai : M̃, K̃ Reveal list

Each player first contacts the game server. Once a party of n players is ready, the
server informs the players that the game starts: it generates a fresh game identifier id
and signs it together with the list of players Ãi for the game.

After accepting the server message, each player selects a move Mi and commits
to it: he computes and signs the hash of his move together with the game identifier (to
prevent replays), his own name (to prevent reflexion attacks), and a fresh confounder Ki

(to prevent dictionary attacks on his move). The server countersigns and forwards all
commitments to all players.

After accepting the server message and checking all commitments, each player un-
veils his move (and his confounder) to the server. The server finally publishes all moves,
hence the outcome of the game.

Protocol implementation The complete, verified source code for the protocol imple-
mentation appears online. It consists of 280 lines of F7 declarations and 420 lines of
F# definitions, excluding the standard F7/F# libraries for networking and cryptography.
The code is reasonably complex, partly because of the tension between confidentiality
and authentication/auditability, partly because it supports any number of players. Au-
tomated verification for n-ary group protocols and their implementations is still largely
an open problem, even for confidentiality and authentication [BL01].

We tested our implementation on a local network, running games that involve be-
tween 2 and 60 participants. A game involving 60 players ends in about 11 seconds on
an Intel Core Duo 2GHz with 1GB RAM, running virtualised Windows XP with .NET
cryptography over local HTTP communications.

Security goals (informally) Our protocol offers several properties.

– Integrity: the messages (Start), (Commit) and (Commit list) are authenticated.
– Secrecy: each player’s move remains secret until successful completion of the com-

mitment round, hence the other players’ moves for this game cannot depend on it.
– Auditability: once a player wins a game id, it can reliably convince all other prin-

cipals of his victory (according to a “judge” procedure, defined below).

To prove his wins, each player collects the verified commitments from the other
players, as well as the second server signature. We now explain what constitutes evi-
dence for this property, first operationally, by defining our judge function, then from a
specification viewpoint, by defining formulas that relate the actions of the participants.

Judge and evidence Our target property is Wins(server,id,players,winner,move), a
predicate parameterized by the server principal, the game identifier, the list of play-
ers, the winner principal, and the winning move. We list below the judge, as defined in
our ML implementation: a function that takes the same parameters plus some evidence
(ssig2,evl):

12

let judge server id players winner move e =
let (ssig2,evl) = e in
let vk = get publickey server in
let players’,hashes,moves,keys,sigs = unzip5 evl in
if verify sig server vk (CommitList data(id,players,hashes)) ssig2 then (* (1) *)
if players = players’ then (* (2) *)
if forall 1 verify hash id evl then (* (3) *)
if forall 2 verify move id evl then (* (4) *)
if winning move move moves then (* (5) *)
if exists winner move evl then true (* (6) *)
else false

and that calls the two auxiliary functions

let verify hash id x = let (player,hash,move,key,sg) = x in
let vk = get publickey player in verify sig player vk (Commit data(id,hash)) sg

let verify move id x = let (player,hash,move,key,sg) = x in
ishash player id key hash move

The evidence should consist of the server’s signature on the committed hashes
(ssig2) and a list (evl) of 5-tuples Ai, Hi,Mi,Ki, {N,Hi}Ai (one for each player).
This evidence is checked as follows: split the tuple list into 5 lists of the respective tu-
ple components, using a variant of the ML library function List.unzip; then check that
(1) the server’s signature on the hashes is valid; (2) the two lists of players are the same;
(3) for each 5-tuple, the hash is well-signed; (4) for each 5-tuple, the hash is correctly
computed from the move; (5) move meets some game-specific victory condition; and
(6) winner actually played this move. Finally, return true if all those checks succeed,
false otherwise. The code uses monomorphic variants of a ML library function List.
forall that calls a boolean function on each element of a list and returns true if all those
calls return true; we omit their definitions, which are needed only for typechecking with
different refinement types.

Logical Properties To convince ourselves (and the players) that our judge is indeed
correct, and that our player is auditable for Wins(s,id,pls,w,m), we now associate logical
properties with each message, at each point of the protocol. This association is enforced
by typechecking our code against refinement types that embed these properties. Thus,
these properties form the basis for our security verification. We refer to the code for
their complete, formal definition. By convention, when a property can be attributed to
a principal, the corresponding predicate records that principal as its first argument. We
first specify the events assumed by the principals before signing. To sign a message, the
corresponding predicate must be assumed.

Message Assumption Meaning
Start Start(s, players, id) server s started game id with players
Commit Commits(p, id, ℎasℎ) player p committed to ℎasℎ in game id
Commit list CommitList(s, id, ℎasℎes) server s collected ℎasℎes in game id

We also define auxiliary predicates for verifying our code, for instance recursive
predicates on lists. Predicate Mem defines list membership. Predicate Ishash(p, id, ℎ,m)
is the verified post-condition of a function ishash that tests whether a value is the hash

13

of a move m by principal p in game id. Predicate Zip3(l,l1,l2,l3) is the verified post-
condition of a function unzip3 that splits a list l of triples into three lists l1, l2, and l3.
Predicate Winning(m,ms) holds when the function winning move(m,ms) returns true.

The main rule of the game puts all these pieces together, formalising when the
players and the server concede victory, as an assumption that defines the Wins predicate:

assume (∀server,id,winner,move.
∀players,moves,evl,r1,hashes,sigs,keys,hash,key,sg.

(Start(server,players,id) ∧CommitList(server,id,hashes)
∧ Zip5(evl,players,hashes,moves,keys,sigs)
∧ (∀p,h,m,s,k. Mem((p,h,m,k,s),evl)⇒ (Ishash(p,id,h,m) ∧Commits(p,id,h)))
∧Winning(move,moves) ∧Mem((winner,hash,move,key,sg),evl))
⇒ (Wins(server,id,players,winner,move)))

Victory is inferred when server started a game id for some players (Start) and collected
some commitments hashes (CommitList), and when there are moves, keys and sigs that
form a list of evidence evl (Zip5), such that (i) in each tuple, the hash is obtained from
the move and the key(IsHash), and the principal signed his hash (Plays); (ii) move is
the best move among all moves (Winning), and winner did play move (Mem).

Our model finally accounts for compromised players and servers; to this end, we
provide a public interface for creating both good and bad (compromised) principals.
All signing keys for all principals are kept in a database; before releasing a signing key
to the opponent, we formally assume Leak(p), which collects any assumption that the
compromised principal p may ever make.

assume (∀p. Leak(p)⇒ (∀id,x. Start(p,x,id) ∧CommitList(p,id,x) ∧Commits(p,id,x)))
let create bad principal p =

create good principal p; assume (Leak(p)); get secretkey p

Player (with an Audit statement) In contrast with the code for the judge, the players
need not agree on the code for the server and the other players. Still, a player willing to
use our client code may wish to review when this code performs actions on his behalf
(relying on the asserts statements), and when this code has enough evidence to prove his
wins (relying on the audit statement). The code for the player is available online. The
audit statement appears after successfully processing all three messages from the server.
The gathered evidence consists of the server’s signature for the list of commitments, and
the list of 5-tuples representing all moves.

Security (formally) We can now precisely state and prove our security goals. The
most interesting result is that, for any number of games between any number of players,
for any assignment of the server and these players to principals, any player’s win is
auditable, even if all other participants are corrupted and collude against this player.

Theorem 3 (Security of the n-players game). Let ℒ match the protocol obtained by
composing the Crypto and Net libraries and the source code of our protocol.

1. integrity: ℒ is robustly safe;
2. auditability: ℒ is auditable;
3. secrecy: ℒ preserves secrecy of the moves until all players commit.

14

Proof. Typechecking game4n-dsec.fs takes 18s and generates 105 queries to Z3
(checking secrecy requires 4 extra queries).

1. By typing the code and Theorem 1, all assertions are always satisfied.
2. By typing, Theorem 2, and a termination argument for the judge: its code is a

sequence of let bindings on expressions that terminate in linear time in the size of
their list parameters, so by construction the judge function terminates on all inputs.

3. By typechecking a variant of the code. We then model a move as a function with the
ReleaseMove(player,id) precondition (defined below) so that one cannot actually
apply the function without satisfying the precondition.

assume (∀p,id. ReleaseMove(p,id)⇔ (∃server,players,hashes,sigs,l.
Start(server,players,id) ∧Mem(p,players) ∧CommitList(server,id,hashes)
∧ Zip3(l,players,hashes,sigs) ∧ (∀p,h,sg. (Mem((p,h,sg),l)⇒Commits(p,id,h)))))

Player p may release his move in game id, if a server committed to a list of valid
sealed bids for all players including p.

Fair non-repudiation (another application) To validate our approach, we also im-
plemented and verified a fair non-repudiation protocol with an offline TTP [KMZ02].
Using types, we proved it auditable for two properties: non-repudiation of receipt and
non-repudiation of origin. (See the online version of this paper.)

6 Related work and research directions

Aura [JVM+08, VJMZ08] is a programming language that embeds an authorisation
logic. Compared to the F7 typechecker, which uses formulas only for typechecking
then erases them, Aura’s logic constructs and proofs are first-class citizens, computed
and manipulated at runtime. Aura has no specific support for cryptography: generic
signatures of propositions rather than of data terms are allowed, and, relying on signed
proof terms, Aura can log these as evidence of any past run. Since, in their design,
all authorisations decisions are implicitly auditable, at run-time Aura must carry all
generated proof terms (at least before compiler optimisations). In our approach, the
programmer exports the terms that will constitute the evidence, as an important, explicit
part of the protocol design. The typechecker statically guarantees completeness of the
evidence and, at run-time, the judge validates the associated proofs only on demand.

The use of logs for optimistic security enforcement has been advocated in earlier
work [CCD+07, EW07]. The work closest to our is by Cederquist et al. [CCD+07];
they develop an audit-based logical framework for user accountability, specialised for
discretionary access control. In their framework, all auditors (judges) are based on a
sound and complete proof checker, and are correct in our sense. However, principals
must rely on a tamper resistant logging device to prevent a malicious agent from forging
a log entry. In comparison, we delegate the integrity and authorisation checks to the
code of the judge. Their framework defines whether an agent is accountable for a given
run, and hints that if an agent logs all relevant evidence before each action then all
of its run will be accountable. They do not provide a static analysis method to verify
accountability.

15

In related work on secure provenance [HSW07], the provenance certificate is a stan-
dalone set of records that includes cryptographically encrypted or signed data and key-
ing material, and provides integrity and selective secrecy for the data. Both audit trails
in our approach and provenance certificates in theirs can be seen as proof that can be
verified out-of-context.

Given a (terminating) judge it should be possible to infer automatically a success
condition by computing its weakest preconditions. (This would avoid the easy but te-
dious task of annotating the code.) It is more challenging to design a tool that compiles
audit requirements of the form audit C to the minimal complete evidence for a given
correct judge. We conjecture that, at least in some cases, the type specification of the
judge function carries enough information to enable this synthesis, and will explore this
in future work.

Acknowledgments Thanks to Karthik Bhargavan for his help with F7 and Jean-Jacques
Lévy for his comments.

References
[Aba99] M. Abadi. Secrecy by typing in security protocols. JACM, 46(5):749–786, 1999.
[BBF+08] J. Bengtson, K. Bhargavan, C. Fournet, A.D. Gordon, and S. Maffeis. Refinement

types for secure implementations. In IEEE Computer Security Foundations Sympo-
sium, pages 17–32, 2008.

[BFG08] K. Bhargavan, C. Fournet, and A.D. Gordon. F7: Refinement types for F#. Available
at http://research.microsoft.com/en-us/projects/F7/, 2008. version 1.0.

[BL01] N.E. Baughman and B.N. Levine. Cheat-proof playout for centralized and dis-
tributed online games. In 20th Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 1, 2001.

[CCD+07] J.G. Cederquist, R. Corin, M.A.C. Dekker, S. Etalle, J.I. den Hartog, and G. Lenzini.
Audit-based compliance control. International Journal of Information Security,
6(2):133–151, 2007.

[EW07] S. Etalle and W.H. Winsborough. A posteriori compliance control. In SACMAT,
pages 11–20. ACM Press New York, 2007.

[FGM07] C. Fournet, A. Gordon, and S. Maffeis. A Type Discipline for Authorization in
Distributed Systems. In IEEE Computer Security Foundations Symposium, pages
31–48, 2007.

[FGZN08] C. Fournet, N. Guts, and F. Zappa Nardelli. A formal implementation of value
commitment. In ESOP, volume 4960 of LNCS, pages 383–397, 2008.

[HSW07] R. Hasan, R. Sion, and M. Winslett. Introducing secure provenance: problems and
challenges. In StorageSS, 2007.

[ISO04] ISO/IEC. Common criteria for information technology security evaluation, 2004.
[JVM+08] L. Jia, J.A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and S. Zdancewic.

AURA: a programming language for authorization and audit. ICFP, pages 27–38,
2008.

[KMZ02] S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of fair non-repudiation
protocols. Computer Communications, 25(17):1606–1621, 2002.

[Pub96] NIST Special Publications. Generally accepted principles and practices for securing
information technology systems, September 1996.

[Roe97] M. Roe. Cryptography and evidence. PhD thesis, University of Cambridge, 1997.
[VJMZ08] J.A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit. In

IEEE Computer Security Foundations Symposium, pages 177–191, 2008.

16

	Reliable Evidence: Auditability by Typing
	A language-based approach to auditing
	Modelling security protocols in F7
	A Definition of Auditability
	Static analysis of auditability
	Application: a protocol for n-player games
	Related work and research directions

