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1. RESUME DE LA PROPOSITION DE PROJET / PROPOSAL ABSTRACT 
 
Multiprocessors and multicore processors are now ubiquitous, but programming these 
systems, to deliver high-performance and reliable systems, is very challenging.  Shared-
memory is the programming abstraction exported by the hardware, and most multi-
threaded programs communicate through memory shared between the threads.  
Traditionally concurrent execution was viewed as simply an interleaving of the steps from 
the threads participating in the computation.  Thus if we started in an initial state in which 
all variables are zero, and one thread executes: 
 
  x	
  =	
  1;	
  r1	
  =	
  y;	
  
 
while another executes  
 
  y	
  =	
  1;	
  r2	
  =	
  x;	
  
 
either the assignment to x or the assignment to y must be executed first, and either r1 or r2 
must have a value of one when the execution completes.  However, it has proven impractical 
to guarantee such a restrictive memory behaviour, and mainstream programming languages 
(such as C, C++, Java) exploiting multithreaded hardware allow both r1 and r2 to remain 
zero in the above example.  There are two reasons for this: 
 
- for efficiency reasons, compilers may reorder memory operations if that does not violate 
intra-thread dependencies; 
 
- the hardware may reorder memory operations based on similar constraints. 
 
The forthcoming revision of the C++ standard (the C standard will be updated accordingly 
to preserve compatibility) specifies all the constraints that the possible outcomes of a parallel 
program must respect. This requires special architecture-dependent support in C and C++ 
compilers. 

The goal of this grant proposal is to investigate the formal verification of realistic 
compilers for concurrent dialects of the mainstream languages C and C++. We will target 
both the x86 and Power/ARM architectures, which require radically different compilation 
strategies and proof methods, focussing initially on sample compilation schemes and then 
lifting these results to fully-fledged compilers. In addition we will design and prove correct 
novel compile-time optimisations for these languages and compilers. 

2. CONTEXTE, POSITIONNEMENT ET OBJECTIFS DE LA PROPOSITION / 
CONTEXT, POSITIONNING AND OBJECTIVES OF THE PROPOSAL. 

2.1. CONTEXTE DE LA PROPOSITION DE PROJET / CONTEXT OF THE PROPOSAL  
 
Computer science is undergoing a difficult transition. Over the last 40 years we have seen 
exponential improvement in the performance of sequential computation. Now, however, the 
industry is hitting constraints, from power dissipation, CPU-memory bandwidth, and the 
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limits of instruction-level parallelism. Future performance increases must therefore come 
from increased concurrency, which is finally becoming mainstream. Multicore processors are 
now ubiquitous, with the number of cores in a typical laptop, server, or even mobile phone 
increasing rapidly.  

However, programming these multiprocessors, to deliver high-performance and reliable 
systems, is very challenging. It has proved impractical to give large numbers of processors 
simultaneous fast access to a large sequentially consistent shared memory, in which (Lamport, 
1979) “the result of any execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each individual processor appear in 
this sequence in the order specified by its program”. Instead, memory accesses of real 
multiprocessors may be reordered in various constrained ways, with different processors 
observing the actions of others in inconsistent orders, so one cannot reason about the 
behaviour of such programs in terms of an intuitive notion of global time. For a simple 
example, on x86 processors, given two shared memory locations x and y (initially holding	
  0), 
if two processors P0 and P1 respectively write 1 to x and y and then read from y and x, it is 
possible for both to read 0 in the same execution. 
 

P0	
   P1	
  
write	
  	
  	
  	
  	
  x	
  ←	
  1	
  	
   write	
  	
  	
  	
  	
  y	
  ←	
  1	
  
read	
   r0	
  ←	
  y	
  	
  (0)	
  	
   Read	
   r1	
  ←	
  x	
  	
  (0)	
  

 
This fundamental problem is exacerbated by four further issues. First, the concurrent 
algorithms that are now being developed, and which are key to exploiting multiprocessors 
(via high-performance operating systems, hypervisor kernels, and concurrency libraries), are 
very subtle, so informal reasoning cannot give high confidence in their correctness. Second, 
while there has been extensive prior work on software verification for concurrency 
(including model-checking, temporal logics, rely-guarantee reasoning, separation logic, and 
process calculi), almost all of it neglects such relaxed memory behaviour, instead assuming 
sequential consistency. Third, the vendor specifications of processor architectures, e.g. by 
Intel and AMD (x86), IBM (Power), and ARM, are informal prose documents, with many 
ambiguities and omissions; such informal prose is the industrial state of the art. Finally, and 
most importantly, this relaxed memory behaviour is a concern not just for low-level 
programmers, but is also partially exposed in high-level languages, e.g. with the problematic 
Java Memory Model (Manson et al., 2005) or the forthcoming C++0x standard (JTC1/WG14). 
For a simple example, it is easy to see that in a sequentially consistent execution the program 
below, where r1, r2 are local variables, while x, y are shared, cannot print 1. 
 
 
 
 
 
 
However a modern compiler (in this case Sun Hotspot) might perform the following 
sequence of optimisations                                                                       
P0	
   P1	
  
r1 = x  
y = r1 

r2 = y 
x = (r2 == 1) ? y : 1 
print r2 

⇒ 

 
P0	
   P1	
  
r1 = x 
y = r1  

r2 = y  
x = 1 
print r2 

⇒	
  

 
P0	
   P1	
  
r1 = x 
y = r1 

x  = 1  
r2 = y 
print r2 

P0	
   P1	
  
r1 = x  
y = r1 

r2 = y 
x = (r2 == 1) ? y : 1 
print r2 
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and the resulting program can then print 1: unexpected behaviours can be introduced by 
compilation as well.  

At the same time, this is an exciting time for the formal verification of software, in part 
because several threads of research, in progress for decades, have the potential to cohere.  
These include a gradual revolution in the specification methods for operational semantics of 
programming languages (1994-2010), the maturation of mechanized proof assistants (1978-
2010), successes in compiler verification (1989, 2006), and progress in the specification of 
weak-memory models (2006-2010). 

In this project I will build on these advances to address several issues related to the 
verified compilation of concurrent high-level languages. 

2.2. ÉTAT DE L'ART ET POSITION DE LA PROPOSITION DE PROJET / STATE OF THE ART 
AND POSITIONING OF THE PROPOSAL 

 
Research on weak-memory models traditionally abstracted almost entirely from the actual 
processors (Adve et al., 1996; Higham et al., 1997). In the last four years, in collaboration with 
Peter Sewell and others, I worked toward giving mathematically precise and experimentally 
validated formalisations of the x86 and Power/ARM memory models and instruction semantics. For 
x86 we produced both an axiomatic and operational model (formalised in HOL and Coq) 
(Sarkar et al., 2009; Owens et al., 2009; Sewell et al., 2010): contrary to the vendor 
documentation, it turns out that x86 behaves basically as Sparc TSO (a simple, well 
understood, model) and our formalisation can be considered as a reference by assembly 
programmers and compiler writers (Boehm, 2010). For Power/ARM the model is more 
complex: past attempts (Adir et al., 2003; Alglave et al., 2009; Alglave et al., 2010) do not respect 
faithfully the semantics of the barriers or accommodate load-reserve and store-conditional 
instructions. The effort is now converging toward an operational model that abstracts the 
internal micro-architecture of the processor, however work remains to be done to finalize the 
instruction semantics. The development of these x86 and Power/ARM models, which 
constitute the foundation of this proposal, has been partially supported by ANR-06-SETIN-
010.  

Meanwhile, in a remarkable tour de force, Leroy has demonstrated a proved correct 
optimizing compiler (called CompCert) from a dialect of C (called Clight) to machine language 
for Power and x86 architectures (Leroy, 2009). As part of this demonstration, Leroy specified 
an operational semantics for Clight, he specified an operational semantics for the Power (and 
x86) machine language, and he built a machine-checked proof in the Coq proof assistant that 
the compiler preserves behaviour from one operational semantics to another. Verified (or 
verifying) compilers is a long-term goal which we share with researchers worldwide, e.g. see 
the works of Benton (Benton et al., 2007) and Chlipala (Chlipala, 2007). 

Generalising Leroy’s result to a concurrent language, and dealing with the relaxed-
memory-model properties we have discussed here, remains a major challenge. Hobor, Appel 
(Princeton) and myself begun to address the sequentially consistent case under the 
hypothesis that all shared-memory accesses in the source program are well-synchronised 
(e.g. protected by locks, a property usually referred to as data-race freedom) (Hobor et al., 2008).  
However most modern concurrent low-level high-performance code (ranging from simple 
spinlock implementations to fancy concurrent data-structures) relies on racy interactions, 
and this limits the scope of this approach. In collaboration with Sewell, Vafeiadis and others, 
I recently designed a concurrent C-like language, called ClightTSO, that exposes the 
processor model for high-performance code, and studied verified compilation from 
ClightTSO to x86, which we validated with correctness proofs (building on CompCert) for 
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the most interesting compiler phases (Sevcik et al., 2011). Although this research showed that 
it is possible to reason about the compilation process of racy programs, ClightTSO and its 
compiler CompCertTSO are not intended to define and implement a general purpose 
language. Moreover they are tied to a particular architecture.   

For general purpose high-level languages, designing the memory model is a hard task in 
itself. Several languages, including OCaml, do not implement true-concurrency multi-
threading at all and cannot exploit the parallel computation capabilities of modern 
processors. Others, including most scripting languages and mainstream languages as C and 
C++, rely on external thread libraries: there is widespread consensus that this is not the right 
approach (Boehm, 2005). Java had integrated multithreading since its first version but, by the 
year 2000, the initial specification was shown to allow unexpected behaviours, prohibit 
common compiler optimisations, and was challenging to implement on a weakly-consistent 
multiprocessor (Pugh, 2000). It was superseded around 2004 by the JSR-133 memory model 
(Gosling et al., 2005), but the resulting model (which attempts to solve a difficult challenge as 
it must ensure some memory safety requirements for all programs while enabling common 
optimisations) is quite intricate and, unfortunately, poorly understood. For instance it turned 
out that, standard optimisations as common subexpression elimination were illegal in the 
model (Sevcik et al., 2008). Such optimisations were claimed to be permitted, and are 
implemented by typical compilers including Sun’s reference HotSpot compiler, as shown 
above. For C++, an ongoing effort, currently near completion, attempts to explicitly provide 
semantics for threads in the next revision of the standard (called C++0x) (Boehm et al., 2008; 
JTC1/SC22/WG14). The C standard (called C1x) will be updated accordingly to preserve 
interoperability. Partially following the Java experience, the revised standard gives semantics 
only to well-synchronised (data-race free) programs but does not attempt to provide safety 
guarantees about racy programs.  However it includes an extensive framework, called low-
level atomics, for low-level synchronisation with intricate semantics.  The semantics of low-
level atomics has been recently formalised by Batty et al. (Batty et al., 2011). This work also 
includes a proof of a sample compilation scheme for C++0x low-level atomics to the x86 
processor. 

2.3. OBJECTIFS ET CARACTÈRE AMBITIEUX ET/OU NOVATEUR DE LA PROPOSITION DE 
PROJET / OBJECTIVES, ORIGINALITY AND/ OR NOVELTY OF THE PROPOSAL 

 
This projects aims at studying novel compiler verification techniques with the long term goal of 
building verified optimising compilers for C++0x-like concurrent languages to x86 and Power/ARM 
architectures.  

In particular, building on our past work on the formalisation of the x86 and Power/ARM 
architectures, on the CompCertTSO verified compiler, and on the C++0x formalisation, we 
will: 
 

1. work towards a certified compiler for a concurrent C-like language that integrates the 
C++0x memory model; and 

 
2. design and study the soundness of compiler optimisations in the context of 

concurrent programming languages. 
 
These results are needed: it has become widely accepted that industrial software developers 
need robust ways of programming and reasoning about multicore systems, and the subtle 
complexities of memory models make them ideal targets for mathematically rigorous 
methods.  
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3. PROGRAMME SCIENTIFIQUE ET TECHNIQUE, ORGANISATION DE LA 
PROPOSITION DE PROJET / SCIENTIFIC AND TECHNICAL 
PROGRAMME, PROPOSAL ORGANISATION 

3.1. PROGRAMME SCIENTIFIQUE ET STRUCTURATION DE LA PROPOSITION DE 
PROJET/ SCIENTIFIC PROGRAMME, PROPOSAL STRUCTURE 

 
The C++0x standard mandates that for a well-defined and interesting subset of the language, 
programs that do not contain data-races must have sequentially consistent semantic. 
Prototype implementations of the sequentially consistent atomic primitives have been 
proposed; the following table presents an x86 sample implementation by Terekhov  (Terekov, 
2008): 

 
	
   Load	
  Seq_Cst:	
  	
  	
  LOCK XADD(0) // alternative: MFENCE,MOV (from memory)	
  
	
   Store	
  Seq	
  Cst:	
  	
   LOCK XCHG    // alternative: MOV (into memory),MFENCE	
  
 
and a Power prototype by McKenney and Silvera (McKenney & Silvera, 2010): 
 
 Load	
  Seq_Cst:	
   hwsync; ld; cmp; bc; isync	
  
	
   Store	
  Seq_Cst:	
   hwsync; st	
  
 
These compilation schemes are quite expensive (fences and locked instructions can consume 
100s of cycles) and provide more synchronisation than needed for many concurrent idioms. 
On the one hand it is expected that a real-world implementation does compile time 
optimisations to get reasonable performance. On the other hand, the C++0x standard 
includes low-level memory-access primitives to be used in high-performance code by expert 
programmers: memory access instructions are parametrised by a memory order MO that 
specifies how much synchronisation and ordering is required. The strongest ordering is 
required for MO_SEQ_CST actions (which is the default, as used above), and the weakest for 
MO_RELAXED actions. In between there are MO_RELEASE/MO_ACQUIRE and MO_RELEASE/	
  
MO_CONSUME pairs, and MO_ACQ_REL with both acquire and release semantics. For instance, 
consider the common programming idiom where one thread writes some data x (perhaps 
spanning multiple words) and then sets a flag y while the other spins until the flag is set and 
then reads the data: 
 
 
 
 
 
The desired guarantee of this superficially racy program is that the receiver must see the data 
writes of the sender. This can be achieved with an atomic store of y annotated MO_RELEASE, 
and an atomic load of y annotated MO_ACQUIRE. Weaker memory orderings can be used for 
other common racy idioms, for instance read-consume pairs enable efficient implementation 
of algorithms that use pointer reassignment for commits of their data, e.g. read-copy-update  
(McKenney & Walpole, 2007). Again, sample compilation schemes have been proposed, for 
instance for Power we have: 
 

// sender 
x = … 
y = 1; 

// receiver 
while (y == 0); 
r = x; 
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  Load	
  Acquire:	
  	
  	
   ld; cmp; bc; isync	
  
	
   Store	
  Release:	
  	
   lwsync; st	
  
 

These sample compilation schemes are simple mappings from individual source-level 
atomic operations to small fragments of assembly code, abstracting from the vast 
complexities of compilation of a full C-like language. However reasoning about their 
behaviour involves reasoning about all the complexity of the C++0x memory model. 
Verifying that these prototypes are indeed correct implementations is crucial both for the 
design of the standard and to inform the design and verification of a compiler with memory-
model-aware optimisations. 

The statement of correctness of a compiler relates the behaviours of the compiled program 
to the behaviours of the source program. Contrarily to sequentially consistent execution for 
which the semantics can be expressed in terms of changes to a monolithic memory, an 
execution consists here of a set of memory actions and various relations over them, and the 
memory model axiomatises constraints on those. In the example above, we have that any 
instance of a read-acquire that reads from a write-release gives rise to a synchronizes-with (sw) 
edge that, together with the sequenced-before (sb) edges that capture the intra-thread 
evaluation order, results in the following (axiomatised) behaviour:  
 

 
 
A complete description of the dependencies required to model faithfully the C++0x standard 
has recently been proposed (Batty, et al. 2011).  

The CompCert compiler by Leroy et al. demonstrates that proving the correctness of a 
realistic compiler is feasible for sequential languages, and our work on CompCertTSO shows 
that Leroy's result can be extended to a concurrent language.  However both CompCert and 
CompCertTSO rely crucially on operational reasoning, and it is unclear how much of their 
structure can be reused when the semantics of the source program is expressed as axiomatic 
relations. Novel techniques will be required to reason about compiler correctness on top of 
axiomatic models, and to propagate the various causality relations across the compilation 
phases and intermediate languages of a compiler. 

 
Research goals: in Tasks 2 and 3 we will establish groundwork necessary for a full compiler 

verification for a concurrent C-like language that integrates the memory model of C++0x, 
both for Power/ARM and x86 architectures. The x86 sample implementation has already 
been proven correct by co-investigators of this proposal, but the x86 memory model makes 
this result much simpler than the equivalent for Power/ARM.  Accordingly, in Task 2 we set 
out to prove the correctness of the Power/ARM sample compilation schemes. In Task 3 we 
tackle the ambitious goal of defining a fully-fledged C-like language with the C++0x 
concurrency model, and implementing a verified compiler for it. For this, we will target the 
x86 architecture, because its memory model is better understood and to avoid dependencies 
on Task 2. 
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There is a great potential to optimise the code generated by these compilation schemes. 
For an example of a simple optimisation on x86, a sequence of two SEQ_CST memory writes 
below is likely to be compiled as the code on the right: 

 
x.write(1);  
y.write(1) 

mov %eax, $1 
mov _x, %eax 
mfence 
mov _y, %eax 
mfence 

 
It is easy to convince somebody familiar with the x86 memory model that the first mfence 
instruction is redundant as the store buffer will be anyway flushed by the second fence, and 
no other instruction reordering can occur. A compiler might (and should) automatically 
detect such situations and optimise the redundant fences away. This, and similar, 
optimisations introduce unobservable nondeterminism and their correctness cannot be 
proved by a simulation  argument, contrarily to the CompCertTSO phases. 
 
Research goals: in Task 4 we will study compiler optimisations in the context of concurrent 
languages, and we will work out new techniques to formally verify their correctness. 
 
From the user's perspective C++0x low-level atomics, or visibility of TSO reorderings, play a 
key role in programming and reasoning about high-performance concurrent algorithms. 
Although not directly focused on algorithm verification, this research project will be driven 
by the problems raised by the implementation and the verification of concurrent algorithms. 
Tool support is required to manage large semantics definitions: we will make our tools and 
infrastructure publically available (Task 5). 

3.2. DESCRIPTION DES TRAVAUX PAR TÂCHE / DESCRIPTION BY TASK 
 
The tasks below are organised thematically, not chronologically, and will run concurrently 
during most of the project. Detailed timing and dependencies are in the task schedule below.  

3.2.1 TÂCHE 1 / TASK 1 
 
Coordination 
 
My collaboration with Peter Sewell’s group at the Computer Laboratory of the University of 
Cambridge and with Viktor Vafeiadis (previously at Cambridge, now at MPI-SWS) is well 
established. We rely on shared repositories, daily teleconferences and frequent working 
visits, all of which are essential for effective collaborative work.  Post-doc recruitment will be 
broadly advertised on international mailing lists. A web-page will report on the state of the 
project and will make our models, papers, and tools publically available. We will also engage 
with the community, with contacts with the C++ standard committee and GCC developers. 
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3.2.2 TÂCHE 2 / TASK 2 
 
Sample Compilation of C++0X low-level atomics to Power and ARM processors 
 
We set out to prove the correctness of the sample compilation scheme for C++0x low-level 
atomics proposed by McKenney and Silvera (McKenney & Silvera, 2010) for the Power 
architecture. A similar task has been tackled by Batty et al. (Batty et al., 2011) for the x86 
architecture, but targetting Power raises new challenges as we shall see below. 
 
1. Axiomatic Model of Power and ARM memory model 
 
Memory models can be formalised in two styles: either operationally, by means of abstract 
machines, or axiomatically, defining valid executions in terms of memory orders.  Each style 
has its own benefits: the abstract machine conveys the programmer-level operational 
intuition, while the axiomatic model supports constraint-based reasoning.  For x86 we have 
both, with a proof of equivalence.  For Power only an operational model that abstracts the 
processor micro-architecture has been defined and validated.  We will produce an equivalent 
axiomatic model for the Power and ARM. Apart from being a valuable contribution on its 
own, an axiomatic presentation of the Power and ARM memory models is required to reason 
about compiler correctness (Task 2.2 and Task 3).    

We will formalise a fragment of the instruction set large enough to be targeted by the 
backend of a realistic compiler. This must include the problematic instructions lwarx, stwcx 
and lwsync, which did not fit in previous formalisation of Power multiprocessors (Adir et al., 
2003; Alglave, 2010). To increase confidence in the instruction semantics, we will build a 
robust and efficient infrastructure for testing the instruction semantics (Task 5). 
 
2. Verification of the sample compilation scheme 

 
To discuss the correctness of the proposed mapping in isolation, without embarking on a 
verification of some particular full compiler, we will work solely in terms of candidate 
executions and memory models.  We will define an abstract compiler that maps the allowed 
candidate executions (in the sense of (Batty et al., 2011)) of a given program to Power 
executions (defined in Task 2.1) respecting the instruction compilation scheme but with some 
freedom in the resulting Power program order.  We will then lift such Power executions to 
C++0x consistent executions: if this lifting exists we can conclude that the instruction 
mapping is correct. 

We will consider increasing subsets of the C++0x low-level atomic standard, starting from 
MO_SEQ_CST and then covering all the weaker primitives: MO_RELEASE/MO_ACQUIRE	
   pairs 
MO_RELEASE/MO_CONSUME	
   pairs, and MO_ACQ_REL. The challenge here is that both the 
C++0x semantics and the Power/ARM semantics require respecting very particular 
dependencies, something that previous work on compiler proofs did not track. In addition 
the weaker semantics require complex instruction sequences (involving loops) to implement 
the synchronisation operations, e.g.: 

 
Cmpxchg	
  Relaxed,	
  Relaxed:   _loop: lwarx; cmp; bc _exit; stwcx.; bc _loop; _exit 
 

and will require novel techniques to reason about the potentially infinite executions resulting 
from unfolding loops in the context of memory models. The MO_CONSUME	
  ordering has been 
included in the C++0x standard explicitly to exploit the particularities of the Power memory 
model: proving its correctness will establish a strong correspondence between the 
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formalisation of the C++0x memory model and the axiomatic presentation of the Power 
architecture (increasing confidence in both as a side effect). 

3.2.3 TÂCHE 3 / TASK 3 
 
Towards CompCert0x 
 
Generalising the results of the previous section to a fully-fledged compiler remains a major 
challenge; the sub-tasks below are necessary intermediate steps.  We will target here the x86 
architecture, whose model is well understood and for which there exists a simple axiomatic 
presentation. Our approach is tailored so that we can reuse as much as possible of the 
existing CompCertTSO infrastructure. 
 
1. Clight0x, and a compiler from Clight0x to x86 
 
We will extend the Clight language by Leroy (roughly speaking a dialect of C without side-
effects in expressions) with C++0x atomic types and instructions — we call the new language 
Clight0x. Even if we limit ourselves to the fragment without low-level atomics, defining its 
formal semantics is a challenge in itself as the complexities of the memory model (including 
the formalisation of data-race freedom) must be intertwined with the subtle aspects of a 
realistic C-like programming language. 

Building on CompCert and CompCertTSO, we will implement a compiler from Clight0x 
to x86 assembler. Our first approach will be to add a translation phase from Clight0x to 
ClightTSO on top of CompCertTSO; this compilation phase will introduce memory barriers 
around all memory accesses, thus implementing MO_SEQ_CST, and will then rely on later 
phases to remove redundant barriers (Task 4). The proof of correctness will still have to deal 
with the mismatch between Clight0x axiomatic presentation and the ClightTSO. 

In due course we will investigate fancier compilation schemes; however a proof of 
correctness of a sophisticated scheme is likely to have to propagate the axiomatic Clight0x 
semantics across several compilation phases.  This is a challenging sub-task (Task 3.2) on its 
own. 
 
2. Techniques to propagate dependencies across the intermediate languages of a compiler 
 
The C++0x memory model is defined by an axiomatic model in terms of dependencies 
between events, and a semantic preservation proof cannot simply be done using simulations 
between the operational semantics of all the compiler intermediate languages, as was done in 
CompCert and CompCertTSO. We will study techniques to propagate and relate 
dependencies across the intermediate languages of our compiler of Task 3.1. This proof 
development may well drive re-engineering of the compiler. To make this task tractable, we 
will initially focus only on some selected, challenging, compilation phases, like the memory 
layout of the stack-frame or the allocation of shared data.   

3.2.4 TÂCHE 4 / TASK 4 
 
Correctness of compile-time optimisations for concurrent languages 
 
We will investigate sound compile-time optimisations for concurrent languages such as 
ClightTSO and Clight0x. 
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1. Fence optimisations in CompCertTSO 
 
Naive fence usage gives poor code quality and performance. Our goal here is to design, 
implement, evaluate, and prove correct, compiler optimisations that remove redundant 
memory barriers. CompCertTSO provides an ideal infrastructure to purse this research line, 
as the bare x86 memory model is lifted to all the intermediate languages of the compiler.  
These results can be used to optimise the naive compilation of the MO_SEQ_CST ordering of 
Clight0x. Initially we will focus on thread-local optimisations (that is, optimisations that are 
sound even if no assumption about the other threads are made). C++0x low-level atomics 
provide opportunities to enable more aggressive non-thread local optimisation, which we 
will study in relation to the advances of Task 3. 

Although we do not yet have an infrastructure similar to CompCertTSO for the 
Power/Arm architectures, we will study fence optimisations for these weaker architectures 
as well.  In particular, Power and ARM fences have a complex behaviour and their optimal 
placement is delicate. 
 
2. Sequential optimisations and concurrent programming languages 
 
A large body of data-flow analyses exists for analyzing and optimizing sequential code. 
Unfortunately, much of it cannot be directly applied on parallel code, because asynchronous 
updates break their correctness proof for the sequential case. We will investigate which 
sequential optimisation can be reused in a concurrent setting, possibly exploiting data-race 
freedom guarantees. We will focus both on the TSO memory model and the C++0x low-level 
atomic memory models, and implement the sound optimisations on top of CompCertTSO or 
the compiler for Clight0x of Task 3. 

3.2.5 TÂCHE 5 / TASK 5 
 
Tool Support for Large-Scale Semantics 
 
This final task is devoted to infrastructure: engineering tools to work with the large 
mathematical definitions, of processor and language semantics, that are basis of the project. 
We will use existing proof assistants Coq, HOL, and Isabelle, and our Ott tool (Sewell, Zappa 
Nardelli, et al., 2010). In addition we need tools for translating processor semantics between 
those proof assistants (in general this is not feasible, but processor semantics tend to be type-
theoretically simple, so it should be largely a matter of interfacing with the existing 
software). We would also like to take advantage of such translation to refactor Ott, and 
extend it to support richer forms of binding structure, functions, and semantic animation, to 
use for the high-level languages of the project. 

Our processor semantics will have the semantics of instructions factored out from the 
memory model, but more work is necessary to make those semantics transparent to 
practicing software engineers, to the point where the informal prose describing instructions 
in processor manuals could be replaced by precise definitions. 

We will also need to build more robust and efficient infrastructure for testing the 
instruction semantics and for exploring concurrent memory behaviour; these should be 
made into reusable tools. 
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3.3. CALENDRIER DES TÂCHES, LIVRABLES ET JALONS / TASKS SCHEDULE, 
DELIVERABLES AND MILESTONES 

 
A timetable for the major components of my proposed research is given below.  
 
Tasks	
   Year	
  1	
   Year	
  2	
   Year	
  3	
   Year	
  4	
  
1:	
  Coordination	
   XXXXXXX	
   XXXXXXX XXXXXXX XXXXXXX 
2:	
  Sample	
  compilation	
  of	
  C++0x	
  to	
  Power/ARM	
       
2.1:	
  Axiomatic	
  model	
  of	
  Power/ARM	
   XXXXXXX	
   XXXXXXX   
2.2:	
  Verification	
  of	
  the	
  sample	
  compilation	
  scheme	
   	
    	
  	
  	
  	
  	
  XXXX XXXXXXX XXXXXXX 
3:	
  Towards	
  CompCert0x	
  	
       
3.1:	
  Clight0x,	
  and	
  a	
  compiler	
  from	
  Clight0x	
  to	
  x86	
   XXXXXXX	
   XXXXXXX XXXXXXX  
3.2:	
  Techniques	
  to	
  propagate	
  dependencies	
    XXXXXXX	
   XXXXXXX XXXXXXX 
4:	
  Correctness	
  of	
  compile-­‐time	
  optimisations	
       
4.1:	
  Fence	
  optimisations	
  in	
  CompCertTSO	
   XXXXXXX XXXXXXX   
4.2:	
  Sequential	
  optimisations	
  and	
  concurrent	
  languages	
    XXXXXXX XXXXXXX XXXXXXX 
5:	
  Tool	
  support	
  for	
  large-­‐scale	
  semantics	
   XXXXXXX XXXXXXX XXXXXXX XXXXXXX 
 
Tasks 1 and 5 are support tasks that will run for the whole duration of the project. Each of 
the main tasks (Task 2, Task 3, Task 4) is ambitious and will span over several man-years of 
work. However it is possible to work on these in parallel, provided that enough human 
resources are available: for this reason I ask for funding of three man-years salary for 
PostDocs. 
 

 
Deliberables and milestones 

 
Task Delivery date Participants 

in charge 
Task 2.1 Axiomatic presentation of the  Power/ARM 

memory model 
T24. Progress report 
at T6, T18. 

FZN, LM, PS 

Task 2.2 Verification of the Power/ARM sample 
compilation scheme 

T48. Progress report 
at T24, T36. 

FZN, LM, PS 

Task 3.1 Clight0x and a compiler from Clight0x to x86 T36. Progress report 
at T12, T24. 

FZN, PS 

Task 3.2 Techniques to propagate dependencies across 
the intermediate languages 

T48. Progress report 
at T24, T36. 

FZN, PS 

Task 4.1 Fence optimisations in CompCertTSO T24. Progress report 
at T12, T18. 

FZN, VV 

Task 4.2 Sequential optimisations and concurrent 
programming languages 

T48. Progress report 
at T24, T36. 

FZN, VV 

Task 5 Tool support for large-scale semantics T48. Progress report 
at T12, T24, T36. 

FZN, LM, PS 

 
(FZN: Francesco Zappa Nardelli; LM: Luc Maranget; PS: Peter Sewell; VV: Viktor Vafeiadis). 
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4. STRATEGIE DE VALORISATION, DE PROTECTION ET 
D’EXPLOITATION DES RESULTATS / DISSEMINATION AND 
EXPLOITATION OF RESULTS, INTELLECTUAL PROPERTY 

 
We will publish our results in the peer-reviewed scientific literature, initially in conferences 
such as CAV, CONCUR, DAMP, ESOP, ICFP, LICS, PLDI, PODC, POPL, PPoPP, SOSP, and 
ITP.  The broad scope of the project, covering several different subfields, will demand and 
enable particularly broad dissemination. We will make our semantic models, tools, and 
implementations publically available, via the web, as early in the project as possible. 

This programme provides an unusual opportunity for fundamental research to have a 
broad and direct impact, in industry and academia. The results are needed: it has become 
widely accepted that industrial software developers need better ways of programming and 
reasoning about multicore systems, and the importance and subtle complexities of memory 
models make them ideal targets for mathematically rigorous methods. There is keen interest 
from processor vendors (witness discussions with architects at ARM, Intel, AMD, and IBM), 
and from OS, algorithm, and library developers (witness discussions with Lea, Harris, and 
McKenney); this project should enable a wide range of research on programming language 
design, compilation, verification, and algorithms, taking relaxed memory into account. 

5. DESCRIPTION DU PARTENARIAT / CONSORTIUM DESCRIPTION  

5.1. DESCRIPTION, ADÉQUATION ET COMPLÉMENTARITÉ DES PARTICIPANTS / 
PARTNERS DESCRIPTION AND RELEVANCE, COMPLEMENTARITY  

 
For work on this scale one has to build an effective team; it cannot be done by an individual 
alone. I am fortunate to have an excellent group of colleagues to collaborate with, both at 
INRIA and abroad. For this research project I expect to continue my ongoing collaboration 
with Peter Sewell, employed by the Computer Laboratory of the University of Cambridge, 
and his team, in particular Jaroslav Sevcik (RA), Scott Owens (RA), Susmit Sarkar (RA), and 
Mark Batty (PhD student).  Their experience with models of multiprocessor memory models, 
compilation and high-level languages is highly valuable for this project. Viktor Vafeiadis, 
previously at Cambridge, is now at MPI-SWS in Kaiserslautern, Germany. Vafeiadis 
expertise in the analysis of concurrent algorithms is complementary and will provide 
inspiration for all this work on compilation of high-level languages. Sewell and Vafeiadis 
have their own funding to work on the research presented in this proposal. Luc Maranget, 
chargé de recherche in the Moscova project-team at INRIA Paris-Rocquencourt (as myself), 
will contribute with his fundamental experience in building tools to validate the 
formalisation of hardware memory models.   

5.2. QUALIFICATION DU COORDINATEUR DE LA PROPOSITION DE PROJET/ 
QUALIFICATION OF THE PROPOSAL COORDINATOR 

 
The collaboration with Peter Sewell's group in Cambridge started in 2003 and is today well 
established.  In the past we have worked on language design for distributed computation 
(Sewell et al., 2007) and tool support for semantics (Sewell et al., 2010). Our ongoing 
collaboration is now focused on formalisation of hardware weak-memory models (Sarkar et 
al., 2009; Sewell et al., 2010) and verified compilation of concurrent programming languages 
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(Sevcik et al., 2011). Funding this research proposal will enable me to pursue this fruitful 
collaboration.   

5.3. QUALIFICATION, RÔLE ET IMPLICATION DES PARTICIPANTS / QUALIFICATION 
AND CONTRIBUTION OF EACH PARTNER 

 
 Nom / 

Name 
Prénom / 
First name 

Emploi 
actuel / 
Position 

Discipline / 
Field of 
research 

Personne.
mois* / 

PM 

Rôle/Responsabilité dans la 
proposition de projet/ Contribution to 

the proposal 

4 lignes max 

Coordinateur/responsable  Zappa 
Nardelli 

Francesco CR, INRIA Computer 
science 

36 Coordinator and main investigator.  
Tasks 1-5. 

Autres membres Maranget Luc CR, INRIA Computer 
science 

12 Power/ARM memory model, tool-
support. Tasks 2 and 5. 

 Sewell Peter EPSRC 
Research 
Fellow, U. 
Cambridge, 
UK 

Computer 
science 

12 Design of programming languages, 
semantics, compilation, tool-support. 
Tasks 2,3 and Task 5. 

 Vafeiadis Viktor MPI-SWS, 
Germany 

Computer 
science 

12 Algorithm verification, compilation, 
optimisations, semantics. Tasks 2-4. 

* à renseigner par rapport à la durée totale du projet 
 

6. JUSTIFICATION SCIENTIFIQUE DES MOYENS DEMANDES / 
SCIENTIFIC JUSTIFICATION OF REQUESTED RESSOURCES 

 
This proposal is wide-ranging and challenging, aiming not just to develop reasoning 
techniques for relaxed memory execution (neglected in past research on concurrency 
verification), but to do so above semantic models that are faithful to the real-world 
processors and modern high-level languages. To do this requires an effective team with 
broad expertise. The project partners are all supported by their own grants to work on this 
project. I request funding for three man-years for PostDoc, funding for work visits to the 
project partners (which are vital to this project) and for travelling to attend conferences, and 
funding for workstations and laptops. 

• Équipement / Equipment. 
 
We request funds for two workstations for the PostDocs and project coordinator, and also 
one portable machine, for work and presentation while travelling (a total of 3 machines at 
2000 € each). 

• Personnel / Staff 
 

We request funds for three man-years salary for PostDocs (each man-year costs 49k €).  Each 
student will contribute to one of the main tasks that compose this research project. 

Note that, even if members of foreign institutions, the contribution of Sewell and 
Vafeiadis have been taken into account in the computation of the number of person months 
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in document A (listed as “Personnel permanent”), and the corresponding costs are calculated 
on the DR2 scale (Sewell) and the CR1 scale (Vafeiadis). 

• Prestation de service externe / Subcontracting 

• Missions / Travel 
 

Regular working visits to the project partners in Cambridge and Kaiserslautern are vital for 
this project. In addition I request funding to attend major relevant conferences where we 
hope to present our work (e.g. CAV, CONCUR, DAMP, ESOP, FM, ICFP, LICS, PLDI, 
PODC, POPL, PPoPP, SOSP, and TPHOLs), and for PostDoc student attendance at summer 
schools such as the International Summer School on Trends in Concurrency.   

I request funds for 4 visits per year at 1000 € each for the project coordinator, 2 visits per 
year at 1000 € each for Maranget, and a total of 6 visits for the three PostDoc students at 1000 
€ each.  I also request funds for brief trips to colleagues in France (2000 €). I request funds 
for two conference attendances or visits to industrial labs (particularly those of processor 
vendors) per year, at 1500 € each. 

• Dépenses justifiées sur une procédure de facturation interne / Costs justified 
by internal invoicies 

• Autres dépenses de fonctionnement / Other expenses 
 

7. ANNEXES / ANNEXES 
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7.2. BIOGRAPHIES / CV, RESUME 
 
Francesco ZAPPA NARDELLI ( 34 - 25/12/1976 – http://moscova.inria.fr/~zappa ) 
 
Chargé de recherche (CR1), Moscova research-team, INRIA Paris-Rocquencourt. 
 
Professional Preparation 
 
• Laurea (M.S.) in Computer Science, University of Pisa, Italy, October 2000. 
• DEA Programmation (M.S.), University of Paris Sud, France, September 2000.  
• Ph.D. in Computer Science, University of Paris 7, December 2003. 
 
Appointments 
 
• 2004–present, Research Scientist, INRIA Paris-Rocquencourt, France.  
• 2003–2004, Post-doctoral grant, University of Cambridge, UK.  
• 2002, Curie Research Fellow, Sussex University, UK.  
• 2000–2003, PhD student, University of Paris 7, France. 
 
Selected publications 
 
• J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, P. Sewell. Relaxed-memory 
concurrency and verified compilation. In Proc POPL, 2011 (to appear). 
• P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, M. Myreen. x86-TSO: a rigorous and usable 
programmer's model for x86 multiprocessors. Commun. ACM 53(7), 2010. 
• T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Ostlund, J. Vitek. Intgrating typed and untyped 
code in a scripting language. In Proc POPL, 2010. 
• S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, J. 
Alglave. The semanctics of x86-CC multiprocessor machine code. elaxed-memory concurrency and 
verified compilation. In Proc POPL, 2009. 
• A. Hobor, A. Appel, F. Zappa Nardelli. Oracle semantics for concurrent separation logic. In 
Proc ESOP, 2008.  
 
Zappa Nardelli is author of 14 papers in peer-reviewed international conferences and 5 
papers published in journals (J. ACM, J. Funct. Program. (2), Inf. Comput, CACM). 
 
Others 
 
• Main author of Ott, a tool for large-scale semantics (http://moscova.inria.fr/ ̃zappa/software/ott). 
• Member of the CEA-EDF-INRIA summer school executive commitee. 
• Member of the POPL 2012 program committe. 
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Luc MARANGET ( http://moscova.inria.fr/~maranget ) 
 
Luc Maranget is Chargé de Recherche (CR1) in the Moscova research-team at INRIA Paris-
Rocquencourt. He is an expert of compilation of functional languages and distributed 
applications. He is a core implementor of the OCaml compiler, and the main architect of the 
JoCaml system. Recently he developed efficient tools to explore the memory model of 
multiprocessor hardware, and carried on extensive testing of the Power memory model. 
 
Peter SEWELL ( http://www.cl.cam.ac.uk/~pes20 ) 
  
Peter Sewell is a Reader and EPSRC Leadership Fellow at the University of Cambridge 
Computer Laboratory, following a Royal Society University Research Fellowship (1999-2007) 
and a PhD with Robin Milner (1995). His research aims to build rigorous foundations for the 
engineering of real-world computer systems, to make them better-understood, more robust, 
and more secure.  He has published widely in leading venues in semantics, programming 
languages, networking, and security, and currently focusses on the relaxed memory models 
of multiprocessors and concurrent languages.  This work is currently funded by two EPSRC 
grants (£2.1M), with project partners from IBM, ARM, Microsoft Research, and the Java/C++ 
concurrency community.  
 
Viktor VAFEIDAIS ( http://www.mpi-sws.org/~viktor/ ) 
 
Viktor Vafeiadis ia an Independent Researcher at Max-Planck Institute for Software Systems 
(MPI-SWS), Germany, following post-doctoral positions at the University of Cambridge and 
Microsoft Research Cambridge, and undergraduate studies at the University of Cambridge. 
He is an expert on program analysis/verification, program logics, programming languages, 
and concurrency. He is author of publications in leading conferences (including POPL, CAV, 
ECOOP, VMCAI) and journals (JFP). He recently became interested in compiler verification. 
  

7.3. IMPLICATION DES PERSONNES DANS D’AUTRES CONTRATS / STAFF INVOLVMENT 
IN OTHER CONTRACTS 

 
As discussed above, Peter Sewell and Viktor Vafeiadis are supported by their own grants to 
work on the research object of this proposal; they are members of foreign research 
institutions and we do not report their grants in the table below. 

Between January 2009 and December 2010 the collaboration between the project 
coordinator and Sewell was partially supported by the INRIA program “Équipes associées”, 
which covers some of the travelling expenses between the two sites. This financial support 
has been extended to 2011, and consists in 8k € restricted to travelling expenses; man-
months does not apply. 
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Nom de la personne 

participant au projet / 
name 
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Mois / PM 

Intitulé de l’appel à 
projets, source de 

financement, montant 
attribué / Project 
name, financing 
institution, grant 

allocated 

Titre du 
projet : 

Project title 

Nom du 
coordinateur 
/ coordinator 

name 

Date début & 

Date fin / Start 
and  end dates 

N°1 Zappa Nardelli,  
Maranget 

 INRIA Équipes 
associées, INRIA, 

8k € 

Équipes 
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MM 

Zappa 
Nardelli 

January 2011 
/ December 

2011 

 
 
 


