Like Types

aka. integrating typed and untyped code in Thorn

Francesco Zappa Nardelli

INRIA Paris-Rocquencourt, MOSCOVA research team

Tobias Wrigstad ~ Sylvain Lebresne Johan Ostlund Jan Vitek

Purdue University

ParSec June 4, 2009

“Scripting” languages are:

1. maximally permissive: anything goes, until it doesn't;

2. maximally modular: a program can be run even when crucial pieces are missing;

These features enable rapid prototyping of software.

Perl, Python, Ruby, JavaScript, etc... are widely used.

Some scripting languages features

e Return objects of different types depending on some value;
e methods can take arguments of different types;

fun typeMe (x,y) -> if x then y + 1 else y ° "hola";

e overloading of method_missing
(in db, regexps on the method name to implement different queries);

e changing classes at run-time (add or delete a method, modify inheritance);

Remark: these are inherently hard to type.

Remark: prototypes are often used as production code

In production code, types would be useful:

e untyped code is hard(er) to navigate;

e higher loads of data make speed a pressing issue.

Common approach:

e rewrite the untyped program in a statically typed language (e.g., C++, Java).

Better:

incremental addition of type annotations (or module-by-module migration).

(Untyped) Point

A Point declaration in Thorn* (a new scripting language from Purdue and IBM):

class Point(var x, var y) {

fun getX() = x;

fun getY() = y;

fun move(p) { x := p.getX(; y := p.getY() }
}

(x and y are fields, and Point is both a class name and a trivial two argument constructor.)

o = Point(0,0); # create a point
a = Point(5,6); # create another point
a.move(o0); # move point a to point o

* IBM systematically choses ugly names to minimise the risk of copyright conflicts.

Partially typed point

Suppose that we want to annotate Point to make the coordinates integers:

class Point(var x : Int, var y : Int) {

fun getX() : Int = Xx;

fun getY() : Int = y;

fun move(p) { x := p.getX(Q; y := p.getY() }
}

We want the method move to accept any object, with the hope that if the actual
object provides getX and getY method that return integers, the program should
run just fine...

Extensive literature? Short (and partial) review.

The type systems of Strongtalk (Bracha and Griswold), TypePlug (Haldiman et
al.), BabyJ (Anderson and Drossopoulou), Ob_. (Siek and Taha), leave us with
two options:

1. omit the type of p: flexible but unhelpful;

2. type p as Point: safe but inflexible. For instance, it forbids:

class Coordinate(var x: Int, var y: Int) {

fun getX(): Int = x; p = Point(0,0);

fun getY(): Int = y; = Coordinate(5,6);
} p.move(c)

@]

Structural subtyping
Strongtalk, TypePlug, and Ob?<:, support structural subtyping.

Apparently quite flexible: if p:Point, then any object that structurally conforms
to Point can be passed as an argument to move.

But Coordinate is not a structural subtype of Point. Solution: invent more general
types e.g.

class XY {
fun getX(): Int;
fun getY(): Int;
} fun move (p:XY) { ... }

Result on large programs: large family of types that must be kept in synch and
have no meaning to the programmer.

Soft typing

ldea (Cartwright and Fagan, 1991):

infer the minimal constraints (similar to the class XY), and either warn (and
insert the appropriate run-time check) or reject the program.

Problems:

e requires structural subtyping or a complete subtype hierarchy;

e a typo in a method name generates a bogus constraint (hard to debug);
e no help from IDEs;

e compile-time optimisations hard.

Gradual typing

Idea (Siek and Taha, 2006):

whenever we go from untyped to typed code, insert the appropriate cast.

For instance, the last line of the program
class Foo { fun bar(x: Int) x*x; }

f:Foo = Foo();
f.bar(xyzzy); # does not type check

iIs compiled as f.bar((Int) xyzzy).

Doubt: what do casts do at runtime?

Gradual typing and run-time wrappers

class Ordered {fun compare(o:Ordered):Int;}
class SubString {fun sub(o:String) :Bool;}
fun sort(x: [Ordered]):[Ordered] = ...

fun filter(x: [SubString]):[SubString] = ...

e Testing that an object has type [Ordered] is done in linear time;

e arrays are mutable: checking the type at the beginning of sort is not enough.

Only option: enclose datas in run-time wrappers:

fun plentyOfWirappers (f: dyn) {
f’:[SubString] = filter(sort(f));
£’ = ([SubString]) ([Ordered])f
v:SubString = £’[0];
v = (Substring) (Ordered)f’[0] }

10

Our design principles

1. Permissive: try to accept as many programs as possible;
2. Modular: be as modular as possble;

3. Reward good behaviour:

programmer effort rewarded either with performance
or clear correctness guarantee.

11

Like types

e For each class name ¢, introduce a like C type;
e the compiler checks that all operations on an object of type like C are
well-typed if the object had type ¢;

e the run-time does not restrict binding of variables of type like C and checks
at run-time that the invoked method exists.

A well-typed example:

p = Point (0,0);
c = Coordinate(5,6);
p.move(c)

fun move(p: like Point) {
X := p.getX(Q; # 1
y = p.getY(); # 2
p.hog(); # 3 compile time error

}

12

Like types: the big picture

related by (dyn) cast
yn /
A " C
A \ . 5 _-,
<"¢l -7/
o = =77
\ ; _- /
2 . P /
like A //
- /
: / -
<: : , P _
<: 5| / _ S
| // - - \
: \
related by subtyping \ 2/ ad \
like B related by (like) cast

13

Like types

A unilateral promise as to how a value will be treated locally;
allows most of the regular static checking machinery;

allows the flexibility of structural subtyping;

concrete types can stay concrete, so more aggressive optimisations are possible;

allow reusing type names as semantics tags;

interact nicely with generics.

14

Wrapping untyped objects in like types

class Cell(var contents) {
fun get() = contents;
fun set(c) { contents := c }

}

class IntCell {
fun get():Int;
fun set(c:Int);
}

p: like IntCell = (like IntCell) Cell(®);

15

Sort-of simple union types

fun typeMe(a,b) {
if () # treat b as a Foo
else # treat b as a Bar

class Foo_Or_Bar extends Foo, Bar;
fun typeMe(a:bool, b:1like Foo_Or_Bar) {

if () # treat b as a Foo
else # treat b as a Bar

16

Metatheory: miniThorn

Basically an imperative version of FJ, with classes and methods defined as:

class C extends D { fds ; mds }
tm(tyzy ..ty ay) { s; returnx }
Let C' range over class names. Types are defined as
t == C|like C' | dyn
and statements include method invocation and casts, denoted respectively as

T=y.m (Y1 Yn) and T =(t)y.

17

Typing of method invocation

I'y:C Vv IFEy:like C
mtype (m, C) =t ..t — t

'y <oty .. I'FHy <ty I' H y:dyn

I' = z:t ' wyp:ty .. T'F gty

th <t I' F z:dyn
LEz=y.m(y - %) LE2z=y.m(y . y)

If the target object has a concrete or like type, then the type of the actual
arguments is statically checked against the method type. This check is not
(cannot be) performed if the target object has a dynamic type.

18

Run-time state

Imagine that x : C, y : like D, and z : dyn are aliased to the same object at
location p. An environment F' records variables mapped to stack-values suv:

T p y — (like D)p z— (dyn)p
A state of the run-time is defined by a heap H of locations mapped to objects
p — C(f1=sv1;..; fn=s0,)
and a stack S of activation records

19

Run-time invariants

1. Objects in the heap are always well-formed:

H(p)=D(.)ND <:C D <:C
Tu(p) =C T ((like D)p) = like C T ((dyn)p) = dyn

H(p) = C(f1 = sv1;..; fn = sv,) implies Ty (sv;) = ftype(C, f;).

2. Relation between static types, stack values, and heap:

Static type Stack value Object in the heap
C p H(p)=D(...)and D <: C
like C (like C)p H(p) = D(...)

dyn (dyn)p H(p) = D(...)

20

Semantics (1)

Method invocation on an object that statically has a concrete type C"

Fly) = p

H(p) = C(...)

mbody (m, C) = 1 .. x, . 5o ; return
Fly1) = sv1 .. Fly,) = svy,

H|(Flz=y.m(y.y);s)S —

H | ([][z1— sv1 .. x,— sv,] [this— p] | so; returnzy) (F |z =ret; s) S

21

Semantics (2)

Method invocation on an object that statically has type like C"

Fly) = (like C') p

H(p) = D(...)

mtype (m, C') = mtype (m, D)
mbody (m, D) = 1 .. x, . o ; return x
Fly1) = sy .. Fly,) = su,

H|(Flz=y.m(y.y);s)5 —

H | (|]|z1— sv1.. 2, sv,] [this— p] | so; returnzy) (F |z =ret; s) S

22

Semantics (3)

Method invocation on an object that statically has type dyn:

Fy) = (dyn)p

H(p) =C(...)

mtype(m, C)=1t;..t, — t

mbody (m, C) =1 ..z, . sy ; return x
Fly1) =sv1 .. Fly,) = su,

Ty (sv) <: 1 .. Tg(sv,) <: t,

H|(Flz=y.m(y.y);s)S —
H | {[] [x1+ sv1 .. 2= sv,| [this— p] | so; returnay) (F | x = (dyn) ret; s) S

23

Semantics (4)

The run-time does not need chains of wrappers, as it only needs to record the
static view that a variable has of an object:

I' - y:tz
I' - z:like C
Itz = (like C)y

(like C)y;s)S — H | (Flx—(like C)p]|s)S

24

Nice properties

Preservation the run-time invariant is preserved through reductions;

Progress if a program is stuck, then it attempted to execute x = y.m(y1, .., Yn)
and I'(y) = like C or I'(y) = dyn, or (...usual conditions on null-pointers
and downcasts...).

25

Implementation without run-time wrappers

The run-time implements three dispatch functions:
r = 1y.m(yi1,..,y,) dispatch without any run-time type check;

T = Y.ike ¢ M(Y1,..,Yn) check that the method m exists in the actual object,
and has the type declared in C;

T = Y.dynm(Y1, .., Yn) check that the method m exists in the actual object, and
that the type of the arguments is compatible with the type of m.

Given an program and a type derivation, we compile method invocations to the
appropriate dispatch function:

compile y.m(y1,..,yn) I' = y.m(y1, .., yn) if I'(y) =C
Yoike ¢ M(Y1,.-,Yn) 1f I'(y) = like C
y-dynm(yla ey yn) if F(y) — dyn

26

Correctness of compilation

Let o5 range over well-typed states of the semantics and let o; range over
well-typed states of the implementation.

We say that o4 < o; if 0; is obtained from o4 by

1. erasing all the wrappers;

2. compiling all the statements that appear in all the stack frames.

Theorem.
If 05 <0; and o5 — o} then there exists a o} such that o; — ¢} and o, < 0;.

27

Rewards

fun a(i, j) = 1.0 / (CA +J) * @+ +1)>1 +1i+ 1);

i,j:dyn 87 bytecode instructions, 8 new frames, 8 new objects
i,j:Int32 29 bytecode instructions, 0 new frames, 1 new object

i,j:1ike Int32 42 bytecode instructions, 3 new frames, 3 new objects

And in practice?

28

6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0

More rewards

M spectral-norm 1000 M mandelbrot 1000
[Ispectral-norm 1500 M mandelbrot 1500 M fannkuch 11

] fannkuch 10

I 1

1 I

OPTH Thorn

Python

Ruby

29

Experience: porting Pwiki from Python to typed Thorn

About 1000 lines of code and 1000 lines of libraries;

at first, we typed all the function arguments with like types;
it was always possible to run the program, even when only part of it had annotations

then we strenghtened the annotations, using concrete types whenever possible;
some parts of the code were left untyped

found one error (a test s < 10 where s is always string).

30

Conclusion

Like types represent a sweet spot in the design space of language features

for incremental hardening of software.

Still not enough experience to draw strong conclusions.

31

