
Like Types
aka. integrating typed and untyped code in Thorn

Francesco Zappa Nardelli

INRIA Paris-Rocquencourt, MOSCOVA research team

Tobias Wrigstad Sylvain Lebresne Johan Östlund Jan Vitek

Purdue University

ParSec June 4, 2009

“Scripting” languages are:

1. maximally permissive: anything goes, until it doesn’t;

2. maximally modular: a program can be run even when crucial pieces are missing ;

These features enable rapid prototyping of software.

Perl, Python, Ruby, JavaScript, etc... are widely used.

1

Some scripting languages features

• Return objects of different types depending on some value;

• methods can take arguments of different types;

fun typeMe (x,y) -> if x then y + 1 else y ˆ "hola";

• overloading of method missing
(in db, regexps on the method name to implement different queries);

• changing classes at run-time (add or delete a method, modify inheritance);

Remark: these are inherently hard to type.

2

Remark: prototypes are often used as production code

In production code, types would be useful :

• untyped code is hard(er) to navigate;

• higher loads of data make speed a pressing issue.

Common approach:

• rewrite the untyped program in a statically typed language (e.g., C++, Java).

Better:

incremental addition of type annotations (or module-by-module migration).

3

(Untyped) Point

A Point declaration in Thorn∗ (a new scripting language from Purdue and IBM):

class Point(var x, var y) {

fun getX() = x;

fun getY() = y;

fun move(p) { x := p.getX(); y := p.getY() }

}

(x and y are fields, and Point is both a class name and a trivial two argument constructor.)

o = Point(0,0); # create a point

a = Point(5,6); # create another point

a.move(o); # move point a to point o

∗ IBM systematically choses ugly names to minimise the risk of copyright conflicts.

4

Partially typed point

Suppose that we want to annotate Point to make the coordinates integers:

class Point(var x : Int, var y : Int) {

fun getX() : Int = x;

fun getY() : Int = y;

fun move(p) { x := p.getX(); y := p.getY() }

}

We want the method move to accept any object, with the hope that if the actual
object provides getX and getY method that return integers, the program should
run just fine...

5

Extensive literature? Short (and partial) review.

The type systems of Strongtalk (Bracha and Griswold), TypePlug (Haldiman et
al.), BabyJ (Anderson and Drossopoulou), Ob?

<: (Siek and Taha), leave us with
two options:

1. omit the type of p: flexible but unhelpful;

2. type p as Point: safe but inflexible. For instance, it forbids:

class Coordinate(var x: Int, var y: Int) {

fun getX(): Int = x; p = Point(0,0);

fun getY(): Int = y; c = Coordinate(5,6);

} p.move(c)

6

Structural subtyping

Strongtalk, TypePlug, and Ob?
<:, support structural subtyping.

Apparently quite flexible: if p:Point, then any object that structurally conforms
to Point can be passed as an argument to move.

But Coordinate is not a structural subtype of Point. Solution: invent more general
types e.g.

class XY {

fun getX(): Int;

fun getY(): Int;

} fun move (p:XY) { ... }

Result on large programs: large family of types that must be kept in synch and
have no meaning to the programmer.

7

Soft typing

Idea (Cartwright and Fagan, 1991):

infer the minimal constraints (similar to the class XY), and either warn (and
insert the appropriate run-time check) or reject the program.

Problems:

• requires structural subtyping or a complete subtype hierarchy;

• a typo in a method name generates a bogus constraint (hard to debug);

• no help from IDEs;

• compile-time optimisations hard.

8

Gradual typing

Idea (Siek and Taha, 2006):

whenever we go from untyped to typed code, insert the appropriate cast.

For instance, the last line of the program

class Foo { fun bar(x: Int) x*x; }

f:Foo = Foo();

f.bar(xyzzy); # does not type check

is compiled as f.bar((Int) xyzzy).

Doubt: what do casts do at runtime?

9

Gradual typing and run-time wrappers

class Ordered {fun compare(o:Ordered):Int;}

class SubString {fun sub(o:String):Bool;}

fun sort(x: [Ordered]):[Ordered] = ...

fun filter(x: [SubString]):[SubString] = ...

• Testing that an object has type [Ordered] is done in linear time;

• arrays are mutable: checking the type at the beginning of sort is not enough.

Only option: enclose datas in run-time wrappers:

fun plentyOfWrappers (f: dyn) {

f’:[SubString] = filter(sort(f));

f’ = ([SubString])([Ordered])f

v:SubString = f’[0];

v = (Substring)(Ordered)f’[0] }

10

Our design principles

1. Permissive: try to accept as many programs as possible;

2. Modular: be as modular as possble;

3. Reward good behaviour:

programmer effort rewarded either with performance
or clear correctness guarantee.

11

Like types

• For each class name C, introduce a like C type;

• the compiler checks that all operations on an object of type like C are
well-typed if the object had type C;

• the run-time does not restrict binding of variables of type like C and checks
at run-time that the invoked method exists.

A well-typed example:

fun move(p: like Point) { p = Point (0,0);

x := p.getX(); # 1 c = Coordinate(5,6);

y := p.getY(); # 2 p.move(c)

p.hog(); # 3 compile time error

}

12

Like types: the big picture

B

like B

A

like A

dyn

<:

<:

<:

D

C

related by (dyn) cast

related by (like) cast
related by subtyping

<:

13

Like types

• A unilateral promise as to how a value will be treated locally ;

• allows most of the regular static checking machinery;

• allows the flexibility of structural subtyping;

• concrete types can stay concrete, so more aggressive optimisations are possible;

• allow reusing type names as semantics tags;

• interact nicely with generics.

14

Wrapping untyped objects in like types

class Cell(var contents) {

fun get() = contents;

fun set(c) { contents := c }

}

class IntCell {

fun get():Int;

fun set(c:Int);

}

p: like IntCell = (like IntCell) Cell(0);

15

Sort-of simple union types

fun typeMe(a,b) {

if (a) # treat b as a Foo

else # treat b as a Bar

}

class Foo_Or_Bar extends Foo, Bar;

fun typeMe(a:bool, b:like Foo_Or_Bar) {

if (a) # treat b as a Foo

else # treat b as a Bar

}

16

Metatheory: miniThorn

Basically an imperative version of FJ, with classes and methods defined as:

classC extendsD { fds ; mds }

t m (t1 x1 .. tk xk) { s ; return x }

Let C range over class names. Types are defined as

t ::= C | like C | dyn

and statements include method invocation and casts, denoted respectively as

x = y .m (y1 .. yn) and x = (t) y .

17

Typing of method invocation

Γ ` y :C ∨ Γ ` y : like C
mtype (m, C) = t1 .. tk → t ′

Γ ` y1 <: t1 .. Γ ` yk <: tk
Γ ` x : t
t ′ <: t

Γ ` x = y .m (y1 .. yk)

Γ ` y :dyn
Γ ` y1 : t1 .. Γ ` yk : tk
Γ ` x :dyn
Γ ` x = y .m (y1 .. yk)

If the target object has a concrete or like type, then the type of the actual
arguments is statically checked against the method type. This check is not
(cannot be) performed if the target object has a dynamic type.

18

Run-time state

Imagine that x : C, y : like D, and z : dyn are aliased to the same object at
location p. An environment F records variables mapped to stack-values sv:

x 7→ p y 7→ (like D)p z 7→ (dyn)p

A state of the run-time is defined by a heap H of locations mapped to objects

p 7→ C(f1 = sv1; ..; fn = svn)

and a stack S of activation records

〈F1|s1〉...〈Fn|sn〉 .

19

Run-time invariants

1. Objects in the heap are always well-formed:

H(p) = D(...) ∧D <: C

TH(p) = C

D <: C

TH((like D)p) = like C TH((dyn)p) = dyn

H(p) = C(f1 = sv1; ..; fn = svn) implies TH(svi) = ftype(C, fi).

2. Relation between static types, stack values, and heap:

Static type Stack value Object in the heap

C p H(p) = D(...) and D <: C

like C (like C)p H(p) = D(...)
dyn (dyn)p H(p) = D(...)

20

Semantics (1)

Method invocation on an object that statically has a concrete type C:

F(y) = p
H(p) = C(...)
mbody (m, C) = x1 .. xn . s0 ; return x0

F(y1) = sv1 .. F(yn) = svn

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→
H | 〈 [] [x1 7→sv1 .. xn 7→svn] [this 7→ p] | s0 ; return x0 〉 〈F | x = ret ; s 〉S

21

Semantics (2)

Method invocation on an object that statically has type like C:

F(y) = (like C) p
H(p) = D(...)
mtype (m, C) = mtype (m, D)
mbody (m, D) = x1 .. xn . s0 ; return x0

F(y1) = sv1 .. F(yn) = svn

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→
H | 〈 [] [x1 7→sv1 .. xn 7→svn] [this 7→ p] | s0 ; return x0 〉 〈F | x = ret ; s 〉S

22

Semantics (3)

Method invocation on an object that statically has type dyn:

F(y) = (dyn) p
H(p) = C(...)
mtype (m, C) = t1 .. tn → t
mbody (m, C) = x1 .. xn . s0 ; return x0

F(y1) = sv1 .. F(yn) = svn
TH (sv1) <: t1 .. TH (svn) <: tn

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→
H | 〈 [] [x1 7→sv1 .. xn 7→svn] [this 7→ p] | s0 ; return x0 〉 〈F | x = (dyn) ret ; s 〉S

23

Semantics (4)

The run-time does not need chains of wrappers, as it only needs to record the
static view that a variable has of an object:

Γ ` y : t2
Γ ` x : like C

Γ ` x = (like C) y

F(y) = w p
H | 〈F | x = (like C) y ; s 〉S −→ H | 〈F [x 7→(like C) p] | s 〉S

24

Nice properties

Preservation the run-time invariant is preserved through reductions;

Progress if a program is stuck, then it attempted to execute x = y.m(y1, .., yn)
and Γ(y) = like C or Γ(y) = dyn, or (...usual conditions on null-pointers
and downcasts...).

25

Implementation without run-time wrappers

The run-time implements three dispatch functions:

x = y.m(y1, .., yn) dispatch without any run-time type check;

x = y.like C m(y1, .., yn) check that the method m exists in the actual object,
and has the type declared in C;

x = y.dynm(y1, .., yn) check that the method m exists in the actual object, and
that the type of the arguments is compatible with the type of m.

Given an program and a type derivation, we compile method invocations to the
appropriate dispatch function:

compile y.m(y1, .., yn) Γ = y.m(y1, .., yn) if Γ(y) = C
y.like C m(y1, .., yn) if Γ(y) = like C
y.dynm(y1, .., yn) if Γ(y) = dyn

26

Correctness of compilation

Let σs range over well-typed states of the semantics and let σi range over
well-typed states of the implementation.

We say that σs / σi if σi is obtained from σs by

1. erasing all the wrappers;

2. compiling all the statements that appear in all the stack frames.

Theorem.
If σs / σi and σs → σ′

s then there exists a σ′
i such that σi → σ′

i and σ′
s / σ′

i.

27

Rewards

fun a(i, j) = 1.0 / (((i + j) * (i + j + 1) >> 1) + i + 1);

i,j:dyn 87 bytecode instructions, 8 new frames, 8 new objects

i,j:Int32 29 bytecode instructions, 0 new frames, 1 new object

i,j:like Int32 42 bytecode instructions, 3 new frames, 3 new objects

And in practice?

28

More rewards

spectral-norm 1000
spectral-norm 1500

mandelbrot 1000
mandelbrot 1500

fannkuch 10
fannkuch 11

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

OPTH Thorn RubyPython

29

Experience: porting Pwiki from Python to typed Thorn

• About 1000 lines of code and 1000 lines of libraries;

• at first, we typed all the function arguments with like types;
it was always possible to run the program, even when only part of it had annotations

• then we strenghtened the annotations, using concrete types whenever possible;
some parts of the code were left untyped

• found one error (a test s < 10 where s is always string).

30

Conclusion

Like types represent a sweet spot in the design space of language features

for incremental hardening of software.

Still not enough experience to draw strong conclusions.

31

