

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 1/20

Nom et prénom du
coordinateur /
coordinator’s name

ZAPPA NARDELLI Francesco

Acronyme /
Acronym WMC

Titre de la
proposition de
projet

Concurrence, mémoires faiblement cohérentes, et
compilation certifiée

Proposal title Weak Memory Concurrency and Verified Compilation

Comité d’évaluation
/ Evaluation
committee

SIMI 2

Type de recherche /
Type of research

X Recherche Fondamentale / Basic Research
 Recherche Industrielle / Industrial Research
 Développement Expérimental / Experimental
Development

Aide totale
demandée /
Grant
requested

204880 €

Durée de la
proposition de
projet /
Proposal
duration

48 mois

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 2/20

1.	
 RÉSUME DE LA PROPOSITION DE PROJET / PROPOSAL ABSTRACT 3	

2.	
 CONTEXTE, POSITIONNEMENT ET OBJECTIFS DE LA PROPOSITION / CONTEXT,

POSITIONNING AND OBJECTIVES OF THE PROPOSAL. 3	

2.1.	
 Contexte de la proposition de projet / Context of the proposal 3	

2.2.	
 État de l'art et position de la proposition de projet / state of the art and

positioning of the proposal ... 5	

2.3.	
 Objectifs et caractère ambitieux et/ou novateur de la proposition de projet

/ Objectives, originality and/ or novelty of the proposal 6	

3.	
 PROGRAMME SCIENTIFIQUE ET TECHNIQUE, ORGANISATION DE LA PROPOSITION

DE PROJET / SCIENTIFIC AND TECHNICAL PROGRAMME, PROPOSAL

ORGANISATION .. 7	

3.1.	
 Programme scientifique et structuration de la proposition de projet/

Scientific programme, proposal structure ... 7	

3.2.	
 Description des travaux par tâche / Description by task 9	

3.2.1	
 Tâche 1 / Task 1 9	

3.2.2	
 Tâche 2 / Task 2 10	

3.2.3	
 Tâche 3 / Task 3 11	

3.2.4	
 Tâche 4 / Task 4 11	

3.2.5	
 Tâche 5 / Task 5 12	

3.3.	
 Calendrier des tâches, livrables et jalons / Tasks schedule, deliverables and
milestones ..13	

4.	
 STRATÉGIE DE VALORISATION, DE PROTECTION ET D’EXPLOITATION DES

RÉSULTATS / DISSEMINATION AND EXPLOITATION OF RESULTS, INTELLECTUAL

PROPERTY .. 14	

5.	
 DESCRIPTION DU PARTENARIAT / CONSORTIUM DESCRIPTION....................... 14	

5.1.	
 Description, adéquation et complémentarité des participants / Partners
description and relevance, complementarity ..14	

5.2.	
 Qualification du coordinateur de la proposition de projet/ Qualification of
the proposal coordinator ...14	

5.3.	
 Qualification, rôle et implication des participants / Qualification and
contribution of each partner ..15	

6.	
 JUSTIFICATION SCIENTIFIQUE DES MOYENS DEMANDÉS / SCIENTIFIC

JUSTIFICATION OF REQUESTED RESSOURCES... 15	

7.	
 ANNEXES / ANNEXES... 16	

7.1.	
 Références bibliographiques / References ...16	

7.2.	
 Biographies / CV, resume ...18	

7.3.	
 Implication des personnes dans d’autres contrats / Staff involvment in

other contracts ..19	

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 3/20

1. RESUME DE LA PROPOSITION DE PROJET / PROPOSAL ABSTRACT

Multiprocessors and multicore processors are now ubiquitous, but programming these
systems, to deliver high-performance and reliable systems, is very challenging. Shared-
memory is the programming abstraction exported by the hardware, and most multi-
threaded programs communicate through memory shared between the threads.
Traditionally concurrent execution was viewed as simply an interleaving of the steps from
the threads participating in the computation. Thus if we started in an initial state in which
all variables are zero, and one thread executes:

 x	
 =	
 1;	
 r1	
 =	
 y;	

while another executes

 y	
 =	
 1;	
 r2	
 =	
 x;	

either the assignment to x or the assignment to y must be executed first, and either r1 or r2
must have a value of one when the execution completes. However, it has proven impractical
to guarantee such a restrictive memory behaviour, and mainstream programming languages
(such as C, C++, Java) exploiting multithreaded hardware allow both r1 and r2 to remain
zero in the above example. There are two reasons for this:

- for efficiency reasons, compilers may reorder memory operations if that does not violate
intra-thread dependencies;

- the hardware may reorder memory operations based on similar constraints.

The forthcoming revision of the C++ standard (the C standard will be updated accordingly
to preserve compatibility) specifies all the constraints that the possible outcomes of a parallel
program must respect. This requires special architecture-dependent support in C and C++
compilers.

The goal of this grant proposal is to investigate the formal verification of realistic
compilers for concurrent dialects of the mainstream languages C and C++. We will target
both the x86 and Power/ARM architectures, which require radically different compilation
strategies and proof methods, focussing initially on sample compilation schemes and then
lifting these results to fully-fledged compilers. In addition we will design and prove correct
novel compile-time optimisations for these languages and compilers.

2. CONTEXTE, POSITIONNEMENT ET OBJECTIFS DE LA PROPOSITION /
CONTEXT, POSITIONNING AND OBJECTIVES OF THE PROPOSAL.

2.1. CONTEXTE DE LA PROPOSITION DE PROJET / CONTEXT OF THE PROPOSAL

Computer science is undergoing a difficult transition. Over the last 40 years we have seen
exponential improvement in the performance of sequential computation. Now, however, the
industry is hitting constraints, from power dissipation, CPU-memory bandwidth, and the

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 4/20

limits of instruction-level parallelism. Future performance increases must therefore come
from increased concurrency, which is finally becoming mainstream. Multicore processors are
now ubiquitous, with the number of cores in a typical laptop, server, or even mobile phone
increasing rapidly.

However, programming these multiprocessors, to deliver high-performance and reliable
systems, is very challenging. It has proved impractical to give large numbers of processors
simultaneous fast access to a large sequentially consistent shared memory, in which (Lamport,
1979) “the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program”. Instead, memory accesses of real
multiprocessors may be reordered in various constrained ways, with different processors
observing the actions of others in inconsistent orders, so one cannot reason about the
behaviour of such programs in terms of an intuitive notion of global time. For a simple
example, on x86 processors, given two shared memory locations x and y (initially holding	
 0),
if two processors P0 and P1 respectively write 1 to x and y and then read from y and x, it is
possible for both to read 0 in the same execution.

P0	
 P1	

write	
 	
 	
 	
 	
 x	
 ←	
 1	
 	
 write	
 	
 	
 	
 	
 y	
 ←	
 1	

read	
 r0	
 ←	
 y	
 	
 (0)	
 	
 Read	
 r1	
 ←	
 x	
 	
 (0)	

This fundamental problem is exacerbated by four further issues. First, the concurrent
algorithms that are now being developed, and which are key to exploiting multiprocessors
(via high-performance operating systems, hypervisor kernels, and concurrency libraries), are
very subtle, so informal reasoning cannot give high confidence in their correctness. Second,
while there has been extensive prior work on software verification for concurrency
(including model-checking, temporal logics, rely-guarantee reasoning, separation logic, and
process calculi), almost all of it neglects such relaxed memory behaviour, instead assuming
sequential consistency. Third, the vendor specifications of processor architectures, e.g. by
Intel and AMD (x86), IBM (Power), and ARM, are informal prose documents, with many
ambiguities and omissions; such informal prose is the industrial state of the art. Finally, and
most importantly, this relaxed memory behaviour is a concern not just for low-level
programmers, but is also partially exposed in high-level languages, e.g. with the problematic
Java Memory Model (Manson et al., 2005) or the forthcoming C++0x standard (JTC1/WG14).
For a simple example, it is easy to see that in a sequentially consistent execution the program
below, where r1, r2 are local variables, while x, y are shared, cannot print 1.

However a modern compiler (in this case Sun Hotspot) might perform the following
sequence of optimisations
P0	
 P1	

r1 = x
y = r1

r2 = y
x = (r2 == 1) ? y : 1
print r2

⇒

P0	
 P1	

r1 = x
y = r1

r2 = y
x = 1
print r2

⇒	

P0	
 P1	

r1 = x
y = r1

x = 1
r2 = y
print r2

P0	
 P1	

r1 = x
y = r1

r2 = y
x = (r2 == 1) ? y : 1
print r2

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 5/20

and the resulting program can then print 1: unexpected behaviours can be introduced by
compilation as well.

At the same time, this is an exciting time for the formal verification of software, in part
because several threads of research, in progress for decades, have the potential to cohere.
These include a gradual revolution in the specification methods for operational semantics of
programming languages (1994-2010), the maturation of mechanized proof assistants (1978-
2010), successes in compiler verification (1989, 2006), and progress in the specification of
weak-memory models (2006-2010).

In this project I will build on these advances to address several issues related to the
verified compilation of concurrent high-level languages.

2.2. ÉTAT DE L'ART ET POSITION DE LA PROPOSITION DE PROJET / STATE OF THE ART
AND POSITIONING OF THE PROPOSAL

Research on weak-memory models traditionally abstracted almost entirely from the actual
processors (Adve et al., 1996; Higham et al., 1997). In the last four years, in collaboration with
Peter Sewell and others, I worked toward giving mathematically precise and experimentally
validated formalisations of the x86 and Power/ARM memory models and instruction semantics. For
x86 we produced both an axiomatic and operational model (formalised in HOL and Coq)
(Sarkar et al., 2009; Owens et al., 2009; Sewell et al., 2010): contrary to the vendor
documentation, it turns out that x86 behaves basically as Sparc TSO (a simple, well
understood, model) and our formalisation can be considered as a reference by assembly
programmers and compiler writers (Boehm, 2010). For Power/ARM the model is more
complex: past attempts (Adir et al., 2003; Alglave et al., 2009; Alglave et al., 2010) do not respect
faithfully the semantics of the barriers or accommodate load-reserve and store-conditional
instructions. The effort is now converging toward an operational model that abstracts the
internal micro-architecture of the processor, however work remains to be done to finalize the
instruction semantics. The development of these x86 and Power/ARM models, which
constitute the foundation of this proposal, has been partially supported by ANR-06-SETIN-
010.

Meanwhile, in a remarkable tour de force, Leroy has demonstrated a proved correct
optimizing compiler (called CompCert) from a dialect of C (called Clight) to machine language
for Power and x86 architectures (Leroy, 2009). As part of this demonstration, Leroy specified
an operational semantics for Clight, he specified an operational semantics for the Power (and
x86) machine language, and he built a machine-checked proof in the Coq proof assistant that
the compiler preserves behaviour from one operational semantics to another. Verified (or
verifying) compilers is a long-term goal which we share with researchers worldwide, e.g. see
the works of Benton (Benton et al., 2007) and Chlipala (Chlipala, 2007).

Generalising Leroy’s result to a concurrent language, and dealing with the relaxed-
memory-model properties we have discussed here, remains a major challenge. Hobor, Appel
(Princeton) and myself begun to address the sequentially consistent case under the
hypothesis that all shared-memory accesses in the source program are well-synchronised
(e.g. protected by locks, a property usually referred to as data-race freedom) (Hobor et al., 2008).
However most modern concurrent low-level high-performance code (ranging from simple
spinlock implementations to fancy concurrent data-structures) relies on racy interactions,
and this limits the scope of this approach. In collaboration with Sewell, Vafeiadis and others,
I recently designed a concurrent C-like language, called ClightTSO, that exposes the
processor model for high-performance code, and studied verified compilation from
ClightTSO to x86, which we validated with correctness proofs (building on CompCert) for

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 6/20

the most interesting compiler phases (Sevcik et al., 2011). Although this research showed that
it is possible to reason about the compilation process of racy programs, ClightTSO and its
compiler CompCertTSO are not intended to define and implement a general purpose
language. Moreover they are tied to a particular architecture.

For general purpose high-level languages, designing the memory model is a hard task in
itself. Several languages, including OCaml, do not implement true-concurrency multi-
threading at all and cannot exploit the parallel computation capabilities of modern
processors. Others, including most scripting languages and mainstream languages as C and
C++, rely on external thread libraries: there is widespread consensus that this is not the right
approach (Boehm, 2005). Java had integrated multithreading since its first version but, by the
year 2000, the initial specification was shown to allow unexpected behaviours, prohibit
common compiler optimisations, and was challenging to implement on a weakly-consistent
multiprocessor (Pugh, 2000). It was superseded around 2004 by the JSR-133 memory model
(Gosling et al., 2005), but the resulting model (which attempts to solve a difficult challenge as
it must ensure some memory safety requirements for all programs while enabling common
optimisations) is quite intricate and, unfortunately, poorly understood. For instance it turned
out that, standard optimisations as common subexpression elimination were illegal in the
model (Sevcik et al., 2008). Such optimisations were claimed to be permitted, and are
implemented by typical compilers including Sun’s reference HotSpot compiler, as shown
above. For C++, an ongoing effort, currently near completion, attempts to explicitly provide
semantics for threads in the next revision of the standard (called C++0x) (Boehm et al., 2008;
JTC1/SC22/WG14). The C standard (called C1x) will be updated accordingly to preserve
interoperability. Partially following the Java experience, the revised standard gives semantics
only to well-synchronised (data-race free) programs but does not attempt to provide safety
guarantees about racy programs. However it includes an extensive framework, called low-
level atomics, for low-level synchronisation with intricate semantics. The semantics of low-
level atomics has been recently formalised by Batty et al. (Batty et al., 2011). This work also
includes a proof of a sample compilation scheme for C++0x low-level atomics to the x86
processor.

2.3. OBJECTIFS ET CARACTÈRE AMBITIEUX ET/OU NOVATEUR DE LA PROPOSITION DE
PROJET / OBJECTIVES, ORIGINALITY AND/ OR NOVELTY OF THE PROPOSAL

This projects aims at studying novel compiler verification techniques with the long term goal of
building verified optimising compilers for C++0x-like concurrent languages to x86 and Power/ARM
architectures.

In particular, building on our past work on the formalisation of the x86 and Power/ARM
architectures, on the CompCertTSO verified compiler, and on the C++0x formalisation, we
will:

1. work towards a certified compiler for a concurrent C-like language that integrates the
C++0x memory model; and

2. design and study the soundness of compiler optimisations in the context of

concurrent programming languages.

These results are needed: it has become widely accepted that industrial software developers
need robust ways of programming and reasoning about multicore systems, and the subtle
complexities of memory models make them ideal targets for mathematically rigorous
methods.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 7/20

3. PROGRAMME SCIENTIFIQUE ET TECHNIQUE, ORGANISATION DE LA
PROPOSITION DE PROJET / SCIENTIFIC AND TECHNICAL
PROGRAMME, PROPOSAL ORGANISATION

3.1. PROGRAMME SCIENTIFIQUE ET STRUCTURATION DE LA PROPOSITION DE
PROJET/ SCIENTIFIC PROGRAMME, PROPOSAL STRUCTURE

The C++0x standard mandates that for a well-defined and interesting subset of the language,
programs that do not contain data-races must have sequentially consistent semantic.
Prototype implementations of the sequentially consistent atomic primitives have been
proposed; the following table presents an x86 sample implementation by Terekhov (Terekov,
2008):

	
 Load	
 Seq_Cst:	
 	
 	
 LOCK XADD(0) // alternative: MFENCE,MOV (from memory)	

	
 Store	
 Seq	
 Cst:	
 	
 LOCK XCHG // alternative: MOV (into memory),MFENCE	

and a Power prototype by McKenney and Silvera (McKenney & Silvera, 2010):

 Load	
 Seq_Cst:	
 hwsync; ld; cmp; bc; isync	

	
 Store	
 Seq_Cst:	
 hwsync; st	

These compilation schemes are quite expensive (fences and locked instructions can consume
100s of cycles) and provide more synchronisation than needed for many concurrent idioms.
On the one hand it is expected that a real-world implementation does compile time
optimisations to get reasonable performance. On the other hand, the C++0x standard
includes low-level memory-access primitives to be used in high-performance code by expert
programmers: memory access instructions are parametrised by a memory order MO that
specifies how much synchronisation and ordering is required. The strongest ordering is
required for MO_SEQ_CST actions (which is the default, as used above), and the weakest for
MO_RELAXED actions. In between there are MO_RELEASE/MO_ACQUIRE and MO_RELEASE/	

MO_CONSUME pairs, and MO_ACQ_REL with both acquire and release semantics. For instance,
consider the common programming idiom where one thread writes some data x (perhaps
spanning multiple words) and then sets a flag y while the other spins until the flag is set and
then reads the data:

The desired guarantee of this superficially racy program is that the receiver must see the data
writes of the sender. This can be achieved with an atomic store of y annotated MO_RELEASE,
and an atomic load of y annotated MO_ACQUIRE. Weaker memory orderings can be used for
other common racy idioms, for instance read-consume pairs enable efficient implementation
of algorithms that use pointer reassignment for commits of their data, e.g. read-copy-update
(McKenney & Walpole, 2007). Again, sample compilation schemes have been proposed, for
instance for Power we have:

// sender
x = …
y = 1;

// receiver
while (y == 0);
r = x;

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 8/20

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Load	
 Acquire:	
 	
 	
 ld; cmp; bc; isync	

	
 Store	
 Release:	
 	
 lwsync; st	

These sample compilation schemes are simple mappings from individual source-level
atomic operations to small fragments of assembly code, abstracting from the vast
complexities of compilation of a full C-like language. However reasoning about their
behaviour involves reasoning about all the complexity of the C++0x memory model.
Verifying that these prototypes are indeed correct implementations is crucial both for the
design of the standard and to inform the design and verification of a compiler with memory-
model-aware optimisations.

The statement of correctness of a compiler relates the behaviours of the compiled program
to the behaviours of the source program. Contrarily to sequentially consistent execution for
which the semantics can be expressed in terms of changes to a monolithic memory, an
execution consists here of a set of memory actions and various relations over them, and the
memory model axiomatises constraints on those. In the example above, we have that any
instance of a read-acquire that reads from a write-release gives rise to a synchronizes-with (sw)
edge that, together with the sequenced-before (sb) edges that capture the intra-thread
evaluation order, results in the following (axiomatised) behaviour:

A complete description of the dependencies required to model faithfully the C++0x standard
has recently been proposed (Batty, et al. 2011).

The CompCert compiler by Leroy et al. demonstrates that proving the correctness of a
realistic compiler is feasible for sequential languages, and our work on CompCertTSO shows
that Leroy's result can be extended to a concurrent language. However both CompCert and
CompCertTSO rely crucially on operational reasoning, and it is unclear how much of their
structure can be reused when the semantics of the source program is expressed as axiomatic
relations. Novel techniques will be required to reason about compiler correctness on top of
axiomatic models, and to propagate the various causality relations across the compilation
phases and intermediate languages of a compiler.

Research goals: in Tasks 2 and 3 we will establish groundwork necessary for a full compiler

verification for a concurrent C-like language that integrates the memory model of C++0x,
both for Power/ARM and x86 architectures. The x86 sample implementation has already
been proven correct by co-investigators of this proposal, but the x86 memory model makes
this result much simpler than the equivalent for Power/ARM. Accordingly, in Task 2 we set
out to prove the correctness of the Power/ARM sample compilation schemes. In Task 3 we
tackle the ambitious goal of defining a fully-fledged C-like language with the C++0x
concurrency model, and implementing a verified compiler for it. For this, we will target the
x86 architecture, because its memory model is better understood and to avoid dependencies
on Task 2.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 9/20

There is a great potential to optimise the code generated by these compilation schemes.
For an example of a simple optimisation on x86, a sequence of two SEQ_CST memory writes
below is likely to be compiled as the code on the right:

x.write(1);
y.write(1)

mov %eax, $1
mov _x, %eax
mfence
mov _y, %eax
mfence

It is easy to convince somebody familiar with the x86 memory model that the first mfence
instruction is redundant as the store buffer will be anyway flushed by the second fence, and
no other instruction reordering can occur. A compiler might (and should) automatically
detect such situations and optimise the redundant fences away. This, and similar,
optimisations introduce unobservable nondeterminism and their correctness cannot be
proved by a simulation argument, contrarily to the CompCertTSO phases.

Research goals: in Task 4 we will study compiler optimisations in the context of concurrent
languages, and we will work out new techniques to formally verify their correctness.

From the user's perspective C++0x low-level atomics, or visibility of TSO reorderings, play a
key role in programming and reasoning about high-performance concurrent algorithms.
Although not directly focused on algorithm verification, this research project will be driven
by the problems raised by the implementation and the verification of concurrent algorithms.
Tool support is required to manage large semantics definitions: we will make our tools and
infrastructure publically available (Task 5).

3.2. DESCRIPTION DES TRAVAUX PAR TÂCHE / DESCRIPTION BY TASK

The tasks below are organised thematically, not chronologically, and will run concurrently
during most of the project. Detailed timing and dependencies are in the task schedule below.

3.2.1 TÂCHE 1 / TASK 1

Coordination

My collaboration with Peter Sewell’s group at the Computer Laboratory of the University of
Cambridge and with Viktor Vafeiadis (previously at Cambridge, now at MPI-SWS) is well
established. We rely on shared repositories, daily teleconferences and frequent working
visits, all of which are essential for effective collaborative work. Post-doc recruitment will be
broadly advertised on international mailing lists. A web-page will report on the state of the
project and will make our models, papers, and tools publically available. We will also engage
with the community, with contacts with the C++ standard committee and GCC developers.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 10/20

3.2.2 TÂCHE 2 / TASK 2

Sample Compilation of C++0X low-level atomics to Power and ARM processors

We set out to prove the correctness of the sample compilation scheme for C++0x low-level
atomics proposed by McKenney and Silvera (McKenney & Silvera, 2010) for the Power
architecture. A similar task has been tackled by Batty et al. (Batty et al., 2011) for the x86
architecture, but targetting Power raises new challenges as we shall see below.

1. Axiomatic Model of Power and ARM memory model

Memory models can be formalised in two styles: either operationally, by means of abstract
machines, or axiomatically, defining valid executions in terms of memory orders. Each style
has its own benefits: the abstract machine conveys the programmer-level operational
intuition, while the axiomatic model supports constraint-based reasoning. For x86 we have
both, with a proof of equivalence. For Power only an operational model that abstracts the
processor micro-architecture has been defined and validated. We will produce an equivalent
axiomatic model for the Power and ARM. Apart from being a valuable contribution on its
own, an axiomatic presentation of the Power and ARM memory models is required to reason
about compiler correctness (Task 2.2 and Task 3).

We will formalise a fragment of the instruction set large enough to be targeted by the
backend of a realistic compiler. This must include the problematic instructions lwarx, stwcx
and lwsync, which did not fit in previous formalisation of Power multiprocessors (Adir et al.,
2003; Alglave, 2010). To increase confidence in the instruction semantics, we will build a
robust and efficient infrastructure for testing the instruction semantics (Task 5).

2. Verification of the sample compilation scheme

To discuss the correctness of the proposed mapping in isolation, without embarking on a
verification of some particular full compiler, we will work solely in terms of candidate
executions and memory models. We will define an abstract compiler that maps the allowed
candidate executions (in the sense of (Batty et al., 2011)) of a given program to Power
executions (defined in Task 2.1) respecting the instruction compilation scheme but with some
freedom in the resulting Power program order. We will then lift such Power executions to
C++0x consistent executions: if this lifting exists we can conclude that the instruction
mapping is correct.

We will consider increasing subsets of the C++0x low-level atomic standard, starting from
MO_SEQ_CST and then covering all the weaker primitives: MO_RELEASE/MO_ACQUIRE	
 pairs
MO_RELEASE/MO_CONSUME	
 pairs, and MO_ACQ_REL. The challenge here is that both the
C++0x semantics and the Power/ARM semantics require respecting very particular
dependencies, something that previous work on compiler proofs did not track. In addition
the weaker semantics require complex instruction sequences (involving loops) to implement
the synchronisation operations, e.g.:

Cmpxchg	
 Relaxed,	
 Relaxed: _loop: lwarx; cmp; bc _exit; stwcx.; bc _loop; _exit

and will require novel techniques to reason about the potentially infinite executions resulting
from unfolding loops in the context of memory models. The MO_CONSUME	
 ordering has been
included in the C++0x standard explicitly to exploit the particularities of the Power memory
model: proving its correctness will establish a strong correspondence between the

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 11/20

formalisation of the C++0x memory model and the axiomatic presentation of the Power
architecture (increasing confidence in both as a side effect).

3.2.3 TÂCHE 3 / TASK 3

Towards CompCert0x

Generalising the results of the previous section to a fully-fledged compiler remains a major
challenge; the sub-tasks below are necessary intermediate steps. We will target here the x86
architecture, whose model is well understood and for which there exists a simple axiomatic
presentation. Our approach is tailored so that we can reuse as much as possible of the
existing CompCertTSO infrastructure.

1. Clight0x, and a compiler from Clight0x to x86

We will extend the Clight language by Leroy (roughly speaking a dialect of C without side-
effects in expressions) with C++0x atomic types and instructions — we call the new language
Clight0x. Even if we limit ourselves to the fragment without low-level atomics, defining its
formal semantics is a challenge in itself as the complexities of the memory model (including
the formalisation of data-race freedom) must be intertwined with the subtle aspects of a
realistic C-like programming language.

Building on CompCert and CompCertTSO, we will implement a compiler from Clight0x
to x86 assembler. Our first approach will be to add a translation phase from Clight0x to
ClightTSO on top of CompCertTSO; this compilation phase will introduce memory barriers
around all memory accesses, thus implementing MO_SEQ_CST, and will then rely on later
phases to remove redundant barriers (Task 4). The proof of correctness will still have to deal
with the mismatch between Clight0x axiomatic presentation and the ClightTSO.

In due course we will investigate fancier compilation schemes; however a proof of
correctness of a sophisticated scheme is likely to have to propagate the axiomatic Clight0x
semantics across several compilation phases. This is a challenging sub-task (Task 3.2) on its
own.

2. Techniques to propagate dependencies across the intermediate languages of a compiler

The C++0x memory model is defined by an axiomatic model in terms of dependencies
between events, and a semantic preservation proof cannot simply be done using simulations
between the operational semantics of all the compiler intermediate languages, as was done in
CompCert and CompCertTSO. We will study techniques to propagate and relate
dependencies across the intermediate languages of our compiler of Task 3.1. This proof
development may well drive re-engineering of the compiler. To make this task tractable, we
will initially focus only on some selected, challenging, compilation phases, like the memory
layout of the stack-frame or the allocation of shared data.

3.2.4 TÂCHE 4 / TASK 4

Correctness of compile-time optimisations for concurrent languages

We will investigate sound compile-time optimisations for concurrent languages such as
ClightTSO and Clight0x.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 12/20

1. Fence optimisations in CompCertTSO

Naive fence usage gives poor code quality and performance. Our goal here is to design,
implement, evaluate, and prove correct, compiler optimisations that remove redundant
memory barriers. CompCertTSO provides an ideal infrastructure to purse this research line,
as the bare x86 memory model is lifted to all the intermediate languages of the compiler.
These results can be used to optimise the naive compilation of the MO_SEQ_CST ordering of
Clight0x. Initially we will focus on thread-local optimisations (that is, optimisations that are
sound even if no assumption about the other threads are made). C++0x low-level atomics
provide opportunities to enable more aggressive non-thread local optimisation, which we
will study in relation to the advances of Task 3.

Although we do not yet have an infrastructure similar to CompCertTSO for the
Power/Arm architectures, we will study fence optimisations for these weaker architectures
as well. In particular, Power and ARM fences have a complex behaviour and their optimal
placement is delicate.

2. Sequential optimisations and concurrent programming languages

A large body of data-flow analyses exists for analyzing and optimizing sequential code.
Unfortunately, much of it cannot be directly applied on parallel code, because asynchronous
updates break their correctness proof for the sequential case. We will investigate which
sequential optimisation can be reused in a concurrent setting, possibly exploiting data-race
freedom guarantees. We will focus both on the TSO memory model and the C++0x low-level
atomic memory models, and implement the sound optimisations on top of CompCertTSO or
the compiler for Clight0x of Task 3.

3.2.5 TÂCHE 5 / TASK 5

Tool Support for Large-Scale Semantics

This final task is devoted to infrastructure: engineering tools to work with the large
mathematical definitions, of processor and language semantics, that are basis of the project.
We will use existing proof assistants Coq, HOL, and Isabelle, and our Ott tool (Sewell, Zappa
Nardelli, et al., 2010). In addition we need tools for translating processor semantics between
those proof assistants (in general this is not feasible, but processor semantics tend to be type-
theoretically simple, so it should be largely a matter of interfacing with the existing
software). We would also like to take advantage of such translation to refactor Ott, and
extend it to support richer forms of binding structure, functions, and semantic animation, to
use for the high-level languages of the project.

Our processor semantics will have the semantics of instructions factored out from the
memory model, but more work is necessary to make those semantics transparent to
practicing software engineers, to the point where the informal prose describing instructions
in processor manuals could be replaced by precise definitions.

We will also need to build more robust and efficient infrastructure for testing the
instruction semantics and for exploring concurrent memory behaviour; these should be
made into reusable tools.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 13/20

3.3. CALENDRIER DES TÂCHES, LIVRABLES ET JALONS / TASKS SCHEDULE,
DELIVERABLES AND MILESTONES

A timetable for the major components of my proposed research is given below.

Tasks	
 Year	
 1	
 Year	
 2	
 Year	
 3	
 Year	
 4	

1:	
 Coordination	
 XXXXXXX	
 XXXXXXX XXXXXXX XXXXXXX
2:	
 Sample	
 compilation	
 of	
 C++0x	
 to	
 Power/ARM	

2.1:	
 Axiomatic	
 model	
 of	
 Power/ARM	
 XXXXXXX	
 XXXXXXX
2.2:	
 Verification	
 of	
 the	
 sample	
 compilation	
 scheme	
 	
 	
 	
 	
 	
 	
 XXXX XXXXXXX XXXXXXX
3:	
 Towards	
 CompCert0x	
 	

3.1:	
 Clight0x,	
 and	
 a	
 compiler	
 from	
 Clight0x	
 to	
 x86	
 XXXXXXX	
 XXXXXXX XXXXXXX
3.2:	
 Techniques	
 to	
 propagate	
 dependencies	
 XXXXXXX	
 XXXXXXX XXXXXXX
4:	
 Correctness	
 of	
 compile-­‐time	
 optimisations	

4.1:	
 Fence	
 optimisations	
 in	
 CompCertTSO	
 XXXXXXX XXXXXXX
4.2:	
 Sequential	
 optimisations	
 and	
 concurrent	
 languages	
 XXXXXXX XXXXXXX XXXXXXX
5:	
 Tool	
 support	
 for	
 large-­‐scale	
 semantics	
 XXXXXXX XXXXXXX XXXXXXX XXXXXXX

Tasks 1 and 5 are support tasks that will run for the whole duration of the project. Each of
the main tasks (Task 2, Task 3, Task 4) is ambitious and will span over several man-years of
work. However it is possible to work on these in parallel, provided that enough human
resources are available: for this reason I ask for funding of three man-years salary for
PostDocs.

Deliberables and milestones

Task Delivery date Participants

in charge
Task 2.1 Axiomatic presentation of the Power/ARM

memory model
T24. Progress report
at T6, T18.

FZN, LM, PS

Task 2.2 Verification of the Power/ARM sample
compilation scheme

T48. Progress report
at T24, T36.

FZN, LM, PS

Task 3.1 Clight0x and a compiler from Clight0x to x86 T36. Progress report
at T12, T24.

FZN, PS

Task 3.2 Techniques to propagate dependencies across
the intermediate languages

T48. Progress report
at T24, T36.

FZN, PS

Task 4.1 Fence optimisations in CompCertTSO T24. Progress report
at T12, T18.

FZN, VV

Task 4.2 Sequential optimisations and concurrent
programming languages

T48. Progress report
at T24, T36.

FZN, VV

Task 5 Tool support for large-scale semantics T48. Progress report
at T12, T24, T36.

FZN, LM, PS

(FZN: Francesco Zappa Nardelli; LM: Luc Maranget; PS: Peter Sewell; VV: Viktor Vafeiadis).

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 14/20

4. STRATEGIE DE VALORISATION, DE PROTECTION ET
D’EXPLOITATION DES RESULTATS / DISSEMINATION AND
EXPLOITATION OF RESULTS, INTELLECTUAL PROPERTY

We will publish our results in the peer-reviewed scientific literature, initially in conferences
such as CAV, CONCUR, DAMP, ESOP, ICFP, LICS, PLDI, PODC, POPL, PPoPP, SOSP, and
ITP. The broad scope of the project, covering several different subfields, will demand and
enable particularly broad dissemination. We will make our semantic models, tools, and
implementations publically available, via the web, as early in the project as possible.

This programme provides an unusual opportunity for fundamental research to have a
broad and direct impact, in industry and academia. The results are needed: it has become
widely accepted that industrial software developers need better ways of programming and
reasoning about multicore systems, and the importance and subtle complexities of memory
models make them ideal targets for mathematically rigorous methods. There is keen interest
from processor vendors (witness discussions with architects at ARM, Intel, AMD, and IBM),
and from OS, algorithm, and library developers (witness discussions with Lea, Harris, and
McKenney); this project should enable a wide range of research on programming language
design, compilation, verification, and algorithms, taking relaxed memory into account.

5. DESCRIPTION DU PARTENARIAT / CONSORTIUM DESCRIPTION

5.1. DESCRIPTION, ADÉQUATION ET COMPLÉMENTARITÉ DES PARTICIPANTS /
PARTNERS DESCRIPTION AND RELEVANCE, COMPLEMENTARITY

For work on this scale one has to build an effective team; it cannot be done by an individual
alone. I am fortunate to have an excellent group of colleagues to collaborate with, both at
INRIA and abroad. For this research project I expect to continue my ongoing collaboration
with Peter Sewell, employed by the Computer Laboratory of the University of Cambridge,
and his team, in particular Jaroslav Sevcik (RA), Scott Owens (RA), Susmit Sarkar (RA), and
Mark Batty (PhD student). Their experience with models of multiprocessor memory models,
compilation and high-level languages is highly valuable for this project. Viktor Vafeiadis,
previously at Cambridge, is now at MPI-SWS in Kaiserslautern, Germany. Vafeiadis
expertise in the analysis of concurrent algorithms is complementary and will provide
inspiration for all this work on compilation of high-level languages. Sewell and Vafeiadis
have their own funding to work on the research presented in this proposal. Luc Maranget,
chargé de recherche in the Moscova project-team at INRIA Paris-Rocquencourt (as myself),
will contribute with his fundamental experience in building tools to validate the
formalisation of hardware memory models.

5.2. QUALIFICATION DU COORDINATEUR DE LA PROPOSITION DE PROJET/
QUALIFICATION OF THE PROPOSAL COORDINATOR

The collaboration with Peter Sewell's group in Cambridge started in 2003 and is today well
established. In the past we have worked on language design for distributed computation
(Sewell et al., 2007) and tool support for semantics (Sewell et al., 2010). Our ongoing
collaboration is now focused on formalisation of hardware weak-memory models (Sarkar et
al., 2009; Sewell et al., 2010) and verified compilation of concurrent programming languages

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 15/20

(Sevcik et al., 2011). Funding this research proposal will enable me to pursue this fruitful
collaboration.

5.3. QUALIFICATION, RÔLE ET IMPLICATION DES PARTICIPANTS / QUALIFICATION
AND CONTRIBUTION OF EACH PARTNER

 Nom /

Name
Prénom /
First name

Emploi
actuel /
Position

Discipline /
Field of
research

Personne.
mois* /

PM

Rôle/Responsabilité dans la
proposition de projet/ Contribution to

the proposal

4 lignes max

Coordinateur/responsable Zappa
Nardelli

Francesco CR, INRIA Computer
science

36 Coordinator and main investigator.
Tasks 1-5.

Autres membres Maranget Luc CR, INRIA Computer
science

12 Power/ARM memory model, tool-
support. Tasks 2 and 5.

 Sewell Peter EPSRC
Research
Fellow, U.
Cambridge,
UK

Computer
science

12 Design of programming languages,
semantics, compilation, tool-support.
Tasks 2,3 and Task 5.

 Vafeiadis Viktor MPI-SWS,
Germany

Computer
science

12 Algorithm verification, compilation,
optimisations, semantics. Tasks 2-4.

* à renseigner par rapport à la durée totale du projet

6. JUSTIFICATION SCIENTIFIQUE DES MOYENS DEMANDES /
SCIENTIFIC JUSTIFICATION OF REQUESTED RESSOURCES

This proposal is wide-ranging and challenging, aiming not just to develop reasoning
techniques for relaxed memory execution (neglected in past research on concurrency
verification), but to do so above semantic models that are faithful to the real-world
processors and modern high-level languages. To do this requires an effective team with
broad expertise. The project partners are all supported by their own grants to work on this
project. I request funding for three man-years for PostDoc, funding for work visits to the
project partners (which are vital to this project) and for travelling to attend conferences, and
funding for workstations and laptops.

• Équipement / Equipment.

We request funds for two workstations for the PostDocs and project coordinator, and also
one portable machine, for work and presentation while travelling (a total of 3 machines at
2000 € each).

• Personnel / Staff

We request funds for three man-years salary for PostDocs (each man-year costs 49k €). Each
student will contribute to one of the main tasks that compose this research project.

Note that, even if members of foreign institutions, the contribution of Sewell and
Vafeiadis have been taken into account in the computation of the number of person months

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 16/20

in document A (listed as “Personnel permanent”), and the corresponding costs are calculated
on the DR2 scale (Sewell) and the CR1 scale (Vafeiadis).

• Prestation de service externe / Subcontracting

• Missions / Travel

Regular working visits to the project partners in Cambridge and Kaiserslautern are vital for
this project. In addition I request funding to attend major relevant conferences where we
hope to present our work (e.g. CAV, CONCUR, DAMP, ESOP, FM, ICFP, LICS, PLDI,
PODC, POPL, PPoPP, SOSP, and TPHOLs), and for PostDoc student attendance at summer
schools such as the International Summer School on Trends in Concurrency.

I request funds for 4 visits per year at 1000 € each for the project coordinator, 2 visits per
year at 1000 € each for Maranget, and a total of 6 visits for the three PostDoc students at 1000
€ each. I also request funds for brief trips to colleagues in France (2000 €). I request funds
for two conference attendances or visits to industrial labs (particularly those of processor
vendors) per year, at 1500 € each.

• Dépenses justifiées sur une procédure de facturation interne / Costs justified
by internal invoicies

• Autres dépenses de fonctionnement / Other expenses

7. ANNEXES / ANNEXES

7.1. RÉFÉRENCES BIBLIOGRAPHIQUES / REFERENCES

S. V. Adve, K. Gharachorloo. Shared memory consistency models: A tutorial. Computer, 29(12):66–76,
1996.

A. Adir, H. Attiya, G. Shurek. Information-flow models for shared memory with an application to the
PowerPC architecture. IEEE Trans. Parallel Distrib. Syst., 14(5):502–515, 2003.

J. Alglave. A shared memory poetics. Phd thesis, 2010.

J. Alglave, A. Fox, S. Ishtiaq, M. Myreen, S. Sarkar, P. Sewell, F. Zappa Nardelli. The semantics of Power
and ARM multiprocessor machine code. In Proc. DAMP, 2009.

J. Alglave, L. Maranget, S. Sarkar, P. Sewell. Fences in weak memory models. In Proc. CAV, 2010.

D. Aspinall, J. Sevcik. Formalising Java’s data race free guarantee. In Proc. TPHOLs, LNCS, 2007.

N. Benton, U. Zarfaty. Formalizing and verifying semantic type soundness for a simple compiler. In Proc.
PPDP, 2007.

H.-J. Boehm. !A solid foundation for x86 shared memory: technical perspective. CACM, 2010.

H.-J. Boehm. !Threads cannot be implemented as a library. In Proc. PLDI, 2005.

H.-J. Boehm and S.V. Adve. Foundations of the C++ concurrency memory model. In Proc. PLDI, 2008.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 17/20

P. Cenciarelli, A. Knapp, E. Sibilio. The Java memory model: Operationally, denotationally, axiomatically. In
Proc. ESOP, 2007.

A. J. Chlipala. A certified type-preserving compiler from lambda calculus to assembly language. In Proc. PLDI,
2007.

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The (3rd Edition) (Java
Series), chapter Memory Model, pages 557–573. Addison-Wesley Professional, July 2005.

A. Hobor, A. Appel, F. Zappa Nardelli. Oracle semantics for concurrent separation logic. In Proc. ESOP,
2008.

L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Trans. Comput., C-28(9):690-691, 1979.

JTC1/SC22/WG14 — C. http://www.open-­‐std.org/jtc1/sc22/wg14/.

X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 2009.

V. M. Luchangco. Memory consistency models for high-performance distributed computing. PhD thesis, MIT,
2001.

J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In Proc. POPL. 2005.

P. McKenney, J. Walpole. «What is RCU, fundamentally?» Linux Weekly News. 2007.
http://lwn.net/Articles/262464/.

P. McKenney, R. Silvera. Example POWER Implementation for C/C++ Memory Model. 2010.
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2010.02.19a.html.	

S. Owens, S. Sarkar, P. Sewell. A better x86 memory model: x86-TSO. In Proc. TPHOLs, 2009.

S. Owens. Reasoning about the implementation of concurrency abstractions on x86-TSO. In Proc. ECOOP,
2010.

M. Parkinson, R. Bornat, P. O'Hearn. Modular verification of a non-bocking stack. In Proc. POPL, 2007.

W. Pugh. The Java memory model is fatally flawed. Concurrency - Practice and Experience, 12(6):445–455,
2000.

S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, J. Alglave. The
semantics of x86-CC multiprocessor machine code. In Proc. POPL, 2009.

J. Sevcik, D. Aspinall. On validity of program transformations in the Java memory model. In Proc. ECOOP,
2008.

J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, P. Sewell. Relaxed-memory concurrency and
verified compilation. In Proc POPL, 2011 (to appear).

P. Sewell, J.J. Leifer, K. Wansbrough, F. Zappa Nardelli, M. Allen-Williams, P. Habouzit, V. Vafeiadis,
Acute: High-level programming language design for distributed computation. J. Funct. Program. 17(4-5): 547-
612 (2007).

P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, M. O. Myreen. x86-TSO: A rigorous and usable
programmer’s model for x86 multiprocessors. C. ACM, 53(7):89–97, 2010.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 18/20

P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, R. Strnisa. Ott: Effective tool
support for the working semanticist. J. Funct. Program. 20(1): 71-122 (2010)

A. Terekov. Brief tentative example x86 implementation for C/C++ memory model. 2008.
http://www.decadent.org.uk/pipermail/cpp-­‐threads/2008-­‐December/001933.html.

V. Vafeiadis. Proving correctness of highly-concurrent linearisable objects. In Proc. PPoPP, 2006.

7.2. BIOGRAPHIES / CV, RESUME

Francesco ZAPPA NARDELLI (34 - 25/12/1976 – http://moscova.inria.fr/~zappa)

Chargé de recherche (CR1), Moscova research-team, INRIA Paris-Rocquencourt.

Professional Preparation

• Laurea (M.S.) in Computer Science, University of Pisa, Italy, October 2000.
• DEA Programmation (M.S.), University of Paris Sud, France, September 2000.
• Ph.D. in Computer Science, University of Paris 7, December 2003.

Appointments

• 2004–present, Research Scientist, INRIA Paris-Rocquencourt, France.
• 2003–2004, Post-doctoral grant, University of Cambridge, UK.
• 2002, Curie Research Fellow, Sussex University, UK.
• 2000–2003, PhD student, University of Paris 7, France.

Selected publications

• J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, P. Sewell. Relaxed-memory
concurrency and verified compilation. In Proc POPL, 2011 (to appear).
• P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, M. Myreen. x86-TSO: a rigorous and usable
programmer's model for x86 multiprocessors. Commun. ACM 53(7), 2010.
• T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Ostlund, J. Vitek. Intgrating typed and untyped
code in a scripting language. In Proc POPL, 2010.
• S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, J.
Alglave. The semanctics of x86-CC multiprocessor machine code. elaxed-memory concurrency and
verified compilation. In Proc POPL, 2009.
• A. Hobor, A. Appel, F. Zappa Nardelli. Oracle semantics for concurrent separation logic. In
Proc ESOP, 2008.

Zappa Nardelli is author of 14 papers in peer-reviewed international conferences and 5
papers published in journals (J. ACM, J. Funct. Program. (2), Inf. Comput, CACM).

Others

• Main author of Ott, a tool for large-scale semantics (http://moscova.inria.fr/ ̃zappa/software/ott).
• Member of the CEA-EDF-INRIA summer school executive commitee.
• Member of the POPL 2012 program committe.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 19/20

Luc MARANGET (http://moscova.inria.fr/~maranget)

Luc Maranget is Chargé de Recherche (CR1) in the Moscova research-team at INRIA Paris-
Rocquencourt. He is an expert of compilation of functional languages and distributed
applications. He is a core implementor of the OCaml compiler, and the main architect of the
JoCaml system. Recently he developed efficient tools to explore the memory model of
multiprocessor hardware, and carried on extensive testing of the Power memory model.

Peter SEWELL (http://www.cl.cam.ac.uk/~pes20)

Peter Sewell is a Reader and EPSRC Leadership Fellow at the University of Cambridge
Computer Laboratory, following a Royal Society University Research Fellowship (1999-2007)
and a PhD with Robin Milner (1995). His research aims to build rigorous foundations for the
engineering of real-world computer systems, to make them better-understood, more robust,
and more secure. He has published widely in leading venues in semantics, programming
languages, networking, and security, and currently focusses on the relaxed memory models
of multiprocessors and concurrent languages. This work is currently funded by two EPSRC
grants (£2.1M), with project partners from IBM, ARM, Microsoft Research, and the Java/C++
concurrency community.

Viktor VAFEIDAIS (http://www.mpi-sws.org/~viktor/)

Viktor Vafeiadis ia an Independent Researcher at Max-Planck Institute for Software Systems
(MPI-SWS), Germany, following post-doctoral positions at the University of Cambridge and
Microsoft Research Cambridge, and undergraduate studies at the University of Cambridge.
He is an expert on program analysis/verification, program logics, programming languages,
and concurrency. He is author of publications in leading conferences (including POPL, CAV,
ECOOP, VMCAI) and journals (JFP). He recently became interested in compiler verification.

7.3. IMPLICATION DES PERSONNES DANS D’AUTRES CONTRATS / STAFF INVOLVMENT
IN OTHER CONTRACTS

As discussed above, Peter Sewell and Viktor Vafeiadis are supported by their own grants to
work on the research object of this proposal; they are members of foreign research
institutions and we do not report their grants in the table below.

Between January 2009 and December 2010 the collaboration between the project
coordinator and Sewell was partially supported by the INRIA program “Équipes associées”,
which covers some of the travelling expenses between the two sites. This financial support
has been extended to 2011, and consists in 8k € restricted to travelling expenses; man-
months does not apply.

PROGRAMME JCJC

EDITION 2011

Projet WMC

DOCUMENT SCIENTIFIQUE

ANR-GUI-AAP-04 – Doc Scientifique 2011 20/20

Nom de la personne

participant au projet /
name

Personne.
Mois / PM

Intitulé de l’appel à
projets, source de

financement, montant
attribué / Project
name, financing
institution, grant

allocated

Titre du
projet :

Project title

Nom du
coordinateur
/ coordinator

name

Date début &

Date fin / Start
and end dates

N°1 Zappa Nardelli,
Maranget

 INRIA Équipes
associées, INRIA,

8k €

Équipes
associées

MM

Zappa
Nardelli

January 2011
/ December

2011

