
CompCertTSO: A Verified Compiler for Relaxed-Memory Concurr ency

JAROSLAV ŠEVČÍK, University of Cambridge

VIKTOR VAFEIADIS, MPI-SWS

FRANCESCO ZAPPA NARDELLI, INRIA

SURESH JAGANNATHAN, Purdue University

PETER SEWELL, University of Cambridge

In this paper, we consider the semantic design and verified compilation of a C-like programming language

for concurrent shared-memory computation above x86 multiprocessors. The design of such a language is
made surprisingly subtle by several factors: the relaxed-memory behaviour of the hardware, the effects of
compiler optimisation on concurrent code, the need to support high-performance concurrent algorithms,
and the desire for a reasonably simple programming model. In turn, this complexity makes verified (or

verifying) compilation both essential and challenging.
In this paper we describe ClightTSO, a concurrent extension of CompCert’s Clight in which the TSO-

based memory model of x86 multprocessors is exposed for high-performance code, and CompCertTSO, a
verifying compiler from ClightTSO to x86 assembly code, building on CompCert. CompCertTSO is verified

in Coq: for any well-behaved and successfully compiled ClightTSO source program, any permitted observable
behaviour of the generated assembly code (if it does not run out of memory) is also possible in the source
semantics. We also describe some verified fence-elimination optimisations, integrated into CompCertTSO.

Categories and Subject Descriptors: C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:

Parallel processors; D.1.3 [Concurrent Programming]: Parallel programming; F.3.1 [Specifying and

Verifying and Reasoning about Programs]

General Terms: Reliability, Theory, Verification

Additional Key Words and Phrases: Relaxed Memory Models, Verifying Compilation, Semantics

Contents

1 Introduction 3
1.1 Context . 3
1.2 Contributions . 4

2 Background: x86-TSO 5

3 ClightTSO 6
3.1 TSO . 7
3.2 Pointer equality . 7
3.3 Block reuse . 7
3.4 Memory errors and buffering of allocations and frees 8
3.5 Finite memory . 8
3.6 Small-step semantics . 8
3.7 Examples . 9

3.7.1 SB . 9
3.7.2 Spinlock using CAS . 9
3.7.3 A publication idiom . 10

4 Verifying Compiler Strategy 10
4.1 Correctness statement . 10
4.2 The CompCert 1.5 proof strategy . 11

We acknowledge funding from EPSRC grants EP/F036345 and EP/H005633, ANR grant ANR-06-SETI-010-

02, and INRIA program Équipes Associées MM.

DRAFT (Revision: 8184)

2 J Ševčı́k et al.

4.3 Decomposing the proof by compiler phases 12
4.4 Labellisation and threadwise proof . 12
4.5 The TSO machine . 13
4.6 Establishing whole-system trace inclusions from threadwise downward

simulations . 13
4.6.1 Concretising Simulations . 14

4.7 Establishing whole-system trace inclusions for the two phases that sub-
stantially change memory accesses . 16

4.8 Establishing whole-system trace inclusions for the three phases that
change fences . 16

4.9 Finite memory revisited . 16
4.10 The final phase: targetting x86 . 16

5 CompCertTSO 18
5.1 TSO machine design and interaction with threads 19
5.2 Small-stepping (ClightTSO to Csharpminor) 21
5.3 Changing memory accesses (1) (Csharpminor to Cstacked) 24

5.3.1 Languages and Compilation . 24
5.3.2 Simulating Cstacked in Csharpminor 25
5.3.3 Relating thread states . 27
5.3.4 Relating buffers . 27
5.3.5 Relating TSO states . 28

5.4 Changing memory accesses (2) (MachAbs to MachConc) 28
5.4.1 Threadwise simulation definition 30
5.4.2 Threadwise simulation for MachAbs to MachConc 32
5.4.3 Whole-system simulation from threadwise simulation 33

5.5 The ‘easy’ phases, including optimisations 33
5.6 The x86 backend . 34

6 Fence optimisations 35
6.1 Implementation . 37
6.2 Partial Redundancy Elimination . 38
6.3 Proofs of the optimisations . 39

6.3.1 Fence Elimination 1 . 39
6.3.2 Fence Elimination 2 . 39
6.3.3 Partial Redundancy Elimination 41

7 Running CompCertTSO 41
7.1 Fence optimisation . 41

8 Discussion 42

9 Related Work 43

10 Conclusion 44

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 3

1. INTRODUCTION

1.1. Context

Multiprocessors are now ubiquitous, with hardware support for concurrent computa-
tion over shared-memory data structures. But building programming languages with
well-defined semantics to exploit them is challenging, for several inter-linked reasons.

At the hardware level, most multiprocessor families (e.g., x86, Sparc, Power, Ita-
nium, and ARM) provide only relaxed shared-memory abstractions, substantially
weaker than sequentially consistent (SC) memory [Lam79]: some of the hardware op-
timisations they rely on, while unobservable to sequential code, can observably affect
the behaviour of concurrent programs. Moreover, while for some multiprocessors it has
long been clear what the programmer can rely on, e.g. the Sparc Total Store Ordering
(TSO) model [Spa], for others it has been hard to interpret the vendor’s informal-prose
architecture specifications [SSZN+09; SSA+11]. For x86, we recently proposed x86-
TSO [SSO+10; OSS09] as a rigorous and usable semantics; we review this in §2.

Compilers also rely on optimisations for performance, and again many common opti-
misations (e.g., common subexpression elimination, and so on) preserve the behaviour
of sequential code but can radically change the behaviour of concurrent programs.
Moreover, for good performance one may need concurrency-specific optimisations, for
example to remove redundant fence instructions.

Hence, when designing a concurrent shared-memory programming language, where
one must choose what memory semantics to provide, there is a difficult tension to re-
solve. A strong model (such as sequential consistency) would be relatively easy for pro-
grammers to understand but hard to implement efficiently, because compiler optimisa-
tions will not always be sound and because expensive processor-specific memory fences
(or other synchronisation instructions) will be needed to enforce ordering in the target
hardware. A second alternative is to take a data-race-free (DRF) approach [AH90],
with an SC semantics but regarding programs containing races as undefined, relying
on synchronisation from the implementations of lock and unlock (or, in C++0x, cer-
tain atomic primitives). Precisely defining a satisfactory DRF programming language
model is a technical challenge in itself, as witnessed by the complexities in establish-
ing a Java memory model that admits all the intended optimisations [Pug00; MPA05;
CKS07; SA08; TVD10], and the ongoing work on C++0x [BA08; BOS+11]. When it
comes to concurrent systems code and concurrent data structure libraries, however,
for example as used in an OS kernel and in java.util.concurrent [Lea99], it seems
that neither of the above are appropriate, and instead a weak model is essential. Com-
piler optimisations are not the main issue here: these low-level algorithms often have
little scope for optimisation, and their shared-memory accesses should be implemented
exactly as expressed by the programmer. But for good performance it is essential that
no unnecessary memory fences are introduced, and for understanding and reasoning
about these subtle algorithms it is essential that the language has a clear semantics.
Moreover, such algorithms are intrinsically racy. Such code is a small fraction of that
in a large system, but may have a disproportionate effect on performance [Boe05], as
illustrated by an improvement to a Linux spinlock, where a one-instruction change to
a non-SC primitive gave a 4% performance gain [Lin99]. Recognising this, both Java
and C++0x aim to provide a strong model for most programming but with low-level
primitives for expert use.

In the face of all this intertwined semantic subtlety, of source language, target lan-
guage, compilation between them, and the soundness of optimisations, it is essential
to take a mathematically rigorous and principled approach to relaxed-memory concur-
rency: to give mechanised semantics for source and target languages and to consider
verified (or verifying) compilation between them. In the sequential setting, verifying

4 J Ševčı́k et al.

compilation has recently been shown to be feasible by Leroy et al.’s CompCert, a ver-
ifying compiler from a sequential C-like language, Clight, to PowerPC assembly lan-
guage [Com09; Ler09a; Ler09b; BL09]. In this paper, we consider verifying compilation
in the setting of concurrent programs with a realistic relaxed memory model.

1.2. Contributions

Our first contribution is the design and definition of ClightTSO (§3). ClightTSO is not
intended to be a general-purpose programming language, but rather a language in
which concurrent algorithms can be expressed precisely, and, more importantly, as a
test case for reasoning about relaxed-memory computation. It essentially exposes the
x86 hardware load and store operations and synchronisation primitives to the pro-
grammer, so ClightTSO loads and stores inherit the hardware relaxed-memory TSO
behaviour, but can be implemented without memory fences or atomic instructions. (As
we discuss in §8, in a full language one would expect to augment these with assumed-
local accesses that the compiler is permitted to optimise away, for high-performance se-
quential code, but that is not our focus here.) The semantic design of ClightTSO turns
out to involve a surprisingly delicate interplay between the relaxed memory model, the
behaviour of block allocation and free, and the behaviour of pointer equality.

Our second contribution is one of semantic engineering (§4). Relaxed memory models
are complex in themselves, and a verifying compiler such as CompCert is complex even
in the sequential case; to make verifying compilation for a concurrent relaxed-memory
language feasible we have to pay great attention to structuring the semantics of the
source and target languages, and the compiler and any correctness proof, to separate
concerns and re-use as much as possible. We factor out the TSO memory from each
language and build small-step ‘labellised’ semantics, allowing most of the proof to be
done by threadwise simulation arguments. A key question for each compiler phase is
the extent to which it changes the memory accesses of the program. For many of our
phases (7 of 17) the memory accesses of source and target are in exact 1:1 correspon-
dence. Moreover, for four phases the memory accesses are identical except that some
values that are undefined in the source take particular values in the target; and one
phase (register allocation) has no effect on memory accesses except that it removes
memory loads to dead variables. For all these, the correctness of the phase is unre-
lated to the TSO nature of our memory. That leaves two phases that change memory
accesses substantially, and whose proofs must really involve the whole system, of all
threads and the TSO memory, and three phases that leave memory accesses in place
but change the fences.
Thirdly, we present evidence that our approach is effective (§5). We have imple-

mented a verifying compiler, CompCertTSO, from ClightTSO to x86 multiprocessors,
taking CompCert as a starting point. We have proved correctness, in Coq [Coq], for
all the CompCertTSO phases between ClightTSO abstract syntax and x86 symbolic
assembly code. In addition, we have successfully run the compiler on a number of
sequential and concurrent benchmarks, including an implementation of a non-trivial
lock-free algorithm by Fraser [Fra03].
Fourthly, we consider compiler optimisations to optimise barrier placement, and the

verification thereof (§6). There are many opportunities to perform fence removal op-
timisations on x86. In particular, if there are no writes between two memory fence
instructions, the second fence is unnecessary. Dually, if there are no reads between
the two fence instructions, then the first fence instruction is redundant. Finally, by
a form of partial redundancy elimination [MR79], we can insert memory barriers at
selected program points in order to make other fence instructions redundant, with
an overall effect of hoisting barriers out of loops and reducing the number of fences
along some execution paths without ever increasing it on any path. The correctness of

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 5

one of our optimisations turned out to be more much interesting than we had antici-
pated and could not be verified using a standard forward simulation [LV95] because
it introduces unobservable non-determinism. To verify this optimisation, we introduce
weak-tau simulations, which in our experience were much easier to use than backward
simulations [LV95]. In contrast, the other two optimisations were straightforward to
verify, each taking us less than a day’s worth of work to prove correct in Coq.
Finally, we describe some experiments running the compiler (§7), reflect on the for-

malisation process and on the tools we used (§8), discuss related work (§9), and con-
clude (§10). The proof effort for each compiler phase was broadly commensurate with
its conceptual difficulty: some have essentially no effect on memory behaviour, and
needed only days of work; a few were much more substantial, really changing the in-
tensional behaviour of the source and with proofs that involve the TSO semantics in
essential ways.

This paper extends conference papers in POPL 2011 [SVZN+11] and
SAS 2011 [VZN]. The first paper reported on the correctness proof for key phases
of the compiler only, whereas now our main theorem is correctness of the entire
compiler, adding the (substantial) MachAbs to MachConc phase, and the (more
straightforward) Cminor to CminorSel to RTL phases. The second paper described our
fence elimination optimisations. The discussion and semantic details have also been
expanded throughout. Our development, all mechanised in Coq, is available online
(www.cl.cam.ac.uk/users/pes20/CompCertTSO).

2. BACKGROUND: x86-TSO

We begin by recalling the relaxed-memory behaviour of our target language, x86 mul-
tiprocessor assembly programs, as captured by our x86-TSO model [SSO+10; OSS09].
The classic example showing non-SC behaviour in a TSO model is the store buffer (SB)
assembly language program below: given two distinct memory locations x and y (ini-
tially holding 0), if two hardware threads (or processors) respectively write 1 to x and
y and then read from y and x (into register EAX on thread 0 and EBX on thread 1), it
is possible for both to read 0 in the same execution. It is easy to check that this result
cannot arise from any SC interleaving of the reads and writes of the two threads, but
it is observable on modern Intel or AMD x86 multiprocessors.

SB
Thread 0 Thread 1

MOV [x]←1 MOV [y]←1
MOV EAX←[y] MOV EBX←[x]
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

H/W thread H/W thread

Fig. 1. x86-TSO block diagram

6 J Ševčı́k et al.

type, ty ::= void | int (intsize,signedness) | float (floatsize) | pointer (ty)
| array (ty,len) | function (ty∗,ty) | struct (id,φ) | union (id,φ) | comp pointer(id)
| (ty)

fieldlist , φ ::= nil | (id,ty)::φ

unary operation, op1 ::= ! | ~ | -

binary operation, op2 ::= + | - | * | / | % | & | | | ^ | << | >> | == | != | < | > | <= | >=

expr , e ::= aty

expr descr , a ::= n | f | id | *e | &e | op1 e | e1 op2 e2 | (ty)e | e1?e2:e3 | e1&&e2 | e1||e2
| sizeof (ty) | e.id

opt lhs ::= | (id:ty)=

atomic statement , astmt ::= CAS | ATOMIC INC

statement , s ::= skip | e1=e2 | opt lhs e ′(e∗) | s1;s2 | if (e1) then s1 else s2
| while (e) do s | do s while (e) | for (s1;e2;s3)s | break | continue | return opt e
| switch (e)ls | l:s | goto l | thread create(e1,e2) | opt lhs astmt(e∗) | mfence

labeled statements, ls ::= default :s | casen:s;ls

fndefn internal ::= ty id(arglist){varlist s}

program ::= dcls fndefns main =id

Fig. 2. ClightTSO abstract syntax (excerpts)

Microarchitecturally, one can view this behaviour as a visible consequence of store
buffering: each hardware thread effectively has a FIFO buffer of pending memory
writes (avoiding the need to block while a write completes), so the reads from y and x
can occur before the writes have propagated from the buffers to main memory.
In addition, it is important to note that many x86 instructions involve multiple mem-

ory accesses, e.g. an increment INC [x]. By default, these are not guaranteed atomic (so
two parallel increments of an initially 0 location might result in it holding 1), but there
are ‘LOCK’d’ variants of them: LOCK INC [x] atomically performs a read, a write of the
incremented value, and a flush of the local write buffer. Compare-and-swap instruc-
tions (CMPXCHG) are atomic in the same way, and memory fences (MFENCE) simply
flush the local write buffer.
The x86-TSO model makes this behaviour precise in two equivalent ways: an ab-

stract machine with an operational semantics, illustrated in Fig. 1, and an axiomati-
sation of legal executions, in the style of [Spa92, App. K] (the model covers the nor-
mal case of aligned accesses to write-back cacheable memory; it does not cover other
memory types, self-modifying code, and so on). For the relationship between the model
and the vendor documentation, and with empirical testing, we refer to our previous
work [SSO+10; OSS09; SSZN+09].

3. ClightTSO

ClightTSO is a C-like language: imperative, with pointers and pointer arithmetic, and
with storage that is dynamically allocated and freed, but not subject to garbage collec-
tion (GC)1. We choose this level of abstraction for several reasons. First, it is what is
typically used for concurrent systems programming, e.g. in OS kernels (where garbage
collection may be infeasible), and many concurrent algorithms are expressed in C-

1Currently this is stack-allocated storage for function local variables, but our development is structured so
that adding explicit malloc and free should be straightforward.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 7

like pseudocode. Second, it is an attractive starting point for research in relaxed-
memory programming language semantics and compilation because C source-level
shared-memory accesses will often map 1:1 onto target accesses, without the complex-
ity and cost of accesses required for GC. Last but not least, the work of Leroy et al. on
CompCert gives us a verifying compiler for sequential programs, so by using that as a
starting point we can focus on the issues involved in relaxed-memory concurrency.
Syntactically, ClightTSO is a straightforward extension of the CompCert Clight lan-

guage [BL09], adding thread creation and some atomic read-modify-write primitives
that are directly implementable by x86 LOCK’d instructions. An excerpt of the abstract
syntax is given in Fig. 2, where one can see that programs consist of a list of global
variable declarations, a list of function declarations, and the name of a main function.
Function bodies are taken from a fairly rich language of statements and expressions.
Semantically, though, the addition of relaxed-memory concurrency has profound con-

sequences, as we now discuss.

3.1. TSO

Most obviously, the ClightTSO load and store operations must have TSO semantics to
make them directly implementable above x86, so we cannot model memory as (say) a
function from locations to values. Instead, we use a derivative of the TSO machine in
Fig. 1 (the abstract machine style is more intuitive and technically more convenient
here than the axiomatic model). We return in §4.5 and §5.1 to exactly what this is.

3.2. Pointer equality

C implementations are typically not memory-safe: one can use pointer arithmetic to
corrupt arbitrary state (including that introduced by compilation). But in order to
specify an implementable language, C standards rule out many programs from con-
sideration, giving them undefined behaviour. For example, the draft C1X standard
states “If an object is referred to outside of its lifetime, the behavior is undefined. The
value of a pointer becomes indeterminate when the object it points to reaches the end of
its lifetime” [C1X, 6.2.4p2]. In Clight the memory state records what is allocated, with
equality testing of pointers giving the undefined value (Vundef) if they do not refer to
currently allocated blocks. However, in a relaxed-memory setting any appeal to global
time should be treated with great caution, and the concept of “currently allocated” is
no longer simple: different threads might have different views not only of the values in
memory but also of what is allocated. For example, in x86-TSO one thread might free,
re-allocate and use some memory while another thread compares against a pointer to
it, with the writes of the first thread remaining within its buffer until after the com-
parison. One could make pointer comparison effectful, querying the x86-TSO abstract
machine to see whether a pointer is valid w.r.t. a particular thread whenever it is used,
but this would lead to a complex and unwieldy semantics. Moreover, comparing poten-
tially dangling pointers for equality is useful in practice, e.g. in algorithms to free cyclic
data structures. Accordingly, for ClightTSO we take pointer comparison to always be
defined.

3.3. Block reuse

In turn, this means that the ClightTSO semantics must permit re-use of pointers
(again contrasting with Clight, in which allocations are always fresh), otherwise it
would not be sound w.r.t. the behaviour of reasonable implementations. For example,
in the program below h must be allowed to return 0 or 1, as an implementation might
or might not reuse the stack frame of f for g.

int* f() { int a; return &a; }

8 J Ševčı́k et al.

int* g() { int a; return &a; }
int h() { return (f() == g()); }

3.4. Memory errors and buffering of allocations and frees

A read or write of a pointer that is dangling w.r.t. that thread must still be a semantic
error, so that a correct compiler is not obliged to preserve the behaviour of such pro-
grams. Now, implementations of memory allocation and free do not necessarily involve
a memory fence or other buffer flush: at the assembly language level, stack allocation
and free can be just register operations, while heap malloc and free might often be
w.r.t. some thread-local storage. To test whether pointers are valid, therefore, we treat
allocations and frees analogously to writes, adding them to the buffers of the TSO ma-
chine. This is a convenient common abstraction of stack and heap allocation (for the
former, it essentially models the stack pointer).
An allocation must immediately return a block address to the calling thread, but al-

locations should not clash when they are unbuffered (when they hit the main memory
of the TSO machine), so they must return blocks that are fresh taking into account
pending allocations and frees from all threads. It is technically convenient if frees and
writes also fail immediately, when they are added to the TSO machine buffer, so we
also take all possible sequences of the pending allocations and frees into account when
enqueuing them. Otherwise one would have latent failures, e.g. if two threads free a
block and those frees are both held in buffers.

3.5. Finite memory

A final novelty of ClightTSO, not directly related to concurrency, is that we support
finite memory, in which allocation can fail and in which pointer values in the running
machine-code implementation can be numerically equal to their values in the seman-
tics. The latter is convenient for our correctness proofs, simplifying the simulations.
It also means that pointer arithmetic works properly (mod 232) and may be helpful in
the future for a semantic understanding of out-of-memory errors. The memory usage
of a compiled program and its source may be radically different, as the compiler may
be able to promote local variables to registers but will need extra storage for stack
frames and temporaries. But (analogous to verifying rather than verified compilation),
it would be reasonably straightforward to make the compiler emit and check, for each
function, bounds on those. One could then reason about real space usage in terms of a
source semantics annotated with these bounds.
Without such a space-usage semantics, our correctness statement will be weaker

than one might like, in that it does not constrain the behaviour of the compiler at all
after the target language has run out of memory. This provides an easy way to write a
stupid but nominally correct ‘cheating’ compiler: a compiler could simply (and silently)
generate an impossibly large allocation at the start of a compiled program; the target
semantics would immediately fail, and so the rest of the behaviour of the compiler
would be unconstrained by the correctness statement. In contrast, the unbounded-
memory semantics and correctness statement of CompCert prohibits this, but suffers
from the dual problem that a verified program compiled with a nominally correct com-
piler can nonetheless run out of memory and crash when actually executed.

3.6. Small-step semantics

ClightTSO is a concurrent language, in which execution of an expression or a state-
ment may involve multiple memory reads and hence multiple potential interaction
points with other threads. We therefore need a small-step operational semantics for
both expressions and statements. Conceptually this is routine, but it requires signifi-

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 9

cant re-engineering (described in §5.2) of definitions and proofs w.r.t. CompCert, where
Clight had a big-step semantics for expressions.

We use a frame-stack style, with thread states that can be an executing expression
paired with an expression-holed continuation or an executing statement paired with a
statement-holed continuation:

expr cont , κe ::= [opτ
1] · κe | [τ=e2] · κs | [vτ=] · κs | . . .

stmt cont , κs ::= stop | [; s2] · κs | . . .

state ::= e · κe |ρ
| s · κs |ρ
| . . .

Here ρ is a thread-local environment mapping identifiers to their locations in allocated
blocks. The semantics is also parameterised by an unchanging global environment
of global variables and functions, and additional machinery is needed to deal with l-
values, loops, and function calls, which we return to in §5.2. We also fix a left-to-right
evaluation order.

In retrospect, we suspect that it would have been simpler to use what we call a
trace-step semantics for ClightTSO expressions. The small-step operational semantics
described above defines defines a small-step transition relation over states involving
expression continuations, by case analysis on the structure of those continuations, and
with labels that represent internal events or single memory actions. Instead, a trace-
step semantics defines a transition relation over states simply involving expressions,
and inductively on the structure of expressions, but with lists of labels; given such,
one can easily define a small-step semantics by a general construction. The fact that
ClightTSO expressions are terminating (as in Clight) makes this particularly conve-
nient. We used such a semantics as an auxiliary definition for the correctness of one of
our phases, instruction selection (from Cminor to CminorSel), for which its inductive-
on-expressions structure made it easy to re-use many original CompCert proofs. With
hindsight, we would do so for all the front-end languages (before RTL).

3.7. Examples

We give a flavour of the language with some very small examples of ClightTSO source
programs.

3.7.1. SB. The x86 visible-store-buffer behaviour can now be seen at the ClightTSO
level, e.g. if the following threads are created in parallel then both could print 0 in the
same execution.

int x=0; int y=0;

void *thread0(void *tid)
{ x=1;
printf("T0: %d\n", y);
return(0); }

void *thread1(void *tid)
{ y=1;
printf("T1: %d\n", x);
return(0); }

3.7.2. Spinlock using CAS. More usefully, an efficient spinlock can be implemented di-
rectly in ClightTSO using CAS, where CAS(p,v new,v old) either atomically replaces
the value at pointer p with v new, and evaluates to true, if the previous value was
v old, or otherwise evaluates to false; in either case it flushes the local store buffer.
Any integer variable can be used to represent the state of the spinlock, with lock and
unlock as follows:

10 J Ševčı́k et al.

void lock(int *mutex)
{ while (CAS(mutex, 1, 0))

while (*mutex) ; }

void unlock(int *mutex)
{ *mutex = 0; }

The generated assembler mimics the optimised implementation of Linux spinlocks
mentioned in Section 1. As shown by Owens [Owe10], the memory update performed
by unlock does not need to be synchronising on x86-TSO.

3.7.3. A publication idiom. The memory model supports the common publication idiom
below:

double channel; int flag = 0;

// sender
channel = 5.2;
flag = 1;

// receiver
while (flag == 0);
printf ("%f\n", channel);

Since the store buffers are FIFO, when the receiver thread sees the update to flag, the
contents of the channel variable must have been propagated into main memory, and as
such must be visible to all other threads (that do not themselves have a pending write
to channel). For contrast, in C++0x [Bec10; BOS+11] (which also targets non-TSO ma-
chines), flagmust be accessed with sequentially consistent atomics, implemented with
costly x86 LOCK’d instructions or fences, or with release/acquire atomics, implemented
with normal stores and loads but with a much more involved semantics.

4. VERIFYING COMPILER STRATEGY

Having discussed our x86 target language in §2, and the design and rationale of our
ClightTSO source language in §3, we now consider the semantics and proof structure
required to make a verifying compiler for a concurrent relaxed-memory language fea-
sible.

4.1. Correctness statement

The first question is the form of the correctness theorems that we would like the com-
piler to generate. We confine our attention to the behaviour of whole programs, leav-
ing a compositional understanding of compiler correctness for relaxed-memory concur-
rency (e.g. as in the work of Benton and Hur for sequential programs [BH09]) as a
problem for future work. The semantics of ClightTSO and x86-TSO programs will be
labelled transition systems (LTS) with internal τ transitions and with visible events
for call and return of external functions (e.g. OS I/O primitives), program exit, and
semantic failure:

event , ev ::= call id vs | return typ v | exitn | fail

We split external I/O into call and return transitions so that blocking OS calls can be
correctly modelled.
Now, how should the source and target LTS be related? As usual for implementa-

tions of concurrent languages, we cannot expect them to be equivalent in any sense,
as the implementation may resolve some of the source-language nondeterminism
(c.f. [Sew97] for earlier discussion of the correctness of concurrent language imple-
mentations). For example, in our implementation, stack frames will be deterministi-
cally stack-allocated and the pointers in the block-reuse example above will always
be equal. Hence, the most we should expect is that if the compiled program has some
observable behaviour then that behaviour is admitted by the source semantics — an
inclusion of observable behaviour.
This must be refined further: compiled behaviour that arises from an erroneous

source program need not be admitted in the source semantics (e.g. if a program mu-

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 11

tates a return address on its stack, or tries to apply a non-function). The compiled
program should only diverge, indicated by an infinite trace of τ labels, if the source
program can. Moreover, without a quantitative semantics, we have to assume that
the target language can run out of memory at any time. We capture all this with the
following definition of LTS trace.

Traces tr are either infinite sequences of non-fail visible events or finite sequences
of non-fail visible events ending with one of the following three markers: end (desig-
nating successful termination), inftau (designating an infinite execution that eventu-
ally stops performing any visible events), or oom (designating an execution that ends
because it runs out of memory). The traces of a program p are given as follows:

traces(p, args)
def
= {ℓ · end | ∃s ∈ init(p, args). ∃s′. s

ℓ
=⇒ s′ 6→}

∪ {ℓ · inftau | ∃s ∈ init(p, args). ∃s′. s
ℓ
=⇒ s′

τ
−→

ω
}

∪ {ℓ · tr | ∃s ∈ init(p, args). ∃s′. s
ℓ
=⇒ s′

fail
−−−→ }

∪ {ℓ · oom | ∃s ∈ init(p, args). ∃s′. s
ℓ
=⇒ s′}

∪ {l | ∃s ∈ init(p, args). s
l
=⇒ and l is infinite}

Here init(p, args) denotes the initial states for a program p when called with command-

line arguments args ; for a finite sequence ℓ of non-fail visible events, we define s
ℓ
=⇒ s′

to hold whenever s can do the sequence ℓ of events, possibly interleaved with a finite
number of τ -events, and end in state s′; and for a finite or infinite sequence l of non-

fail visible events, we define s
l
=⇒ to hold whenever s can do the sequence l of events,

possibly interleaved with τ -events.
We treat failed computations as having arbitrary behaviour after their failure point,

whereas we allow the program to run out of memory at any point during its execution.
This perhaps counter-intuitive semantics of oom is needed to express a correctness
statement guaranteeing nothing about computations that run out of memory.

Our top-level correctness statement for a compiler compile from ClightTSO to x86-
TSO, modelled as a partial function, will then be a trace inclusion for programs for
which compilation succeeds, of the form

∀p, args . defined(compile(p)) =⇒ tracesx86-TSO(compile(p), args) ⊆ tracesClightTSO(p, args).

4.2. The CompCert 1.5 proof strategy

ClightTSO is an extension of sequential Clight, and its compiler has to deal with every-
thing that a Clight compiler does, except for any optimisations that become unsound in
the concurrent setting. We therefore arrange our semantic definitions and proof struc-
ture to re-use as much as possible of the CompCert development for sequential Clight,
isolating the parts where relaxed-memory concurrency plays a key role.
Our starting point was CompCert 1.5, comprising around 55K lines of Coq subdi-

vided into 13 compiler phases, each of which builds a semantic preservation proof be-
tween semantically defined intermediate languages. The overall strategy is prove trace
inclusions by establishing simulation results — more particularly, to build some kind
of “downward” simulation for each phase, showing that transitions of a source program
for the phase can be matched by transitions of the compiled target program; these can
be composed together and combined with determinacy for the target language (there
PowerPC or ARM assembly) to give an upward simulation for a complete compilation,
showing that any behaviour of a compiled program is allowed by the source program

12 J Ševčı́k et al.

semantics.2 Downward simulations are generally easier to establish than upward sim-
ulations because compiler phases tend to introduce intermediate states; a downward
simulation proof does not have to characterise and relate these.
As we shall see, this strategy cannot be used directly for compilation of concurrent

ClightTSO to x86, but much can be adapted.

4.3. Decomposing the proof by compiler phases

Our compiler is divided into similar (but not identical) phases to CompCert. For each
phase, we define the semantics of a whole program to be an LTS as above, and inclusion
of the above notion of traces also serves as the correctness criterion for each of our
phases. The individual correctness results can be composed simply by transitivity of
set inclusion.

4.4. Labellisation and threadwise proof

In our concurrent setting the languages are not deterministic, so the CompCert ap-
proach to building upward simulations is not applicable. However, for most of the
phases we can re-use the CompCert proof, more-or-less adapted, to give downward
simulation results for the behaviour of a single thread in isolation — and we can make
our semantics deterministic for such. We therefore ‘labellise’ the semantics for each
level (source, target, and each intermediate language). Instead of defining transitions

(s,mSC) −→ (s′,m′

SC)

over configurations that combine a single-threaded program state s and an SCmemory
mSC (as most sequential language semantic definitions, including CompCert, do), we
define the semantics of a single thread (split apart from the memory) as a transition
system:

s
te
−→ s′

(together with extra structure for thread creation) where a thread event te is either
an external event, as above, an interaction with memory me, an internal τ action, the
start or exit of the thread, or an out-of-memory error oom:

thread event , te ::= ext ev | memme | τ | start opt tid p vs | exit | oom

The whole-system semantics of each level is a parallel composition roughly of the
form

s1 | . . . | sn | mTSO

of the thread states si and a TSO machine mTSO. The threads interact with the TSO
machine by synchronising on various events: reads or writes of a pointer p with a value
v of a specified memory chunk size, allocations and frees of a memory block at a pointer
p, various error cases, and thread creation. These transitions are in the style of the
‘early’ transition system for value-passing CCS [Mil89]: a thread doing a memory read
will have a transition for each possible value of the right type. For example, here is the

2Terminology: in CompCert “forward simulation” and “backward simulation” refer to the direction of the
simulation with respect to the compiler phases, thinking of compilation as “forwards”. This clashes with
another standard usage in which “forward” and “backward” refer to the direction of transitions. In this
paper we need to discuss both, so we use “downwards” (and conversely “upwards”) to refer to the direction
of compilation, reserving “forwards” and “backwards” for the direction of transitions. (Notwithstanding this,
the CompCertTSO sources retain the CompCert usage.)

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 13

ClightTSO rule for dereferencing a pointer:

access mode ty ′ = By value c
typ = type of chunk c
Val.has type v typ

p · [* ty′] · κe |ρ
mem (read p c v)
−−−−−−−−−→ v · κe |ρ

LOADBYVALUE

The conclusion has a start state with a pointer value p in an expression continuation

[* ty′

] · κe headed by a dereference at a ClightTSO type ty ′. The first premise finds
the access mode of that type: here it must be accessed by value and has a chunk c
(specifying int/float, size, and signedness). The second premise collapses this onto an
internal type typ (just int/float, because internal values do not record their size or
signedness). The third premise allows an arbitrary value v that of type typ. Then the
conclusion has a transition labelled with a memory read, at pointer p, of that value
v, as a chunk c, to a state with v in the remaining continuation. (There is a further
subtlety here. One might think that the rule should also check that v represents a
value of type ty ′, not just that it has internal type typ. That check could be added
here, but in fact we have it in the TSO machine. The premises do suffice to ensure a
receptiveness property.)

External events of the threads (and of the TSO machine) are exposed directly as the
whole-system behaviour.

This conceptually simple change to a labellised semantics separates concerns: com-
piler phases that do not substantially affect the memory accesses of the program can
be proved correct per-thread, as described in §5.5 (and those results lifted to the whole
system by a general result below), leaving only the two remaining main phases and
three fence optimisation phases that require proofs that really involve the TSO ma-
chine.

4.5. The TSO machine

Our TSOmachine is based on the x86-TSO abstract machine, with a main memory and
per-thread buffers, but with several differences. The TSO machine must handle mem-
ory allocations and frees (which are buffered), and various memory errors; the main
memory records allocation as in CompCert. We use the TSO semantics for software
threads, not hardware threads, which is sound provided that the scheduler flushes the
buffer during task switching. We use the same TSO machine for all the intermediate
languages, and we uniformly lift threadwise LTSs to the parallel composition with the
TSO machine.

4.6. Establishing whole-system trace inclusions from threadwise dow nward simulations

For the phases that do not substantially change memory accesses, we establish whole-
system trace inclusions from threadwise downward simulations in three steps. First,
we observe that a downward simulation from a receptive language to a determinate
language implies the existence of upward simulation and use this to obtain threadwise
upward simulation. Then we lift the threadwise upward simulation to a whole-system
upward simulation. Finally, we establish trace inclusion from the whole-system up-
ward simulation.

We say that two labels are of the same kind, written te ≍ te ′ if they only differ
in input values. In our case, te ≍ te ′ if (i) te and te ′ are reads from the same memory
location (but not necessarily with the same value), or (ii) te and te ′ are external returns,
or (iii) te = te ′.

Definition 4.1. A thread LTS is receptive if s
te
−→ t and te ′ ≍ te implies ∃t′. s

te′

−−→ t′.

14 J Ševčı́k et al.

Definition 4.2. A thread LTS is determinate if s
te
−→ t and s

te′

−−→ t′ implies te ≍ te ′

and, moreover, if te = te ′, then t = t′.

Definition 4.3. A relation R between the states of two thread LTSs S and T is a
threadwise downward simulation if there is a well-founded order < on the states of S

such that if given any s, s′ ∈ S, t ∈ T and label te, whenever s
te
−→ s′ and s R t, then

either

(1) te = fail, or

(2) ∃t′. t
τ
−→

∗ te
−→

τ
−→

∗

t′ ∧ s′ R t′, or
(3) te = τ ∧ s′ R t ∧ s′ < s.

Definition 4.4. A relation R is a threadwise upward simulation if there is a well-

founded order < on T such that whenever t
te
−→ t′ and s R t, then either

(1) ∃s′. s
τ
−→

∗ te
−→ s′ ∧ s′ R t′, or

(2) ∃s′. s
fail
−−−→ s′, or

(3) te = τ ∧ s R t′ ∧ t′ < t.

Moreover, if t 6−→ (t is stuck) and s R t, then s 6−→ or ∃s′. s
fail
−−−→ s′.

Note the subtle asymmetry in handling errors: if a source state does an error or gets
stuck, both the upward simulation and downward simulation hold. In contrast, the
target states’ errors must be reflected in the source to make the upward simulation
hold. This is necessary to allow compilers to eliminate errors but not to introduce
them.

THEOREM 4.5. If R is a threadwise downward simulation from S to T , S is recep-
tive, and T is determinate, then there is a threadwise upward simulation that contains
R. [Coq proof]

Eliding details of initialisation and assumptions on global environments, we have:

Definition 4.6. A relation R : States(S) × States(T), equipped with a well-founded

order < on States(T), is a measured upward simulation if, whenever s R t and t
ev
−→ t′,

then either

(1) ∃s′. s
τ
−→

∗

s′
fail
−−−→ (s can reach a semantic error), or

(2) ∃s′. s
τ
−→

∗ ev
−→ s′ ∧ s′ R t′ (s can do a matching step), or

(3) ev = τ ∧ t′ < t ∧ s R t′ (t stuttered, with a decreasing measure).

THEOREM 4.7. A threadwise upward simulation can be lifted to a whole-system
measured upward simulation, for the composition of the threads with the TSOmachine.
[Coq proof]

THEOREM 4.8. A whole-system upward simulation implies trace inclusion.
[Coq proof]

To establish correctness of compiler phases that remove dead variable loads and con-
cretise undefined values, we have also proved variants of Theorems 4.5 and 4.7 for
suitably modified Definitions 4.3 and 4.4. Here, we only describe the concretising sim-
ulations.

4.6.1. Concretising Simulations. The simulation statement for phases that concretise un-
defined values is interesting because we capture the concretisation in the simulation
statement, whereas CompCert’s approach is to define an auxiliary relation on states

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 15

and memories that expresses the less-defined property for all values in the states and
memory. One example of concretisation of values is the compilation of function entry
in the reloading phase: in LTLin, all registers are set to Vundef upon function entry,
but in Linear, they keep their original value.

Such a refinement cannot break the overall upward simulation: if the LTLin code
used the Vundef value in any interesting way it would get stuck and the simulation
would be trivially satisfied. It is important to note that even though the compiler con-
cretises only values in registers, the values in registers can be written to memory and
spread through the entire system state. The overall simulation relation has to account
for this and allow arbitrary parts of the state to be more concrete.

When constructing the whole-system upward simulation, there are two cases of in-
teraction with memory: if the target transition system gets a value from memory, then
the source system must be able to accept a less concrete value, because the memory
may contain a less concrete value. In contrast, if the target system writes to memory,
the source system may want to write a less concrete value. To make concretisation in
input and output explicit, we introduce two relations on events, written ≤in and <out.
We prove the downward-to-upward simulation theorem abstractly, requiring only that
the ≤in and <out relations satisfy the following properties: (i) uniqueness of the same-
kind relation for more output-concrete values, i.e., l1 ≍ l2 and l <out l2 implies l1 = l2,
(ii) τ is not more output-concrete than any other action, i.e., for all l it is not true that
l <out τ , (iii) the less-concrete-input relation is reflexive, i.e., for all l, l ≤in l.

Our concretising threadwise upward simulation handles the output and input cases
separately. We require that any output action transition can be simulated by some less
concrete output action, and any input action transition can be simulated by all less
concrete input actions:

Definition 4.9. A relation R is a concretising threadwise upward simulation if there

is a well-founded order <T on T such that whenever t
te
−→ t′ and s R t, then either

(1) ∃s′ te ′. te ′ <out te ∧ s
τ
−→

∗ te′

−−→ s′ ∧ s′ R t′, or

(2) ∀te ′′. te ′′ ≤in te→ ∃s′. s
τ
−→

∗ te
−→ s′ ∧ s′ R t′, or

(3) ∃s′. s
fail
−−−→ s′, or te = τ ∧ s R t′ ∧ t′ <T t.

Moreover, if t 6−→ (t is stuck) and s R t, then s 6−→ or ∃s′. s
fail
−−−→ s′.

The concretising downward simulation unsurprisingly requires that output actions
are simulated by more concrete output actions. The input action simulation is more
intricate — to prove the upward simulation from the downward simulation we need to
ensure that the source LTS can accept any less concrete value for any input action:

Definition 4.10. A relation R between the states of two thread LTSs S and T is a
concretising threadwise downward simulation if there is a well-founded order <S on

the states of S such that if given any s, s′ ∈ S, t ∈ T and label te, whenever s
te
−→ s′ and

s R t, then either

(1) te = fail, or

(2) ∃t′ te ′. te <out te
′
∧ t

τ
−→

∗ te′

−−→
τ
−→

∗

t′ ∧ s′ R t′, or

(3) ∃t′. t
τ
−→

∗ te
−→

τ
−→

∗

t′ ∧ ∀te ′′. te ′′ ≤in te → ∃s′′.s
te′′

−−→ s′′ ∧ s′′ R t′, or
(4) te = τ ∧ s′ R t ∧ s′ <S s.

Using these definitions, we establish concretising versions of Theorems 4.5 and 4.7.
For our concrete case of thread events, te ≤in te ′ iff te = te ′ or te and te ′ read the

same chunk at the same location and the value of te is less concrete than the value of

16 J Ševčı́k et al.

te ′. We define te <out te
′ to hold iff te is a write of a less concrete value from the same

chunk at the same location as te ′ (in reality, one also has to define ≤in and <out for
read-modify-write handling).

4.7. Establishing whole-system trace inclusions for the two phases t hat substantially change
memory accesses

In ClightTSO (as in Clight) local variables are all in allocated blocks, but an early
phase of the compiler identifies the variables whose addresses are not taken (by any
use of the & operator) and keeps them in thread-local environments, changing loads
and stores into (τ -action) environment accesses; moreover, individual stack allocations
on function entry are merged into one large allocation of the entire stack frame. Con-
versely, a later phase does activation record layout, and thread-local state manipula-
tion (τ actions) is compiled into memory accesses to the thread-local part of activation
records. In both cases, the thread has different views of memory in source and target,
and these views involve the TSO-machine buffering of loads, stores, allocations and
frees. We return to this, which is the heart of our proof, in §5.3 and §5.4.

4.8. Establishing whole-system trace inclusions for the three phase s that change fences

Our compiler contains one phase that inserts memory fences at appropriate program
points and two phases that remove redundant memory fences: one where the removed
fences have a trivial effect as the buffer is empty when the fences are executed, and one
where the effect of the fence is never observed by the program. The correctness of the
first two of these transformations is straightforward and shown using a whole-system
upward simulation. The correctness of the third transformation is much subtler and
requires a new form of whole-system upwards simulation, which we call a weak-tau
simulation. We return to this in §6.

4.9. Finite memory revisited

To be faithful to a real machine semantics, our x86 semantics uses finite memory and
performs memory allocations only when threads are initialized (the stack of the thread
is allocated). In Clight, however, small memory allocations happen whenever a vari-
able is declared; as a result, the memory should be unbounded because the compiler
can promote local variables to registers and thus a Clight program can have a footprint
that would not fit in the x86 memory. In our intermediate languages, we switch from
infinite to finite memory in the Csharpminor to Cstacked phase (§5.3), where we move
local variables whose address is not taken to local environments, and perform one al-
location (for the remaining local variables) per function call. Since our pointer type
needs to accommodate both the finite and infinite nature of addresses, our pointers
are composed of two parts: an unbounded block identifier and machine integer offset
within the block. The lower-level language semantics uses only the finite memory in
block 0—the memory refuses to allocate any other block. The higher level languages
can allocate in any block. Note that one memory block can contain more than one mem-
ory object. A later phase (MachAbs to MachConc, §5.4) compiles away the allocations
per function call, pre-allocating a thread’s stack when it is created.

4.10. The final phase: targetting x86

We target x86 because x86-TSO gives us a relatively simple and well-understood re-
laxed memory model for a common multiprocessor. CompCert 1.5 targets sequential
PowerPC and ARM assembly language, but these have muchmore intricate concurrent
behaviour [SSA+11; AMSS10]). We therefore implemented an x86 backend, described
in §5.6, adopting parts of the new x86 backend of CompCert 1.8 but with a different
instruction semantics.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 17

In
fi
n
it
e

m
e
m
o
ry

ClightTSO source

Parsing, type-checking, simplification (CIL)

ClightTSO

§5.2
Control-structure simplification;
type-based overloading resolution

F
in
it
e

m
e
m
o
ry

Csharpminor

§5.3 Stack allocation of address-taken locals

Cstacked

§5.5

Simplification
(undefined values can become defined)

Cminor

Instruction selection

CminorSel
Construction of the CFG;
3-address code generation

RTL

Constant propagation

RTL

CSE (for arithmetic expressions only)

RTL

§6.3 Fence elimination FE1

RTL

§6.3 Fence elimination PRE

RTL

§6.3 Fence elimination FE2

RTL

§5.5

Register allocation
(unnecessary loads removed)

LTL

Branch tunnelling

LTL

Linearisation of the CFG

S
ta
ck

a
ll
o
ca
ti
o
n
s

a
t
ca
ll
s

LTLin
Spilling, reloading, calling conventions
(undefined values can become defined)

Linear

Laying out the activation records (Part I)

S
ta
ck

a
ll
o
ca
ti
o
n
s

a
t
th

re
a
d
cr
e
a
ti
o
n

MachAbs

§5.4 Laying out the activation records (Part II)

MachConc

§5.6
Emission of x86 assembly code

(undefined values can become defined)
Asm (x86)

Printing of x86 AST, assembly and linking

Machine code (x86)

Our proof structure is indicated by single arrows for threadwise downward simulations (lifted
to upward trace inclusions, shown with upwards single arrows, by Theorems 4.5, 4.7 and 4.8);
straight double arrows for direct proofs of whole-system upward simulations; and a straight
triple arrow for a direct proof of a whole-system upward weak-tau simulation.
ClightTSO and Csharpminor perform a stack allocation for each individual variable in the

program and assume an infinite memory, whereas the languages below have only finite memory.
From Cstacked to MachAbs a stack allocation occurs for each non-empty stack frame (that is,
almost every function call), whereas in MachConc and Asm only when a thread is created.

Fig. 3. CompCertTSO phases

18 J Ševčı́k et al.

5. COMPCERTTSO

Following the strategy above, we have built a working verified compiler from
ClightTSO to x86 assembly language with x86-TSO semantics. This shows (a) how
we can reason about concurrent TSO behaviour, in the phases where that plays a key
role, and (b) how our overall strategy enables relatively straightforward adaptation of
the existing sequential proof, in the phases where concurrent memory accesses do not
have a big impact.
The structure of our compiler, and of its proof, is shown in Fig. 3. The subdivision

into phases between intermediate languages follows CompCert 1.5 as far as possible,
with our major changes being:

—The source and target languages are ClightTSO and concurrent x86 assembly, not
Clight and PowerPC or ARM assembly.

—The semantics is expressed with a TSO machine, which is common to all phases.
—We need a stack of memory-model-aware abstractions for the intermediate lan-

guages. While named after those of CompCert, their semantics are all adapted to
labellised TSO semantics.

—The simulation from ClightTSO to the first intermediate language, Csharpminor, is
a new proof above our small-step semantics.

—The CompCert phase that does stack allocation of some local variables (those whose
address is taken by &), from Csharpminor to Cminor, is divided into two via a new
intermediate language Cstacked. Cstacked has the same syntax as Csharpminor
(and compilation to it is the identity on terms) but a memory semantics more like
Cminor. The proof of the Csharpminor-to-Cstacked phase is a new direct whole-
system upward simulation argument, dealing with the very different patterns of
memory accesses in the two languages and how they interact with the TSOmachine.

—The proofs of the previous middle phases of the compiler, from RTL to MachAbs with
various optimisations, are relatively straightforward adaptations of the CompCert
proofs to our per-thread labellised semantics and then lifted by the general results
of the previous section.

—The fence elimination phases are new.
—Our Mach-to-Asm phase generates x86 rather than PowerPC or ARM assembly.

The rest of this section discusses these in more detail except for the fence elimination
optimisations, which are deferred to Section 6. To give a flavour of the actual Coq
development we switch presentation style, quoting small excerpts of the Coq source
rather than hand-typesetting. Our main result is as follows.

THEOREM 5.1 (COMPILER CORRECTNESS).

forall fe1 fi2 fe2 p p’,
transf_c_program false fe1 fi2 fe2 p = OK p’ ->
forall args trace,
valid_args args ->
prog_traces Asm.x86_sem p’ args trace ->
prog_traces Csem.Clight.cl_sem p args trace.

[Coq proof]

Here transf c program is the compiler, p ranges over ClightTSO programs, p’ ranges
over x86 programs, args ranges over command-line arguments, and trace ranges over
traces. The first four arguments of transf c program control whether fence insertion
and fence elimination are performed, as described in §6.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 19

Proof outline: First, we construct threadwise downward simulations from ClightTSO
to Csharpminor, between each of the non-fence-elimination phases from Cminor to
MachAbs, and from MachConc to Asm. Then, we turn these threadwise downward
simulations to threadwise upward simulations by Theorem 4.5 (and by the analogous
theorems for the concretising threadwise downward simulation and for the lock-step
threadwise downward simulation with unnecessary load removal). Then, by Theo-
rem 4.7, we turn the threadwise upward simulations into whole-system measured up-
ward simulations. In §5.3 and §5.4, we also establish measured upward simulations
from Cstacked to Csharpminor and from MachAbs to MachConc. In §6, we also estab-
lish measured upward simulations for the first two fence elimination phases and an
upward weak-tau simulation for the third fence elimination phase. By Theorem 4.8
(and by the analogous theorem for weak-tau simulations), we deduce that the traces of
the output program of each phase are included in those of its input program. Finally,
by transitivity of trace inclusion, we get the end-to-end trace inclusion.

5.1. TSO machine design and interaction with threads

To separate the sequential language semantics from the memory model, we split the
whole-system semantics in two parts: the thread transition systems indexed by thread
identifiers, and the TSO transition system with a state consisting of the main memory
(essentially an array of values) and buffers, represented as thread-id-indexed lists of
buffered events. The buffered events can be writes, allocations, or frees:

Inductive buffer_item :=
| BufferedWrite (p: pointer) (c: memory_chunk) (v: val)
| BufferedAlloc (p: pointer) (i: int) (k: mobject_kind)
| BufferedFree (p: pointer) (k: mobject_kind).

Note that all the transition systems have different labels: the whole system labels
are events (§4.1), the threads’ labels are thread events (§4.4) and the TSO machine la-
bels are tso events:

Inductive tso_event :=
| TSOmem (tid: thread_id) (m: mem_event)
| TSOreadfail (tid: thread_id) (p: pointer) (c: memory_chunk)
| TSOfreefail (tid: thread_id) (p: pointer) (k: mobject_kind)
| TSOoutofmem (tid: thread_id) (i: int) (k: mobject_kind)
| TSOstart (tid: thread_id) (newtid: thread_id)
| TSOexit (tid: thread_id)
| TSOtau.

where the memory events mem event are:

Inductive mem_event :=
| MEfence
| MEwrite (p: pointer) (chunk: memory_chunk) (v: val)
| MEread (p: pointer) (chunk: memory_chunk) (v: val)
| MErmw (p: pointer) (chunk: memory_chunk) (v: val) (instr: rmw_instr)
| MEalloc (p: pointer) (size: int) (k: mobject_kind)
| MEfree (p: pointer) (k: mobject_kind).

The TSO machine differs from our original x86-TSO [SSO+10; OSS09] semantics de-
scribed in Section 2 by adding error handling, allocation and free, thread creation, and
exit, and by replacing machine lock and unlock transitions by explicit read-modify-
write transitions.

20 J Ševčı́k et al.

Ideally, the TSO transition system would synchronise with the thread transition
systems on memory events and thread management events (producing a whole-system
τ transition), and all the remaining events of the threads and the TSO machine would
be exposed as whole-system transitions. Unfortunately, there are several cases where
we need a more fine-grained approach because of error-handling; for example, if a
thread issues a read, the TSO machine can either successfully read a value (using the
TSOmem t (MEread . . .) event), or it can fail because the memory is not allocated (with the
TSOreadfail event). We should note that we handle out-of-memory events separately
because we aim to separate programmer errors, such as memory safety violations, from
a possibly inefficient allocator that produces excessively fragmented memory.
For full details of the TSO machine transition system, see Figures 4 and 5. The TSO

machine handles the successful cases of memory operations using rules TSO-READ,
TSO-WRITE, TSO-ALLOC, TSO-FREE, TSO-FENCE and TSO-RMW. The read rule ob-
tains the value from its current view of memory, i.e., the main memory with the read-
ing thread’s buffer applied. The fence and read-modify-write rules require the buffer
of the thread to be flushed. For the other memory rules, the TSO machine appends the
memory operation to the thread’s buffer. When inserting to memory buffers, we always
make sure that all possible interleavings of applying buffers to memory would succeed.
In particular, it is important to guarantee that all allocations in buffers are fresh after
any unbuffering. It might seem that it would be sufficient to check freshness when
inserting the allocation. However, when inserting a free event into a buffer, we might
free memory that has a pending allocation if we unbuffer the free event before the
allocation event. To avoid these corner cases, we simply require that no insertion to
buffers can introduce errors when unbuffering, and fail eagerly if there is a potential
error.
The TSO machine handles write, read and read-modify-write errors using the TSO-

READ-FAIL rule. For simplicity, the rule can only be applied with an empty buffer, but
it is easy to establish (and we have a Coq proof) that this is weakly bisimilar to the
more permissive alternative, where writes fail if insertion into a buffer would cause an
error after some unbuffering, and reads fail if the memory being read is not allocated
in the TSO machine’s memory with the thread’s buffer applied. Similarly, TSO-FREE-
FAIL can only fail with an empty buffer, but to have the bisimilarity we further insist
that writes in other buffers can be successfully performed after the deallocation. Fi-
nally, there are unsurprising steps for applying the head of a buffer (TSO-UNBUFFER),
adding and removing threads (TSO-START, TSO-EXIT) and out-of-memory handling
(TSO-OUT-OF-MEMORY).
The whole-system transition system mostly synchronises corresponding transitions

of threads and the TSO machine, but there are several exceptions to this scheme. The
rule handling thread start creates a new thread and initialises the thread with a func-
tion identified by the name in the spawning thread’s start event. If there is no function
of the required name there is a start error transition rule. The rule for thread stuck-
ness fires an error transition if there is a thread that cannot make any progress. This
can only happen if there is a run-time error, such as multiplication of two pointers. We
should note that there are two sets of rules for thread start and external action be-
cause their argument passing is different in the back end of the compiler (MachConc,
Asm) and the front/middle end of the compiler (Clight to MachAbs). Languages be-
tween Clight and MachAbs pass arguments to an external (or thread start) function in
the external/thread-start event and no memory is involved. In contrast, the MachConc
and Asm languages use the approach mandated by the calling conventions: the ar-
guments are passed on stack in memory, the external and thread start thread-events
take the addresses of their arguments’ locations, and the whole-system transition is

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 21

Inductive tso_step : tso_state -> tso_event -> tso_state -> Prop :=

(* MEMORY OPERATIONS *)
| tso_step_write : (* Memory write (goes into buffer) *)

forall t ts ts’ p c v
(EQts’: ts’ = buffer_insert ts t (BufferedWrite p c v))
(SAFE: unbuffer_safe ts’),

tso_step ts (TSOmem t (MEwrite p c v)) ts’

| tso_step_read : (* Memory read *)
forall ts t m’ p c v

(AB: apply_buffer (ts.(tso_buffers) t) ts.(tso_mem) = Some m’)
(LD: load_ptr c m’ p = Some v),

tso_step ts (TSOmem t (MEread p c v)) ts

| tso_step_read_fail: (* Memory read failure *)
forall ts t p c

(Bemp: ts.(tso_buffers) t = nil)
(LD: load_ptr c ts.(tso_mem) p = None),

tso_step ts (TSOreadfail t p c) ts

| tso_step_alloc : (* Memory allocation (goes into buffer) *)
forall t ts ts’ p i k

(EQts’: ts’ = buffer_insert ts t (BufferedAlloc p i k))
(UNS: unbuffer_safe ts’),

tso_step ts (TSOmem t (MEalloc p i k)) ts’

| tso_step_free : (* Memory deallocation (goes into buffer) *)
forall t ts ts’ p k

(EQts’: ts’ = buffer_insert ts t (BufferedFree p k))
(UNS: unbuffer_safe ts’),

tso_step ts (TSOmem t (MEfree p k)) ts’

| tso_step_free_fail : (* Memory deallocation fail *)
forall t ts p k

(Bemp: ts.(tso_buffers) t = nil)
(FAIL: match free_ptr p k (tso_mem ts) with

| None => True
| Some m’ => exists tid’, exists p, exists c, exists v, exists b,

tso_buffers ts tid’ = BufferedWrite p c v :: b
/\ store_ptr c m’ p v = None

end),
tso_step ts (TSOfreefail t p k) ts

| tso_step_outofmem :
forall t ts n k

(OOM: forall p,
~ unbuffer_safe (buffer_insert ts t (BufferedAlloc p n k))),

tso_step ts (TSOoutofmem t n k) ts

Fig. 4. TSO machine transition system: Part 1

responsible for reading out the arguments from the TSO memory before emitting a
whole-system external event (or spawning a thread).

5.2. Small-stepping (ClightTSO to Csharpminor)

ClightTSO is compiled into Csharpminor, a high-level intermediate representation
that has a simpler form of expressions and statements. Most notably, the translation
unifies various looping constructs found in the source, compiles away casts, translates
union and structs into primitive indexed memory accesses, and makes variable l-value
and r-value distinctions explicit. High-level type information found in ClightTSO is

22 J Ševčı́k et al.

(* UNBUFFERING *)
| tso_step_unbuffer : (* Apply buffer item *)

forall t ts bufs’ bi b m’
(EQbufs: ts.(tso_buffers) t = bi :: b)
(EQbufs’: bufs’ = tupdate t b ts.(tso_buffers))
(AB: apply_buffer_item bi ts.(tso_mem) = Some m’),

tso_step ts (TSOtau) (mktsostate bufs’ m’)

(* ATOMIC INSTRUCTIONS *)
| tso_step_mfence : (* Mfence (note that the buffer must be flushed) *)

forall ts t
(Bemp: ts.(tso_buffers) t = nil),

tso_step ts (TSOmem t MEfence) ts

| tso_step_rmw : (* Read-modify-write (note that the buffer must be flushed) *)
forall ts ts’ t p c v instr m’

(Bemp: ts.(tso_buffers) t = nil)
(LD: load_ptr c ts.(tso_mem) p = Some v)
(STO: store_ptr c ts.(tso_mem) p (rmw_instr_semantics instr v) = Some m’)
(EQts’: mktsostate ts.(tso_buffers) m’ = ts’),

tso_step ts (TSOmem t (MErmw p c v instr)) ts’

(* THREAD MANAGEMENT *)
| tso_step_start : (* Thread start *)

forall ts ts’ t bufs’ newtid
(EQbufs’: bufs’ = tupdate newtid nil ts.(tso_buffers))
(EQts’: mktsostate bufs’ ts.(tso_mem) = ts’),

tso_step ts (TSOstart t newtid) ts’

| tso_step_finish : (* Thread finish *)
forall ts t

(Bemp: ts.(tso_buffers) t = nil),
tso_step ts (TSOexit t) ts

Fig. 5. TSO machine transition system: Part 2

ClightTSO Csharpminor

v2 · [v1 +ptr∗int→ptr] · κe |ρ

τ

(BINOP)

v2 · [n *] · [v1 +ptr∗int→ptr] · κ̂e |ρ̂

τ

(BINOP)

v · κe |ρ v̂2 · [v1 +ptr∗int→ptr] · κ̂e |ρ̂

τ

(BINOP)

v · κ̂e |ρ̂

Here int = int (I32,Signed) and ptr = pointer (int). The type annotation in the multiplica-
tion (*) context is omitted.

Fig. 6. Part of the simulation relating ClightTSO and Csharpminor evaluation for addition of an int and a
pointer

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 23

ClightTSO Csharpminor

*((&(id ty1)ty2))ty3 · κe |ρ

τ

(DEREF)

id · κ̂e |ρ̂

mem (read p c v)

(VAR)

eval var ref ρ id p c

has type v

(type of chunk c)

(&(id ty1)ty2) · [* ty3] · κe |ρ

τ

(ADDR)

lval (id ty1) · [* ty3] · κe |ρ

τ

(VARLOCAL)
ρ!id= Somep

p · [* ty3] · κe |ρ

mem (read p c v)

(LOADBYVALUE)
...

v · κe |ρ v · κ̂e |ρ̂

Fig. 7. ClightTSO compilation can sometimes eliminate source-level transitions

compiled to a lower-level byte-aware memory representation. Accounting for these dif-
ferences in the simulation is complicated by the relatively large size of the two lan-
guages: ClightTSO’s definition has 94 rules, while Csharpminor has 62.
Because expression evaluation is defined by a small-step semantics, adapting the

downward simulation proofs directly from CompCert (which uses a big-step expres-
sion evaluation semantics) was not feasible, and much of the proof, along with the
simulation change, had to be written from scratch as a result. Since the two lan-
guages are relatively close, however, the revised simulation could sometimes simply
map ClightTSO transitions directly to the corresponding Csharpminor ones; evalua-
tion of constants, unary operations, and certain components of function call and return
are such examples.

However, as we mentioned earlier, compilation often results in a ClightTSO term
becoming translated to a sequence of lower-level simpler Csharpminor terms. To il-
lustrate, the diagram shown in Fig. 6 shows the evaluation of a binary addition of an
integer and a pointer. For ClightTSO, the multiplication of the integer operand by the
representation size of the pointer type is performed implicitly, subsumed within the
intrinsic definition of addition. In Csharpminor, an explicit binary multiplication oper-
ation is introduced. Notice that the continuations in the subsequent matching states
are structurally quite different from each other as a result; the simulation relation
must explicitly account for these differences.

Perhaps a more surprising consequence of using a small-step semantics is that the
simulation relation may sometimes be required to match multiple ClightTSO tran-
sitions to a single Csharpminor one. For example, compilation from ClightTSO to
Csharpminor eliminates various states defined in ClightTSO to deal with addressing
and dereferencing. Consider the evaluation of an identifier that appears in an r-value
context. In ClightTSO, the identifier is first translated into a pointer, and a separate
step returns either the contents of the pointer (in case it references a scalar type) or
the pointer itself (in case of e.g., arrays or structs). Compilation to Csharpminor re-
moves this intermediate step, generating the appropriate access instruction directly,
since the pointer type is statically known. This simplification generalizes to sequences

24 J Ševčı́k et al.

of address-of and dereferencing operations. We depict the sequence of steps necessary
to compute a variable’s address, and then dereference it (if it is a scalar) in Fig. 7.
The relation eval var ref states that variable id, in the context of local environment
ρ, evaluates to pointer p that references an object with memory representation c. The
value v read must have a type consistent with c as defined by relation has type. No-
tice that ClightTSO requires four steps to perform this operation while compilation
to Csharpminor requires only one. To account for such differences, the simulation re-
lation forces Csharpminor transitions to stutter, and we incorporate a measure on
ClightTSO expressions and continuations that allows matching of several intermedi-
ate ClightTSO states to a single Csharpminor one. Indeed, such a measure, suitably
adapted, must be defined for most other compiler phases.
Besides memory read and write operations, the ClightTSO semantics also gener-

ates events for function argument and local variable allocation as part of the function
calling sequence. The small-step semantics requires these operations be performed in
stages. After all argument expressions and the function pointer have been evaluated,
memory is allocated for each formal parameter, as well all local variables, in turn. Each
distinct allocation is represented as a separate labelled transition. After allocation, the
values of the actuals are written to the formals. On function exit, allocated storage is
freed individually. The corresponding Csharpminor transitions are similar, albeit with
a change in the underlying type representation used to guide memory allocation and
writes.

5.3. Changing memory accesses (1) (Csharpminor to Cstacked)

5.3.1. Languages and Compilation. The Csharpminor to Cstacked phase bridges the se-
mantic gap to the next intermediate language, Cminor, by introducing a new semantics
for the Csharpminor syntax. That is, the program transformation from Csharpminor
to Cstacked is an identity function. However, the Cstacked memory semantics closely
follows that of Cminor, which differs radically from Csharpminor.

Csharpminor

Stack allocation of address-taken locals

Cstacked

§5.5
Simplification

(undefined values can become defined)
Cminor

To understand the motivation for introducing Cstacked, we summarise the main
features of the following compilation phase (Cstacked to Cminor):

(1) Local variable reads and writes are turned into explicit memory accesses or local
state reads and updates. Note that in Csharpminor, as in C, it is legal to take the
address of a local variable and even to pass it to another thread, so long as it is not
accessed outside its lifetime. Variables whose address is never taken, however, are
guaranteed to be thread-local, and the compiler lifts such variables from memory
to local state. The remaining variables are kept in memory.

(2) Individual local variable allocations are replaced with single stack-frame alloca-
tion.

(3) Switch-case statements are compiled to switch-table statements.

Without the intermediate Cstacked phase, the first two steps would change memory
semantics: Step 1 would replace memory accesses to local variables with local state
manipulation that does not touch memory, and Step 2 would replace the individual
variable (de)allocations with a single stack-frame (de)allocation in Cminor.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 25

To separate concerns, the Cstacked semantics only captures the memory effects
of the transformation, i.e., its transitions simulate the compilation steps 1 and 2.
Cstacked and Csharpminor only differ in handling local variables. The change is most
evident in the types of local environments, which are part of the local state of threads.
In Csharpminor, a local environment is a map from names to pointers and type infor-
mation that essentially describes the size of a local variable in memory:

var kind , vk ::= scalarmemory chunk | array size
cshm env , cshe ::= nil | (id :(p , vk))::cshe

In Cstacked, a local environment consists of a stack frame pointer and a map that
assigns to each name a value or an offset within the stack-frame:

st kind , sk ::= local v | stack scalarmemory chunk ofs | stack array size ofs
cst items , csti ::= nil | (id : sk)::csti
cst env , cste ::= (p , csti)

Note that Cstacked can keep values of local variables in the local environment (when
the corresponding st kind is local). This contrasts with Csharpminor, which stores the
values of all local variables in memory.

The difference in the environment drives all the other changes from Csharpminor
to Cstacked: we adjust the rules for assignment, the write of a function’s return value,
local variable reads, function entry, and function exit to handle local in-state variables
and on-stack variables separately. The most significant change is in function entry,
where we scan the function body for the & operator and compute the size of its stack
frame together with offsets for on-stack local variables.

We illustrate the radical difference between the memory semantics of Csharpmi-
nor and Cstacked on the environment construction and parameter binding in function
entry. Consider the following function:

int f(int i) {int j, k; g(i, &j, &k); return j+k;}

Fig. 8 shows the environment construction and argument binding transitions following
an invocation of f with parameter 1. The states have the following meaning: the state
Call l f follows the evaluation of actual parameters l in the invocation of f ; Alloc l v e
is an intermediate state for allocation of local variables v, where e is an accumulator
for the environment and l is the list of values to be bound to the function’s formal pa-
rameters; Bind l p e is a state for binding parameter names p to values l in environment
e. The Alloc to Bind transition retrieves the parameter names from the state’s contin-
uation, which we omit in this example for brevity. Note that the states do not refer to
memory directly. Instead, the transitions expose the memory interaction in the labels.
In Csharpminor, the semantics of function entry allocates three different 4-byte blocks,
one for parameter i, and two for variables j and k. In Cstacked (and in all languages
between Cminor and MachAbstract), the function entry semantics allocates a single
8-byte stack frame for variables j and k. No memory is reserved for variable i because
i’s value is kept in the thread-local local environment. The binding transitions are also
different: Csharpminor writes the value 1 of parameter i to memory, but Cstacked sim-
ply stores the value in the environment. Indeed, note the difference in the environment
entry for i in the last Bind states at the bottom of the figure: the Csharpminor entry
only contains a pointer to memory, whereas the Cstacked entry contains the value of
the variable.

5.3.2. Simulating Cstacked in Csharpminor. Remember that the Csharpminor-Cstacked
phase switches from infinite memory to finite memory. This is necessary to be able to
simulate the creation of the Cstacked local environments by fresh memory allocation

26 J Ševčı́k et al.

Call [1] f

Csharpminor

τ

Call [1] f

Cstacked

alloc as 8 Stack

Alloc [1]

i : I
j : I
k : I

 []

alloc ai 4 Stack

Alloc [1]

[

j : I
k : I

]

[

i : (ai, I)
]

alloc aj 4 Stack

Alloc [1]
[

k : I
]

[

j : (aj , I)
i : (ai, I)

]

alloc ak 4 Stack

Alloc [1] []

k : (ak, I)
j : (aj , I)
i : (ai, I)

τ

Bind [1] [i]

k : (ak, I)
j : (aj , I)
i : (ai, I)

write ai int32 1

Bind [1] [i]

as,

k : SI 4
j : SI 0
i : LUnd

τ

Bind [] []

k : (ak, I)
j : (aj , I)
i : (ai, I)

 Bind [] []

as,

k : SI 4
j : SI 0
i : L 1

Here I stands for scalar int32, LUnd for local Vundef, SI ofs for stack scalar int32 ofs, and L 1
for local (Vint 1).

Fig. 8. Function entry transitions in Csharpminor and Cstacked

in Csharpminor so that the memory cannot be allocated even by future Cstacked allo-
cations. We call the finite space used by Cstacked the machine space. The remaining
(infinite) part of the Csharpminor memory space in other blocks is called scratch space.
Our representation of pointers is of the form (b, ofs) where b is an integer block identi-
fier and ofs ∈ {0, . . . , 232− 1} is an offset. In our semantics, the machine space pointers
have block b = 0, the pointers with non-zero b are scratch space pointers. We simulate
Cstacked transitions so that we preserve equality of pointer values in the states and
the values in the (machine) memory:

—We simulate Cstacked stack frame allocation by allocations of individual variables
at the same (machine) memory location as they have in Cstacked. Moreover, we
allocate space for Cstacked local environments in globally fresh blocks in the scratch
memory.

—Cstacked memory reads/writes are simulated by the same reads/writes in Csharp-
minor.

—Cstacked local environment accesses (which are τ events in Cstacked) are simulated
by memory accesses to the corresponding Csharpminor scratch memory.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 27

—We simulate Cstacked stack frame deallocation by freeing the individual variables,
including the ones in non-machine memory, in Csharpminor.

The simulation relation on the states of the parallel composition of threads and the
TSO machine consists of three main components: a thread state relation, a TSO buffer
relation and a memory relation.

5.3.3. Relating thread states. The main source of difficulty is relating the local environ-
ments of Cstacked and Csharpminor, because the values of the local environments in
Cstacked correspond to the memory contents of Csharpminor. Therefore, the thread
state simulation must relate a Cstacked thread state with a Csharpminor thread state
and memory.

In our TSO semantics, a thread’s view of memory may differ from the real contents
of the memory and from other threads’ views of memory because of possibly pending
writes, allocations and frees in store buffers of this and other threads. We consider
local environments related for thread t if the values in the local environments in the
Cstacked state are the same as the ones in the memory of Csharpminor’s TSO ma-
chine with t’s buffer applied. Moreover, we consider stack environments related if for
each Cstacked environment item of the stack kind with offset ofs, the corresponding
Csharpminor item’s pointer equals the sum of Cstacked stack frame pointer and ofs .
Since Cstacked and Csharpminor only differ in their environments, the thread state
simulation relation is a natural lifting of the environment relation.
All thread transitions preserve such a relation because they can only affect the

thread’s buffer. However, the simulation of applying other threads’ buffers to the main
memory (unbuffering) requires a stronger relation. In particular, the state relation
does not prevent unbuffering in one thread from interfering with another thread’s
state relation. To get non-interference for unbuffering, we keep track of memory par-
titioning among threads (this is also necessary to make sure that threads do not free
each others’ stack frames) by augmenting the state relation with the partitions they
own in memory.

5.3.4. Relating buffers. The buffer relation requires that a Cstacked (stack-frame) allo-
cation corresponds to individual disjoint Csharpminor allocations (of individual vari-
ables) that must be in the stack-frame; Cstacked writes correspond to the same writes
in Csharpminor buffer; and frees in a Cstacked buffer correspond to frees of sub-ranges
in Csharpminor. To relate frees, we must know the sizes of objects in memory because
a free label does not contain a size; hence, we parametrise the buffer relation by the
thread’s partition. It is worth noting that the Csharpminor buffer may contain extra
memory labels for the local environment manipulation, which are τ labels in Cstacked
and thus do not appear in the Cstacked buffer. We only require the operations in the
labels to be valid in the thread’s partition.

Fig. 9 illustrates the buffer relation. Assuming that the TSO machine inserts labels
to the top of the buffer and applies the labels to memory from the bottom, the buffer
contents might be generated by the function f from the beginning of this section, where
the allocations correspond to the transitions from Fig. 8, the dotted part of the buffer
is generated by the function g, the frees correspond to local variable deallocations at
function exit, and the write label is issued by writing the return value to the caller’s
stack frame. The grey labels are the memory manipulation removed by the compiler,
or, more precisely, they are the labels introduced by the upward simulation (note that
they act on scratch memory).

In the simulation proof, the buffer relation says how to simulate Cstacked buffer
application in Csharpminor while preserving the simulation relation. For example, if

28 J Ševčı́k et al.

write (0, 8) int32 3

free (1, 4) Stack

free (0, 12) Stack

free (0, 16) Stack

Csharpminor

write (0, 8) int32 3

Cstacked

. . . free (0, 12) Stack

write (1, 4) int32 1 . . .

alloc (0, 16) 4 Stack alloc (0, 12) 8 Stack

alloc (0, 12) 4 Stack

alloc (1, 4) 4 Stack

Fig. 9. Buffer relation

we are to simulate Cstacked buffer application of the alloc label, we apply the three
corresponding allocations followed by the write from the Csharpminor buffer.

5.3.5. Relating TSO states. The whole-system simulation relation states that there are
Cstacked and Csharpminor partitionings, i.e., maps from thread ids to partitions such
that

—The Csharpminor (resp. Cstacked) partitioning corresponds to the ranges allocated
in the Csharpminor (resp. Cstacked) TSO machine’s memory. Moreover, the parti-
tionings must be pairwise disjoint and for each thread, the Csharpminor machine
partitions must contain sub-ranges of Cstacked partitions. This is necessary to guar-
antee that any Cstacked allocation can be successfully simulated in Csharpminor3.

— The values in the machine memory are the same in Cstacked and in Csharpminor.
We need this property to establish that reads of the same address give the same
value in Cstacked and in Csharpminor.

—Each thread’s Cstacked and Csharpminor buffers are related.
—For each thread t, the states of t in Csharpminor and Cstacked are related in the

partitions and memory updated by t’s buffers.

The relation also imposes several consistency invariants: to guarantee that Cstacked
writes do not overwrite Csharpminor scratch memory, we require that scratch pointers
only appear as pointers in Csharpminor environments. With these ingredients, the
relation on the TSO states is a whole-system upward simulation relation.

5.4. Changing memory accesses (2) (MachAbs to MachConc)

The overall structure of the simulation proof from MachAbs to MachConc is similar to
the Csharpminor-Cstacked correctness proof. MachAbs and MachConc are again two
different semantics for the same programs.

3A simulation of successful allocation is an interesting (and lengthy) exercise because one must show that
in Csharpminor, no possible partial application of other threads’ buffers conflicts with the simulated allo-
cations. The partial buffer applications create states that do not directly correspond to any Cstacked state
(e.g., partially allocated environments), forcing us to invent a new simulation relation for this purpose.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 29

Linear

Laying out the activation records (Part I)

MachAbs

Laying out the activation records (Part II)

MachConc

§5.6
Emission of x86 assembly code

(undefined values can become defined)
Asm (x86)

Both MachAbs’s and MachConc’s thread states include the processor state, i.e., the
state of general purpose registers, the current function, the stack pointer and the in-
struction pointer. The semantics differ in storage of function frames, which contain
(non-escaping) local variables, function arguments, callee-saved register contents and
return addresses. The MachAbs semantics stores the frames in its state, and instruc-
tions that manipulate the function frames (getstack, setstack, getparam) do not touch
memory, i.e., they perform a τ transition, which accesses only the thread-local function
frames. In contrast, MachConc stores the function frames in (global) memory; so the
three aforementioned instructions generate read or write events for communicating
with the TSO machine. It is worth remembering that not all function-local variables
are thread-local since a program can take the address of a function-local variable,
send it to another thread which can then access it. If a C program takes an address
of a function-local variable, the variable is put into memory, called the stack frame
memory, by the Csharpminor-Cstacked phase; otherwise, the variable is kept in the
thread-local environment. The stack frame management does not change until the
MachAbs phase, where stack frames are still allocated in memory upon function en-
try and deallocated on function exit. In MachConc, stack frames live inside function
frames. The function frames are included in the thread’s stack space that is allocated
upon starting the thread. To avoid confusion, we will refer to the stack frame memory
as MachAbs frames and the function frame memory as MachConc frames.
We split the MachAbs-MachConc simulation proof in two parts. First, we prove a

form of threadwise upward simulation that keeps track of thread-local parts of mem-
ory and is independent of the TSO semantics. Then we show that if we have the thread-
wise upward simulation, then there is a whole-system upward simulation. This second
part of the proof does not refer directly to the thread semantics—it only uses the ab-
stract notion of threadwise simulation. Before we give an overview of the proof, we
describe our intermediate threadwise simulation abstraction. We illustrate the con-
cept of threadwise simulation relation on an example program:

int f(int x) {
int i, *p;
i = x; p = &i;
return *p;

}

int main() {
int r = f(1);
return r;

}

Observe that the variable i is part of f’s MachAbs frame while p is not (because the
program does not take the address of p). For the purposes of our explanation here, we
assume that the MachConc frame of f includes both p and i. The MachConc frame

30 J Ševčı́k et al.

Fig. 10. MachConc and MachAbs thread states

of main contains r, a place-holder for the parameter x of f, and a place-holder for the
return address from f. To illustrate the difference between MachAbs and MachConc,
Figure 10 shows thread states of the MachAbs semantics and the MachConc semantics
just before returning from function f. Note that the memory of MachAbs only allocates
space for the MachAbs frame of f. Since main does not need to store anything on the
stack, main’s MachAbs frame is empty and the corresponding stack frame pointer is
None. In contrast, MachConc stores all local variables, return addresses and function
arguments in memory. Unlike in MachAbs, the memory is allocated only when a thread
starts and remains allocated until the thread exits.

5.4.1. Threadwise simulation definition. The threadwise simulation serves as an interface
between the threadwise and whole-system correctness lemmas. We take care to make
the definition parametric in the source and target transition systems so that we can
completely separate the whole-system argument about the TSO machine from the se-
mantics of MachAbs and MachConc.
In addition to relating the usual source and target states, our simulation relation

keeps track of memory ownership and local memory content: we decorate the source
and target states with lists of owned memory regions and we also associate local mem-
ory with the target state so that the simulation relation can describe relationship be-
tween the target’s function (MachConc) frames in memory and the source’s local state.
As a result, the simulation relation is of the form

Variable rel : TgtS -> list arange -> mem ->
SrcS -> list arange ->

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 31

Prop.

where TgtS is the type of target transition system states, SrcS is the type of source
states, list arange is a list of memory ranges and mem is memory. In our example
in Figure 10, the source and target states are illustrated on the left. The list of source
ranges corresponds to MachAbs frames, i.e., the list contains a single range – the stack
frame of f. The list of target ranges is a list containing a single element – the thread’s
entire stack space. The target memory is the MachConc memory. We omit the source
memory from the threadwise simulation because the relationship between the Mach-
Abs memory and non-local MachConc memory will be specified by the whole-system
simulation relation.

We require that the threadwise simulation relation must preserve stuckness, must
only depend on local memory and must simulate events correctly. More precisely, the
simulation relation preserves stuckness if for any related states s and t, if t is stuck
then s is stuck. By local memory we mean the following: memory chunk c at location p
is local for target list of ranges tp and source list of ranges sp if the chunk is inside some
range in tp, but does not overlap with any range from sp. In our MachAbs-MachConc
case, a chunk is local if it is in the part of the extra memory that was allocated byMach-
Conc to hold the MachConc frames. A simulation relation rel is only dependent on local
memory if for all states s, t, lists of ranges sp, tp and memories m, m′ that have equal
value in all their memory chunks, rel(t, tp,m, s, sp) implies irel(t, tp,m′, s, sp). The lo-
cal memory of MachConc is MachConc’s stack space without the MachAbs frames. In
Figure 10, the chunk containing variable p is local, but the chunk containing i is not.
The event simulation essentially says that operations on local memory in the target

can be simulated by τ events in the source. Simulation of allocation is subtle: we allow
the target semantics to allocate extra memory to store its local state. In our MachConc-
MachAbs simulation, MachAbs and MachConc do not perform memory allocation at
the same time: MachConc semantics allocates the entire stack space (our semantics
allocates 8MB for thread stacks) at thread start and frees the space at thread exit, but
MachAbs allocates its stack frames upon function entry and deallocates on function
exit.

We illustrate the precise simulation definition on the example of read simulation
that is a part of the event simulation:

Definition local_simulation :=
forall ss ts ts’ tm sp tp l,
tgt_step ts l ts’ ->
rel ts tp tm ss sp ->
match l with

| ...
| TEmem (MEread p c v) => read_simulation ss ts ts’ tm sp tp p c v
| ...

end.

That is if ts
l
−→ ts ′ in the target semantics and ts, tp, tm are related with ss, sp, where tp

are the memory ranges owned by the target state ts , sp are the memory ranges owned
by the source state ss , tm is the local memory associated with the state ts , and l is a
read event of value v from chunk c at location p, then we require that

— the state ss can reach an error, or
— the chunk c at location p is local for tp, sp, the load of the chunk from memory tm

must succeed, and if the value of the chunk in memory matches the value v from

32 J Ševčı́k et al.

the event then the source semantics can do the transition ss
τ
−→ ss ′, where ss ′, sp is

related to ts ′, tp, tm, or ss can stutter with decreasing measure, or
— the source semantics can perform a read transition to a related state, where the

read must read the same value or the undef value.

The precise Coq statement of the definition follows.

Definition read_simulation ss ts ts’ tm sp tp p c v :=
(* Either can do an error *)
stuck_or_error _ ss \/
(* either it is a Machconcr-local access such that

we can do matching tau in source *)
(chunk_inside_range_list p c tp /\
range_not_in (range_of_chunk p c) sp /\
load_ptr c tm p <> None /\
(load_ptr c tm p = Some v ->
(exists ss’, src_taustep ss TEtau ss’ /\

rel ts’ tp tm ss’ sp) \/
(rel ts’ tp tm ss sp /\ ord ts’ ts) \/
stuck_or_error _ ss)) \/

(* or we can do a read of any less defined value *)
(forall v’ (LD : Val.lessdef v’ v),

exists ss’, src_taustep ss (TEmem (MEread p c v’)) ss’ /\
rel ts’ tp tm ss’ sp).

5.4.2. Threadwise simulation for MachAbs to MachConc. The threadwise simulation rela-
tion essentially requires that the MachAbs state matches MachConc frames in mem-
ory and that the MachConc and MachAbs registers match, with the exception of the
stack pointer, which points to the stack frame in MachAbs, but in MachConc points
to the frame. In reality, the simulation relation must also keep track of several other
technical invariants. Most notably, we require that all MachAbs frame ranges are in-
side the stack space of MachConc, the stack space is allocated in MachConc’s memory
and all MachConc frames are properly aligned.
Although the simulation proof does not explicitly mention separation between the

individual function frames, most of the proof work concentrates on establishing sep-
aration of memory regions to guarantee non-interference of memory operations with
frames. For example, for a simulation of a local variable write in MachConc, not only
we need to show the correspondence of the updated memory with the updated frame in
MachAbs, we also must establish that all the other MachAbs frames still correspond to
the MachConc memory, i.e., that the memory used by the other frames does not change.
We do this by showing that the updated frame is disjoint from all the other frames. A
similar proof obligation comes even from simulation of local reads, because the simula-
tion of reads requires us to show that local reads do not interfere with MachAbs stack
frames.
Another interesting example of the difference between the languages is the han-

dling of function entry – while the MachAbs semantics allocates the MachAbs frame
on function entry, the MachConc semantics simply decrements its stack pointer. If the
decremented stack pointer exceeds the allocated stack range, the MachConc seman-
tics issues an out-of-memory label and the simulation is trivially satisfied. Otherwise,
we simulate function entry by the stack space allocation in MachAbs. Since the newly
allocated memory is still inside the MachConc stack space, we keep the invariant re-
quiring that each range allocated in MachAbs is a sub-range of some range allocated
in MachConc.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 33

We also show the stuckness simulation and non-interference with non-local memory
requirements of the threadwise simulation by case analysis on the transition relation
for stuckness and by induction on the derivation of the simulation relation for the
non-interference.

5.4.3. Whole-system simulation from threadwise simulation. The overall structure of the
whole-system simulation relation is similar to the Csharpminor-to-Cstacked relation:
for both the target and source there must be disjoint partitioning of memory between
threads such that the values in the allocated source memory are the same as the val-
ues in the target memory at the same location. For each thread we have (i) each range
in the thread’s source partition is a subrange of some range in the thread’s target par-
tition, (ii) the buffers of the threads are related in a similar way to the Csharpminor-
Cstacked buffer relation, and (iii) the source and target thread states are related in
their partitions and target memory after applying the thread’s buffer.

The trickiest part is to prove that applying the buffer in one thread does not affect
the state relation (iii) for all the other threads. This is tricky because our threadwise
non-interference with non-local memory only applies to memory after completely ap-
plying the thread’s buffer. To get the non-interference before applying the buffers we
make a subtle use of the fact that no unbuffering can fail.

5.5. The ‘easy’ phases, including optimisations

We have enabled all the CompCert 1.5 optimisations that are sound under the TSO
semantics except tail call optimisation. These are: constant propagation and partial
evaluation, a restricted version of CSE (common subexpression elimination) that elim-
inates only common arithmetic expressions, but does not eliminate common memory
loads, redundant load removal (as part of register allocation), and branch tunneling.
Tail call optimisation is sound but not very useful in our setting as in the x86 ABI all
function arguments are stack-allocated, so one only rarely has empty stack frames. The
only CompCert 1.5 optimisation that we do not perform because it is unsound under
the TSO memory model is CSE for memory reads, as demonstrated by the following
example (adapted from [Pug00]):

int x;

x = 0;
x = 1;

void f (int *p) {int a = x, b = *p, c = x;
printf("%d%d%d", a, b, c);}

f(&x);

CSE would replace the assignment c = x with c = a, allowing the second thread to
print 010, a behaviour that is not allowed by the TSO semantics.

Labellising CompCert’s definitions of RTL, LTL, LTLin, Linear, MachAbs, andMach-
Conc and establishing that they are determinate and receptive (so that they can be
composed with the TSO machine) was straightforward because the CompCert 1.5 def-
initions of these languages were already fully small-step. Porting CompCert’s down-
ward simulation proofs to threadwise downward simulation proofs and lifting them
to measured whole-system upward simulations using Theorems 4.5, 4.7 and 4.8 was
equally straightforward. (In the early days of the project, porting one phase took ap-
proximately two days, but by the end 3 hours were sufficient to port constant propaga-
tion and lift it to a measured whole-system upward simulation.) Elimination of redun-
dant loads required a small adaptation of the downward-to-upward simulation infras-
tructure. Moreover, the Cstacked-Cminor and spilling/reloading phases may change
some of the undefined values in the source semantics to particular values in the target
semantics requiring us to prove another slightly more general version of Theorems 4.5
and 4.7.

34 J Ševčı́k et al.

The CompCert instruction selection phase, from Cminor to CminorSel, uses vari-
ous “smart constructors” to choose appropriate operations and addressing modes for
the target machine; its correctness relies on many lemmas showing the correctness of
these with respect to expression evaluation. To make it easy to port these lemmas, for
this phase we introduced a “trace step” semantics, as outlined in §3.6. The inductive-
on-expressions structure of these helped significantly, though some plumbing was re-
quired to compose the result with the adjacent phases.

5.6. The x86 backend

We adapted the x86 backend from CompCert 1.8 (CompCert 1.5 supported PowerPC
and ARM only), with several notable differences in the semantics and proofs. Our x86
semantics is based on a well-tested HOL4 formalisation of part of the x86 instruction
set [SSZN+09, Section 3]. The structure of our instruction AST is closer to that of
general x86 instructions, with their various combinations of immediate, register and
addressing-mode arguments, than the AST used in CompCert 1.8, which defines a
flat AST supporting just the combinations used by the compiler. This does entail some
additional complexity in the proof, but allows a more generally reusable and extensible
x86 semantics. For instance, binary operations over integers are represented as

Xbinop : int_binop_name -> int_dest_src -> instruction

where int_dest_src accounts for all possible combinations of operands:

Inductive int_dest_src :=
| Xri (dst: ireg) (src: imm) (**r r32, imm32/imm8(sign-extended) *)
| Xrr (dst: ireg) (src: ireg) (**r r32, r32 *)
| Xrm (dst: ireg) (src: xmem) (**r r32, m32 *)
| Xmr (dst: xmem) (src: ireg). (**r m32, r32 *)

Immediate operands to an arithmetic instruction or an indexed memory access, de-
noted by imm, can be either integer literals, or a symbolic reference (the address of a
symbol – symbolic references are resolved later by the linker):

Inductive imm :=
| Cint (i: int)
| Csymbol (s: ident) (offset: int).

while the rich set of indexed-memory addressing modes is accounted by xmem:

Inductive xmem :=
| Xm (idx: option (word2 * ireg)) (base: option ireg) (displ: imm).

We faithfully model flag updates for integer arithmetic and comparison instructions,
and the semantics of the conditional branches is defined in terms of the flag status
(in contrast to CompCert 1.8 where it is axiomatised). This required proving several
theorems about 32-bit integer arithmetic, relating the flag state to the logic result of
comparison instruction; their proof is tiresome in Coq (while the HOL4 model-checker
blast can prove them automatically by exhaustive exploration of the state space).

For floating point, we target the SSE2 instruction set, and floating point arithmetic
and comparison semantics is axiomatised, as in CompCert 1.8.
We had to add a number of pseudo-instructions standing for short instructions se-

quences. Ideally these should have been represented as real instructions in the AST,
but unfortunately their semantics cannot be specified in the current CompCert setting.
These are:

— Xxor_self r standing for XOR r, r. This is a pseudo-instruction to work around the
fact that Val.xor x x is not always Vzero (in particular, when x = Vundef);

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 35

— Xset cc r for setting r <- cc. This corresponds to

SETcc CL
MOVZBL r, CL

because the semantics of SETcc cannot be represented faithfully in isolation. SETcc
writes only the least significant byte of ECX leaving the rest unchanged. If, how-
ever, ECX held Vundef, then the resulting value of ECX could not be represented as a
CompCert value;

— several floating-point instructions: Xmovftr and Xmovftm for truncating floating
point moves, dropping precision (these are pseudo-instructions because our seman-
tic values do not include single-point floating point values); Xmovstr and Xmovrst
for moving values between the FP stack and the XMM registers; Xnegf for negating
floating point numbers; Xfctiu for converting a floating point number to an un-
signed integer; and Xiuctf for converting an unsigned integer to a floating point
number. These are pseudo-instructions because the floating point semantics is ax-
iomatized.

OS-specific behaviours, like thread creation and thread exit, are axiomatised.
Many x86 assembler instructions can involve both a read and a write to memory,

and their semantics must define two separate interactions with the TSO machine.
This is done by extending the state of the local computations with partially executed
instructions, that keep track of the pending write (if any) of the continuation.
At the compilation level, the main difference with CompCert 1.8 is that we replaced

individual stackframe allocations with one-off stack space allocation at the start of the
thread and direct stack pointer arithmetic. We detect stack overflow by checking that
the stack pointer register stays inside the thread’s stack space. If not, the semantics
issues an explicit oom event.

Using the more realistic single stack space gives us the added benefit of direct access
to function arguments and the return address. This contrasts with CompCert that
accesses arguments through an indirect link to parent stackframe and models the
return address with a virtual return-address register (similarly to PowerPC’s real link
register).

Saving the return address in the stack enables a more realistic modelling of x86,
but several parts of the x86 semantics remain less realistic than we would wish. The
most notable abstraction in the semantics is modelling register and memory contents
by the high-level value datatype (as in CompCert), which is a discriminated union
of pointers, integers, floats and undefined value, instead of the more appropriate bit-
vector representation. Unfortunately, this deficiency is not easy to remove, mostly be-
cause code pointers, such as the instruction pointer register or return addresses on the
stack, critically use the block-offset components of pointers for function id and instruc-
tion index within the function respectively.

6. FENCE OPTIMISATIONS

The previous two sections focussed on the correctness statement and proofs in the TSO
setting of what were largely standard sequential-compiler phases, restricting some se-
quential optimisations (CSE in particular) to make them sound in that setting. In this
section we turn to some concurrency-specific optimisations, removing redundant fence
instructions. We detect and optimise away the following cases of redundant MFENCE
instructions:

— a fence is redundant if it always follows a previous fence or locked instruction in
program order, with no memory store instructions in between (FE1);

36 J Ševčı́k et al.

—a fence is redundant if it always precedes a later fence or locked instruction in pro-
gram order, with no memory read instructions in between (FE2).

We also perform partial redundancy elimination (PRE) [MR79] to improve on the sec-
ond optimisation: we selectively insert memory fences in the program to make fences
that are redundant along some execution paths to be redundant along all paths, which
allows FE2 to eliminate them. The combined effect of PRE and FE2 is quite powerful
and can even hoist a fence instruction out of a loop, as we shall see later in this section.

The correctness of FE1 is intuitive: since no memory writes have been performed
by the same thread since executing an atomic instruction, the thread’s buffer must be
empty and so the fence instruction is effectively a no-op and can be optimised away.

The correctness of FE2 is more subtle. To see informally why it is correct, first con-
sider the simpler transformation that swaps a MFENCE instruction past an adjacent
store instructions (that is, MFENCE;store ; store;MFENCE). To a first approxima-
tion, we can think of FE2 as successively applying this transformation to the earlier
fence (and also commuting it over local non-memory operations) until it reaches the
later fence; then we have two successive fences and we can remove one. Intuitively,
the end-to-end behaviours of the transformed program, store;MFENCE, are a subset
of the end-to-end behaviours of the original program, MFENCE;store: the transformed
program leaves the buffer empty, whereas in the original program there can be up to
one outstanding write in the buffer. Notice that there is an intermediate state in the
transformed program that is not present in the original program: if initially the buffer
is non-empty, then after executing the store instruction in store;MFENCE we end up
in a state where the buffer contains the store and some other elements. It is, however,
impossible to reach the same state in the original MFENCE;store program because the
store always goes into an empty buffer. What saves soundness is that this intermedi-
ate state is not observable. Since threads can access only their own buffers, the only
way to distinguish an empty buffer from a non-empty buffer must involve the thread
performing a read instruction from that intermediate state.

Indeed, if there are any intervening reads between the two fences, the transforma-
tion is unsound, as illustrated by the following variant of SB+mfences:

Thread 0 Thread 1
MOV [x]←1 MOV [y]←1
MFENCE (*) MFENCE
MOV EAX←[y] MOV EBX←[x]
MFENCE

If the MFENCE labelled with (*) is removed, then it is easy to find an x86-TSO execu-
tion that terminates in a state where EAX and EBX are both 0, which was impossible in
the unoptimised program.
This ‘swapping’ argument works for finite executions, but does not account for in-

finite executions, as it is possible that the later fence is never executed — if, for ex-
ample, the program is stuck in an infinite loop between the two fences. The essential
difficulty of the proof is that FE2 introduces non-observable non-determinism. It is
well-known that reasoning about such transformations cannot, in general, be done
solely by a standard forward simulation (e.g., [LV95]), but it also requires a backward
simulation [LV95] or, equivalently, prophecy variables [AL91]. We tried using back-
ward simulation to carry out the proof, but found the backward reasoning painfully
difficult. Instead, we came up with a new kind of forward simulation, which we call a
weak-tau simulation, that incorporates a simple version of a boolean prophecy variable
that is much easier to use and suffices to verify FE2. The details are in §6.3.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 37

T1(nop, E) = E
T1(op(op, ~r, r), E) = E
T1(load(κ,addr, ~r, r), E) = E
T1(store(κ,addr, ~r, src), E) = ⊤
T1(call(sig, ros,args, res), E) = ⊤
T1(cond(cond,args), E) = E
T1(return(optarg), E) = ⊤
T1(threadcreate(optarg), E) = ⊤
T1(atomic(aop, ~r, r), E) = ⊥
T1(fence, E) = ⊥

T2(nop, E) = E
T2(op(op, ~r, r), E) = E
T2(load(κ,addr, ~r, r), E) = ⊤
T2(store(κ,addr, ~r, src), E) = E
T2(call(sig, ros,args, res), E) = ⊤
T2(cond(cond,args), E) = E
T2(return(optarg), E) = ⊤
T2(threadcreate(optarg), E) = ⊤
T2(atomic(aop, ~r, r), E) = ⊥
T2(fence, E) = ⊥

Fig. 11. Transfer functions for FE1 and FE2

We can observe that neither optimisation subsumes the other: in the program below
on the left the (*) barrier is removed by FE2 but not by FE1, while in the program on
the right the (†) barrier is removed by FE1 but not by FE2.

MOV [x]←1 MFENCE
MFENCE (*) MOV EAX←[x]
MOV [x]←2 MFENCE (†)
MFENCE MOV EBX←[y]

6.1. Implementation

The fence instructions eligible to be optimised away are easily computed by two intra-
procedural dataflow analyses over the boolean domain, {⊥,⊤}, performed on RTL pro-
grams. Among the intermediate languages of CompCertTSO, RTL is the most conve-
nient to perform these optimisations, and it is the intermediate language where most
of the existing optimisations are performed: namely, constant propagation, CSE, and
register allocation.

The first is a forward dataflow problem that associates to each program point the
value ⊥ if along all execution paths there is an atomic instruction before the current
program point with no intervening writes, and ⊤ otherwise. The problem can be for-
mulated as the solution of the standard forward dataflow equation:

FE1(n) =

{

⊤ if predecessors(n) = ∅
⊔

p∈predecessors(n) T1(instr(p),FE1(p)) otherwise

where p and n are program points (i.e., nodes of the control-flow-graph), the join oper-
ation is logical disjunction (returning ⊤ if at least one of the arguments is ⊤), and the
transfer function T1 is defined in Fig. 11.

The second is a backward dataflow problem that associates to each program point
the value ⊥ if along all execution paths there is an atomic instruction after the current
program point with no intervening reads, and ⊤ otherwise. This problem is solved by
the standard backward dataflow equation:

FE2(n) =

{

⊤ if successors(n) = ∅
⊔

s∈successors(n) T2(instr(s),FE2(s)) otherwise

where the join operation is again logical disjunction and the transfer function T2 is
defined in Fig. 11.

To solve the dataflow equations we reuse the generic implementation of Kildall’s
algorithm provided by the CompCert compiler. Armed with the results of the dataflow

38 J Ševčı́k et al.

FENCE

nop

s tore

FENCE

r e t u r n

if

ifso

nop

ifnot

nop

FENCE

nop

s tore

FENCE

r e t u r n

if

ifso

FENCE

ifnot

nop

nop

nop

s tore

nop

r e t u r n

if

ifso

FENCE

ifnot

nop

Fig. 12. Unoptimised RTL, RTL after PRE, and RTL after PRE and FE2

analysis, a pass over the RTL source replaces the fence nodes whose associated value
in the corresponding analysis is ⊥ with nop (no-operation) nodes, which are removed
by a later pass of the compiler.

6.2. Partial Redundancy Elimination

In practice, it is common for MFENCE instructions to be redundant on some but not all
paths through a program. To help with these cases, we perform a partial redundancy
elimination phase (PRE) that inserts fence instructions so that partially redundant
fences become fully redundant. For instance, the RTL program on the left of Fig. 12
(from Fraser’s lockfree-lib) cannot be optimised by FE2: PRE inserts a memory fence
in the ifnot branch, which in turn enables FE2 to rewrite the program so that all
execution paths go through at most one fence instruction.

The implementation of PRE runs two static analyses to identify the program points
where fence nodes should be introduced. First, the RTL generation phase introduces
a nop as the first node on each branch after a conditional; these nop nodes will be
used as placeholders to insert (or not) the redundant barriers. We then run two static
analyses:

— the first, called A, is a backward analysis returning ⊤ if along some path after the
current program point there is an atomic instruction with no intervening reads;

— the second, called B, is a forward analysis returning ⊥ if along all paths to the
current program point there is a fence with no later reads or atomic instructions.

The transformation inserts fences after conditional nodes on branches whenever:

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 39

TA(nop, E) = E
TA(op(op, ~r, r), E) = E
TA(load(κ,addr, ~r, r), E) = ⊥
TA(store(κ,addr, ~r, src), E) = E
TA(call(sig, ros,args, res), E) = ⊥
TA(cond(cond,args), E) = E
TA(return(optarg), E) = ⊥
TA(threadcreate(optarg), E) = ⊥
TA(atomic(aop, ~r, r), E) = ⊤
TA(fence, E) = ⊤

TB(nop, E) = E
TB(op(op, ~r, r), E) = E
TB(load(κ,addr, ~r, r), E) = ⊤
TB(store(κ,addr, ~r, src), E) = E
TB(call(sig, ros,args, res), E) = ⊤
TB(cond(cond,args), E) = E
TB(return(optarg), E) = ⊤
TB(threadcreate(optarg), E) = ⊤
TB(atomic(aop, ~r, r), E) = ⊥
TB(fence, E) = ⊥

Fig. 13. Transfer functions for analyses A and B of PRE

—analysis B returns ⊥ (i.e., there exists a previous fence that will be eliminated if we
were to insert a fence at both branches of the conditional nodes); and

—analysis A returns ⊥ (i.e., the previous fence will not be removed by FE2); and
—analysisA returns⊤ on the other branch (the other branch of the conditional already

makes the previous fence partially redundant).

If all three conditions hold for a nop node following a branch instruction, then that
node is replaced by a fence node. A word to justify the some path (instead of for all
paths) condition in analysis A: as long as there is a fence on some path, then at all
branch points PRE would insert a fence on all other paths, essentially converting the
program to one having fences on all paths.

The transfer functions TA and TB are detailed in Fig. 13. Note that TB defines the
same transfer function as T2, but here it is used in a forward, rather than backward,
dataflow problem.

6.3. Proofs of the optimisations

We give brief outlines of the formal Coq proofs of correctness for the three fence elimi-
nation optimisations.

6.3.1. Fence Elimination 1. We verify this optimisation by a whole-system measured
upward simulation.

Take > to be empty relation (which is trivially well-founded) and s R t the relation
requiring that (i) the control-flow-graph of t is the optimised version of the CFG of s,
(ii) s and t have identical program counters, local states, buffers and memory, and (iii),
for each thread i, if the analysis for i’s program counter returned ⊥, then i’s buffer is
empty.

It is straightforward to show that each target step is matched exactly by the corre-
sponding step of the source program. In the case of a nop instruction, this could arise
either because of a nop in the source or because of a removed fence. In the latter case,
the analysis will have returned ⊥ and so, according to ∼, the thread’s buffer is empty
and so the fence proceeds (i.e., it does not block).

6.3.2. Fence Elimination 2. We verify this optimisation by exhibiting a weak-tau sim-
ulation. Eliding assumptions on initial states, weak-tau simulations are defined as
follows:

Definition 6.1. A pair of relations R,R′ : States(S) × States(T), equipped with a
relation < on States(T), is a weak-tau upward simulation if:

(1) R ⊆ R′ (i.e., for all s, t, s R t implies s R′ t); and

40 J Ševčı́k et al.

(2) Whenever s R t and t
ev
−→ t′, then either

(a) ∃s′. s
τ
−→

∗

s′
fail
−−−→ (s can reach a semantic error), or

(b) ∃s′. s
τ
−→

∗ ev
−→ s′ ∧ s′ R t′ (s can do a matching step), or

(c) ev = τ ∧ t′ < t ∧ s R t′ (t stuttered); and

(3) Whenever s R′ t and t
τ
−→ t′ and t′ < t,

(a) ∃s′. s
τ
−→

∗

s′
fail
−−−→ (s can reach a semantic error), or

(b) ∃s′. s
τ
−→

∗ τ
−→ s′ ∧ s′ R′ t′ (s can do a matching step).

Similar to measured upward simulations, weak-tau simulations imply trace inclu-
sion. To prove this in the case where the target trace contains an infinite τ sequence,
we do a case split on whether the trace contains an infinite sequence of states in the <
relation. If it does, then we can use the relation R′ to construct an infinite sequence of
source τ transitions. Otherwise, the relation R can stutter only for finite sequences of
τ steps each time and will thus produce an infinite sequence.

THEOREM 6.2. A weak-tau upward simulation implies trace inclusion. [Coq proof]

To verify the optimisation, we will use the following auxiliary definitions:

—Define s ≡i t to hold whenever thread i of s and t have identical program counters,
local states and buffers.

—Define s ;i s′ if thread i of s can execute a sequence of nop, op, store and fence
instructions and end in the state s′.

—Define t′ < t to hold whenever t
τ
−→ t′ by a thread executing a nop, an op, or a store

instruction.

Take s R t the relation requiring that (i) t’s CFG is the optimised version of s’s CFG,
(ii) s and t have identical memories, (iii), for each thread i, either s ≡i t or the analysis
for i’s program counter returned ⊥ (meaning that there is a later fence in the CFG
with no reads in between) and there exists a state s0 such that s ;i s0 and s0 ≡i t.

Take s R′ t to be the relation requiring that: (i) the CFG of t is the optimised version
of the CFG of s, and (ii), for each thread i, there exists s0 such that s ;i s0 and s0 ≡i t.
We will now show that R, R′, and < form a weak-tau simulation. First, observe that

condition (1) follows immediately from the definition; that is, R ⊆ R′.
To prove condition (2), we match every step of the target with the corresponding step

of the source whenever the analysis at the current program point of the thread doing
the step returns ⊤. It is possible to do so, because by the simulation relation (s R t),
we have s ≡i t.
Now, consider the case when the target thread i does a step and the analysis at the

current program point returns ⊥. According to the simulation relation (R), we have
s ;i s0 ≡i t. Because of the transfer function, T2, that step cannot be a load or a
call/return/threadcreate. We are left with the following cases:

— nop (either in the source program or because of a removed fence), op, or store. In
these cases, we stutter in the source, i.e. do s R t′. This is possible because we
can perform the corresponding transition from s0 (i.e., there exists an s′ such that
s ;i s0 ;i s

′ ≡i t
′).

— fence, atomic: This is matched by doing the sequence of transitions from s to s0
followed by flushing the local store buffer and finally executing the corresponding
fence or atomic instruction from s0.

— Thread i unbuffering: If i’s buffer is non-empty in s, then unbuffering one element
from s preserves the simulation relation. Otherwise, if i’s buffer is empty, then there
exists an s′ such that s ;i s′ ;i s0 and i’s buffer in s′ has exactly one element.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 41

br br+FE1 aw aw+FE2 aw+PRE+FE2
Dekker 3 2 5 4 4
Bakery 10 2 4 3 3
Treiber’s stack 5 2 3 1 1
Fraser’s skiplist 32 18 19 12 11
TL2 166 95 101 68 68
Genome 133 79 62 41 41
Labyrinth 231 98 63 42 42
SSCA 1264 490 420 367 367

Fig. 14. Static number of fences present after fence optimisations

Then the transition from t
τ
−→ t′ is simulated by first doing s

τ
−→∗ τ
−→ s′ followed by an

unbuffering from s′, which preserves the simulation relation.

To prove condition (3), we simulate a target thread transition by doing the sequence
of transitions from s to s0 followed by executing the corresponding instruction from s0.

6.3.3. Partial Redundancy Elimination. Even though this optimisation was the most com-
plex to implement, its proof was actually the easiest. What this optimisation does is
to replace some nop instructions by fence instructions depending on some non-trivial
analysis. However, as far as correctness is concerned, it is always safe to insert a fence
instruction irrespective of whatever analysis was used to used to decide to perform the
insertion. Informally, this is because inserting a memory fence just restricts the set of
behaviours of the program; it never adds any new behaviour.

In the formal proof, we take the simulation relation to be equality except on the
programs themselves, where we require the target program to be the ‘optimised’ ver-
sion of the source program. Executing the inserted fence instruction in the target is
simulated by executing the corresponding nop in the source.

7. RUNNING CompCertTSO

Despite making little attempt at optimising the generated code, results on simple
sequential and concurrent benchmarks (mostly drawn from [Com09]) show that our
generated code runs at about 75% of the performance of gcc -O1. As a more repre-
sentative example, we have also successfully compiled Fraser’s lock-free skiplist algo-
rithm [Fra03]; we are roughly 70% of the performance of gcc -O1 on this benchmark.
Porting required only three changes, all to in-line assembly macros, two of which were
replacing macros for CAS and MFENCE by the ClightTSO constructs.

7.1. Fence optimisation

For a crude investigation of the effect of the fence optimisations, we instructed the
RTL generation phase of CompCertTSO to systematically introduce an MFENCE in-
struction before each memory read (strategy br), or after each memory write (strat-
egy aw), and looked at how many were removed by the fence optimisation phases. In
Figure 14 we consider several well-known concurrent algorithms, including Dekker
and Bakery mutual exclusion algorithms, Treiber’s stack [Tre86], the TL2 lock-based
STM [DSS06], the already mentioned Fraser’s lockfree implementation of skiplists,
and several benchmarks from the STAMP benchmark [CMCKO08]; for each the table
reports the total numbers of fences in the generated assembler files, following the br
and aw strategies, possibly enabling the FE1, PRE and FE2 optimisations.
A basic observation is that FE2 removes on average about 30% of the MFENCE in-

structions, while PRE does not further reduce the static number of fences, but rather
reduces the dynamic number of fences executed, e.g. by hoisting fences out of loops as

42 J Ševčı́k et al.

in Figure 12. When it comes to execution times, then the gain is much more limited
than the number of fences removed. For example, we observe a 3% speedup when PRE
and FE2 are used on the skiplist code (running skiplist 2 50 100 on a 2-core x86 ma-
chine): the hand-optimised (barrier free) version by Fraser is about 45% faster than
the code generated by the aw strategy. For Lamport’s bakery algorithm we generate
optimal code for lock, as barriers are used to restore SC on accesses to the choosing
array.
Looking at the fences we do not remove in more detail, the Treiber stack is instruc-

tive, as the only barrier left corresponds to an update to a newly allocated object, and
our analyses cannot guess that this newly allocated object is still local; a precise es-
cape analysis would be required. In general, about the half of the remaining MFENCE
instructions precede a function call or return; we believe that performing an interpro-
cedural analysis would remove most of these barriers. Our focus here is on verified
optimisations rather than performance alone, and the machine-checked correctness
proof of such sophisticated optimisations is a substantial challenge for future work.

8. DISCUSSION

We reflect briefly on the impact of the tool chain and proof style that we employed to
ease development of our compiler.
The main tool was Coq. Here we found the proof style advocated by SSRE-

FLECT [GM07] to be helpful in ensuring proof robustness, but to retain backward
compatibility with CompCert, we employed it selectively. Occasionally, we used spe-
cialised tactics to automate some of the more tedious proofs, such as the threadwise
determinacy and receptiveness of all the languages.
To give the reader a flavour for the effort involved in the development, we list the

number of lines of proof and specifications (definitions and statements of lemmas and
theorems) for the various parts of our compiler, as reported by coqwc. Blank lines and
comments are not counted.

Specs Proof

Library code 8998 11058

ClightTSO definition (§3) 2424 267
x86 definition (§5.6) 1012 70
TSO machine (§5.1) 992 992

ClightTSO to Csharpminor (§5.2) 1990 2526
Csharpminor to Cstacked (§5.3) 3421 8163
10 intermediate language definitions (§5.5) 6466 1107
Intermediate ‘easy’ phases (§5.5) 11166 9742
Fence Elimination (§6) 940 1099
MachAbs to MachConc (§5.4) 2724 6525
MachConc to Asm (§5.6) 1729 2833

TOTAL 41862 44382

As described in §4, we structured our development to re-use as much of CompCert
1.5 as we could, but much is new. The total of 86K lines for CompCertTSO compares
with around 55K lines for CompCert 1.5 (31K lines of specifications and 23K lines of
proofs). The project has taken approximately 45–50 man-months.

The semantics of ClightTSO is given as an inductively defined relation, as usual
and following Clight. To make it easier to check the integrity of the definition, we
also implemented a functional characterisation of the threadwise single-step transi-
tion relation and proved that the two definitions are equivalent. By extracting the
functional version into an OCaml program serving as an interpreter, we were able to

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 43

test the semantics on sample ClightTSO programs. This revealed a number of subtle
errors in our original definitions. It would also be worth testing our x86 semantics
against processor behaviour, as we did for a HOL4 x86 semantics in previous work
with Myreen [SSZN+09]. As mentioned in §5.6, and as in CompCert, there is a signif-
icant semantic gap between our assembly semantics and that of actual x86 machine
code (with CompCert values rather than bit vectors); this “final phase” verification is
an open question for future work.

A mechanised theorem is only useful if its statement can be understood, and for
CompCertTSO the overall correctness theorem involves the ClightTSO and x86 se-
mantics. We defined ClightTSO using Ott [SZNO+10], a tool that generates Coq and
LATEX definitions from a single source; it also helped in enforcing naming conventions.
The ClightTSO grammar and semantic rules, and the terms in examples, are all parsed
and automatically typeset.

9. RELATED WORK

Research on verified compilation of sequential languages has a long history. Notable
recent work includes CompCert, which we have already discussed in detail; Chlipala’s
compiler from a small impure functional language to an idealised assembly language,
focussing on Coq proof automation [Chl10]; Myreen’s JIT compiler from a bytecode to
x86 [Myr10]; and Benton and Hur’s compilation [BH09] from a simply typed functional
language to a low-level SECDmachine. This last differs frommost other work in giving
a compositional understanding of compiler correctness rather than just a relationship
between the whole-program behaviours of source and target.

Verified compilation of concurrent languages has received much less attention. Per-
haps the most notable example is the work of Lochbihler [Loc10] extending Jinja (a
compiler from sequential Java to JVM, verified in Isabelle/HOL) to concurrency. As
here, shifting to a small-step semantics required non-trivial proof effort, but the Jinja
memory accesses in source and target are very closely related, so issues of relaxed-
memory behaviour, memory layout, finite memory, and so on seem to have played no
role. To the best of our knowledge, there is no prior work addressing verified compila-
tion for a relaxed-memory concurrent language.

An alternative approach to extending CompCert with concurrency has been sug-
gested by Hobor et al. [HAZN08]. They define a concurrent version of Cminor equipped
with a concurrent separation logic. The idea is to do verifying compilation for programs
that have been proved correct in such a logic, and their oracle semantics for concurrent
Cminor (factored rather differently to ours) is intended to make that possible without
extensive refactoring of the CompCert proofs. That is in some sense complementary
to our work: we focus on intrinsically racy concurrent algorithms, whereas programs
proved correct in that logic are known to be race free (as most application code is ex-
pected to be). However, we conjecture that an oracle semantics could be defined directly
above the labellised semantics that we use. More recently, Stewart and Appel [SA11]
report on an almost-complete mechanised soundness proof of a separation logic for
Cminor, introducing machinery to factor out the world structure required for the logic
from the language operational semantics.

The problem of inserting memory barriers so that a program admits only SC execu-
tions has been an important research topic since Sasha and Snir’s seminal paper on
delay set analysis [SS88]. Most formal studies of this problem [SS88; Alg10; BMS10]
have been in terms of hypothetical program executions and, unlike our work, have not
been integrated in a working compiler. There is also some more practical algorithm
and compiler work. Lee and Padua [LP01] describe an algorithm based on dominators
for inserting memory fences, while Sura et al. [SFW+05] focus on the more practical
aspects, e.g., on how to approximate delay sets by performing cheaper whole-program

44 J Ševčı́k et al.

analyses coupled with an escape analysis. These perform much more sophisticated
analyses than the ones we implemented, but none comes with a mechanised sound-
ness proof. Another line of research [BAM07; HR07; KVY10] uses model checking tech-
niques to insert fences to ensure SC. While these techniques may insert fewer fence
instructions for small intricate concurrent libraries, they often guarantee soundness
only for some clients of those libraries, and are too expensive to perform in a general-
purpose compiler.
ClightTSO is not intended as a proposal for a complete language: its load and store

operations are loosely analogous to the C++0x atomics [Bec10; BOS+11] and Java
volatiles [MPA05], and it has no distinguished class of memory operations which are
supposed to be thread-local or otherwise race-free (and hence which a compiler is li-
cenced to optimise between synchronisation points). It is closer to the pseudocode or
C-with-macros that is commonly used for concurrent shared-memory algorithms, and
the ClightTSO operations can be implemented efficiently, with simple x86 loads and
stores. Volatiles and C++0x SC atomics need heavier implementations, though C++0x
also has cheaper low-level atomics with weaker semantics that are cheaper to imple-
ment. Java and C++0x also have more complex semantics, albeit not specific to TSO
processors (essentially x86 and Sparc).

10. CONCLUSION

The shift to commodity multicore processors has recently made relaxed-memory con-
current computation pervasive, but semantics and verification in this setting is a long-
standing problem. As Lamport wrote in 1979 [Lam79]:

For some applications, achieving sequential consistency may not be worth the price
of slowing down the processors. In this case, one must be aware that conventional
methods for designing multiprocess algorithms cannot be relied upon to produce
correctly executing programs. Protocols for synchronizing the processors must be
designed at the lowest level of the machine instruction code, and verifying their
correctness becomes a monumental task.

This paper is a step towards putting them on a rigorous foundation, both for pro-
gramming and verification. While it remains a very challenging task, it is no longer
monumental: the advances in semantics and reasoning techniques that we can bring
to bear make it entirely feasible.

Acknowledgements. We thank Xavier Leroy for enlightening discussions and for mak-
ing CompCert available.

REFERENCES

S. V. Adve and M. D. Hill. Weak ordering — a new definition. In Proc. ISCA, 1990.

Martn Abadi and Leslie Lamport. The existence of refinement mappings. Theor. Comput. Sci., pages 253–
284, 1991.

Jade Alglave. A shared memory poetics. PhD thesis, Université Paris 7, 2010.

J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak memory models. In Proc. CAV, 2010.

H.-J. Boehm and S.V. Adve. Foundations of the C++ concurrency memory model. In Proc. PLDI, 2008.

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence: checking consistency of concurrent
data types on relaxed memory models. In Jeanne Ferrante and Kathryn S. McKinley, editors, PLDI,
pages 12–21. ACM, 2007.

P. Becker, editor. Programming Languages — C++. Final Committee Draft. 2010. ISO/IEC JTC1 SC22 WG21
N3092.

N. Benton and C.K Hur. Biorthogonality, step-indexing and compiler correctness. In Proc. ICFP, 2009.

Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset of the C language. Journal of
Automated Reasoning, 43(3):263–288, 2009.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency 45

Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. Verifying local transformations on relaxed
memory models. In CC, 2010.

H.-J. Boehm. Threads cannot be implemented as a library. In Proc. PLDI, pages 261–268, 2005.

M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. In Proc. POPL,
2011.

Programming languages – C (committee draft, WG14 N1494, ISO/IEC 9899:201x). http://www.open-std.
org/jtc1/sc22/wg14/www/docs/PostColorado.htm.

A. Chlipala. A verified compiler for an impure functional language. In Proc. POPL, 2010.

P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model: Operationally, denotationally, axiomati-
cally. In Proc. ESOP, 2007.

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stanford transactional
applications for multi-processing. In IISWC, 2008.

The Compcert verified compiler, v. 1.5. http://compcert.inria.fr/release/compcert-1.5.tgz, August
2009.

The Coq proof assistant. http://coq.inria.fr/.

David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC, 2006.

Keir Fraser. Practical Lock Freedom. PhD thesis, 2003. Also available as Tech. Report UCAM-CL-TR-639.

G. Gonthier and A. Mahboubi. A small scale reflection extension for the coq system. Technical report, 2007.

A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for concurrent separation logic. In Proc.
ESOP, 2008.

Thuan Quang Huynh and Abhik Roychoudhury. Memory model sensitive bytecode verification. Form. Meth-
ods Syst. Des., 31:281–305, December 2007.

Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic inference of memory fences. In FMCAD,
2010.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Trans. Comput., C-28(9):690–691, 1979.

D. Lea. Concurrent Programming in Java. Second Edition: Design Principles and Patterns. 1999.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115, 2009.

Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363–446, 2009.

1999. Linux Kernel mailing list, thread “spin unlock optimization(i386)”, 119 messages, Nov. 20–Dec. 7th,
http://www.gossamer-threads.com/lists/engine?post=105365;list=linux. Accessed 2009/11/18.

A. Lochbihler. Verifying a compiler for Java threads. In Proc. ESOP’10, 2010.

Jaejin Lee and David A. Padua. Hiding relaxed memory consistency with a compiler. IEEE Trans. Comput.,
50:824–833, August 2001.

Nancy Lynch and Frits Vaandrager. Forward and backward simulations I: untimed systems. Inf. Comput.,
121:214–233, September 1995.

R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

J. Manson, W. Pugh, and S.V. Adve. The Java memory model. In Proc. POPL, 2005.

E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies. Commun. ACM,
22:96–103, February 1979.

M. O. Myreen. Verified just-in-time compiler on x86. In Proc. POPL, 2010.

S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In Proc. TPHOLs, 2009.

S. Owens. Reasoning about the implementation of concurrency abstractions on x86-TSO. In Proc. ECOOP,
2010.

W. Pugh. The Java memory model is fatally flawed. Concurrency - Practice and Experience, 12(6), 2000.

J. Ševčı́k and D. Aspinall. On validity of program transformations in the Java memory model. In ECOOP,
2008.

Gordon Stewart and Andrew W. Appel. Local actions for a curry-style operational semantics. In Proc. PLPV,
pages 31–42, 2011.

P. Sewell. On implementations and semantics of a concurrent programming language. In Proc. CONCUR,
July 1997.

Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David Padua. Compiler tech-
niques for high performance sequentially consistent Java programs. In PPoPP, pages 2–13, New York,
NY, USA, 2005. ACM.

The SPARC architecture manual, v. 9. http://dev elopers.sun.com/solaris/articles/sparcv9.pdf.

46 J Ševčı́k et al.

The SPARC Architecture Manual, V. 8. SPARC International, Inc., 1992. Revision SAV080SI9308. http:
//www.sparc.org/standards/V8.pdf.

Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that share memory. ACM
Trans. Program. Lang. Syst., 10:282–312, 1988.

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understanding POWER
multiprocessors. In Proc. PLDI, 2011.

P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen. x86-TSO: A rigorous and usable pro-
grammer’s model for x86 multiprocessors. C. ACM, 53(7):89–97, 2010.

S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, and J. Alglave. The
semantics of x86-CC multiprocessor machine code. In Proc. POPL, 2009.

Jaroslav Ševčı́k , Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell.
Relaxed-memory concurrency and verified compilation. In Proc. POPL, 2011.

P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strniša. Ott: Effective tool
support for the working semanticist. J. Funct. Program., 20(1):71–122, 2010.

R. K. Treiber. Systems programming: Coping with parallelism. Technical report, 1986.

E. Torlak, M. Vaziri, and J. Dolby. MemSAT: checking axiomatic specifications of memory models. In PLDI,
2010.

V. Vafeiadis and F. Zappa Nardelli. Verifying fence elimination optimisations. In Proc. SAS 2011.

