Resource Calculi Some Syntax, Some Semantics

G. Manzonetto*

(joint work with A. Bucciarelli & T. Ehrhard)

*Université de Paris Nord (Lab. LIPN)

29th January 2010 @ ParSec Meeting

Outline

- **1** Introduction
- **2** Resource Calculus
- 3 The differential λ -calculus
- Categorical semantics
- **5** Concrete examples of semantics
- 6 Conclusions

Outline

- **1** Introduction
- **2** Resource Calculus
- **3** The differential λ -calculus
- Categorical semantics
- **6** Concrete examples of semantics
- 6 Conclusions

Why Resource Calculi?

Resource Calculi

Programming languages giving a major control on the resources needed by a program during his execution.

Resources to be bounded can be of very different kinds:

- time/space: important for programs running in environments with bounded resources.
- non-replicable data: naturally arising in quantum computing (just an analogy).

Usual λ -calculus is not resource conscious: $(\lambda x.x^{23})N \rightarrow_{\beta} N^{23}$

Why Resource Calculi?

Resource Calculi

Intro

Programming languages giving a major control on the resources needed by a program during his execution.

Resources to be bounded can be of very different kinds:

- time/space: important for programs running in environments with bounded resources.
- non-replicable data: naturally arising in quantum computing (just an analogy).

Usual λ -calculus is not resource conscious: $(\lambda x.x^{23})N \rightarrow_{\beta} N^{23}$

Why Resource Calculi?

Resource Calculi

Intro

Programming languages giving a major control on the resources needed by a program during his execution.

Resources to be bounded can be of very different kinds:

- *time/space:* important for programs running in environments with bounded resources.
- non-replicable data: naturally arising in quantum computing (just an analogy).

Usual λ -calculus is not resource conscious: $(\lambda x.x^{23})N \rightarrow_{\beta} N^{23}$

Intro

We introduce in the λ -calculus *depletable arguments*:

- depletable resources are present in a limited number,
- depletable resources must be consumed.

Depletable Arguments ⇒ Linear Substitution:

 $M\langle N/x\rangle = \text{ exactly one occurrence of } X \text{ in } M \text{ is substituted by } N$

Depletable Arguments ⇒ Non-Determinism:

 $(\lambda x.xx)N^{\ell}$ = which occurrence of x will be substituted?

Intro

We introduce in the λ -calculus *depletable arguments*:

- depletable resources are present in a limited number,
- depletable resources must be consumed.

Depletable Arguments ⇒ Linear Substitution:

 $M\langle N/x\rangle = \text{ exactly one occurrence of } x \text{ in } M \text{ is substituted by } N$

Depletable Arguments ⇒ Non-Determinism:

 $(\lambda x.xx)N^{\ell}$ = which occurrence of x will be substituted?

Intro

We introduce in the λ -calculus *depletable arguments*:

- depletable resources are present in a limited number,
- depletable resources must be consumed.

Depletable Arguments ⇒ Linear Substitution:

 $M\langle N/x\rangle = \text{ exactly one occurrence of } x \text{ in } M \text{ is substituted by } N$

Depletable Arguments ⇒ Non-Determinism:

 $(\lambda x.xx)N^{\ell}$ = which occurrence of x will be substituted?

Intro

Non-Determinism $M_1 + M_2 \rightarrow M_i \Rightarrow$? Linear Head Reduction:

$$(\lambda x.\langle x, x\rangle)M \longleftarrow (\lambda \mathbf{x}.\langle \mathbf{x}, \mathbf{x}\rangle)(\mathbf{M} + \mathbf{N}) \longrightarrow (\lambda x.\langle x, x\rangle)N$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Intro

Non-Determinism $M_1 + M_2 \rightarrow M_i \implies$? Linear Head Reduction:

$$(\lambda x.\langle x, x\rangle)M \longleftarrow (\lambda \mathbf{x}.\langle \mathbf{x}, \mathbf{x}\rangle)(\mathbf{M} + \mathbf{N}) \longrightarrow (\lambda x.\langle x, x\rangle)N$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Previously, on Resource calculus - 1993

Lambda calculus with multiplicities

Intro

Gérard Boudol. The lambda-calculus with multiplicities. INRIA Research Report 2025, 1993.

- Arguments may come in limited availability, and mixed together. They are grouped in 'bags'.
- Lazy operational semantics + Explicit substitution.
- Main motivation: finer observational equivalence on classic λ-calculus.
- Boudol left for future work links with Girard's LL...

Previously, on Resource calculus - 2003

The differential λ -calculus.

Intro

T. Ehrhard and L. Regnier. The differential λ -calculus. Theoretical Computer Science 2003.

- Calculus with syntactic differential operators (linear approximations).
- Non-lazy reduction.
- Non-determinism as formal sums of terms $(\Sigma_i M_i \not\to M_i)$.
- Issued from semantic investigations (finiteness spaces).
- Original syntax quite heavy (now a little better...).

Previously, on Resource calculus - 2006

Taylor Expansion

Intro

T. Ehrhard and L. Regnier. Böhm trees, Krivine's machine and the Taylor expansion of λ -terms. In CiE, LNCS, 2006.

• The target of Taylor Expansion of ordinary λ -terms.

$$(MN)^* = \sum_{n=0}^{\infty} \frac{1}{n!} M^* [N^*]^n$$

The Resource Calculus - Today

Intro

Full (non-lazy/non-linear) resource calculus.

P. Tranquilli. Intuitionistic differential nets and lambda calculus. To appear in Theoretical Computer Science.

Convincing link with differential linear logic.

Morally mixing 'differential' and 'with multiplicities' λ -calculus .

Differential λ -calculus	Resource λ -calculus
differentiation	linear substitution
two kinds of applications	two kinds of resources
heavy syntax	better syntax

Until now, no abstract model theory!

Outline

- 1 Introduction
- **2** Resource Calculus
- 3 The differential λ -calculus
- Categorical semantics
- **5** Concrete examples of semantics
- 6 Conclusions

The Syntax

Intro

terms:
$$M := x \mid \lambda x.M \mid MP$$
 (as in λ -calculus)

bags:
$$P := [M_1, ..., M_m, N_1^!, ..., N_n^!]$$
 (multisets)

sums:
$$\pi ::= M_1 + \cdots + M_m$$
 (0 neutral element)

Idea:

- [N] is a 'linear' argument (available exactly once),
- [N[!]] is a classic argument (available how many times you wish).

Ordinary λ -calculus: $MN \equiv M[N^!]$.

Reduction Rules (Informally)

Informal definition of reduction:

 $(\lambda x.M)[N] \rightarrow M$ where N substitutes **exactly one** occurrence of x

Examples:

Intro

- Nice terms: $(\lambda x.x)[L] \rightarrow L$,
- Starving terms: $(\lambda x.yx)[] \rightarrow 0$,
- Greedy terms: (λx.y)[L] → 0 (we can't erase linear resources).

Two kinds of 'unsolvable':

$$\Omega = (\lambda x.x[x^!])[(\lambda x.x[x^!])^!] = \text{non-termination}, \qquad 0 = \text{clash}$$

• Non determinism: $(\lambda x.M[N])[L] = \text{two possibilities!}$

Will we have sums everywhere?

Intro

Hopefully not! Sums are pushed to surface:

$$\lambda x.(M+N) = \lambda x.M + \lambda x.N$$

$$(M+N)P = MP + NP \quad \text{(function position is } linear)$$

$$M([N+L] \uplus P) = M([N] \uplus P) + M([L] \uplus P)$$

$$M([(N+L)^!] \uplus P) = M([N^!, L^!] \uplus P)$$

... and their 0-ary versions:

$$\lambda x.0 = 0$$
 $M([0] \uplus P) = 0$
 $0P = 0$ $M([0^!] \uplus P) = MP$

Two kinds of substitutions

- $M\{N/x\}$: usual capture free substitution.
- M⟨N/x⟩: linear substitution (≅ differential operator)

On terms:

Intro

$$y\langle N/x\rangle = \begin{cases} N & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$
$$(\lambda y.M)\langle N/x\rangle = \lambda y.M\langle N/x\rangle$$
$$(MP)\langle N/x\rangle = M\langle N/x\rangle P + M(P\langle N/x\rangle)$$

On Bags:

$$\begin{aligned}
&[]\langle N/x\rangle = 0 \\
&[M]\langle N/x\rangle = [M\langle N/x\rangle] \\
&[M^!]\langle N/x\rangle = [M\langle N/x\rangle, M^!] \\
&(P \uplus R)\langle N/x\rangle = P\langle N/x\rangle \uplus R + P \uplus (R\langle N/x\rangle)
\end{aligned}$$

Two kinds of substitutions

- $M\{N/x\}$: usual capture free substitution.
- $M\langle N/x\rangle$: *linear* substitution (\cong *differential* operator)

On terms:

Intro

$$y\langle N/x \rangle = \left\{ egin{array}{ll} N & ext{if } x = y \\ 0 & ext{otherwise} \end{array}
ight. \ \left(\lambda y.M \right) \langle N/x \rangle = \lambda y.M \langle N/x \rangle \ \left(MP \right) \langle N/x \rangle = M \langle N/x \rangle P + M (P \langle N/x \rangle) \end{array}$$

On Bags:

$$\begin{aligned}
&[]\langle N/x\rangle = 0 \\
&[M]\langle N/x\rangle = [M\langle N/x\rangle] \\
&[M^!]\langle N/x\rangle = [M\langle N/x\rangle, M^!] \\
&(P \uplus R)\langle N/x\rangle = P\langle N/x\rangle \uplus R + P \uplus (R\langle N/x\rangle)
\end{aligned}$$

Reduction Rules (formally)

Giant step:

Intro

$$(\lambda x.M)[N_1,\ldots,N_n,M_1^!,\ldots,M_m^!] \to_g M\langle N_1/x\rangle \cdots \langle N_n/x\rangle \{\Sigma_i M_i/x\}$$

Theorem [Pagani-Tranquilli APLAS'09]

- $\bullet \to_a$ is confluent.
- ullet \rightarrow_q enjoys a standardization property.

$$(Rx) = \frac{\Gamma(X) = \sigma}{\Gamma \vdash_{R} X : \sigma} \qquad (R\lambda) = \frac{\Gamma, X : \sigma \vdash_{R} M : \tau}{\Gamma \vdash_{R} \lambda X.M : \sigma \to \tau}$$

$$(R@) = \frac{\Gamma \vdash_{R} M : \sigma \to \tau \quad \Gamma \vdash_{R} P : \sigma}{\Gamma \vdash_{R} MP : \tau}$$

$$(Rb) = \frac{\Gamma \vdash_{R} N : \sigma \quad \Gamma \vdash_{R} P : \sigma}{\Gamma \vdash_{R} [N^{(!)}] \uplus P : \sigma} \qquad (R[]) = \frac{\Gamma \vdash_{R} A_{i} : \sigma \quad \text{for all } i}{\Gamma \vdash_{R} \Sigma_{i} A_{i} : \sigma}$$

Outline

- 1 Introduction
- **2** Resource Calculus
- 3 The differential λ -calculus
- Categorical semantics
- **5** Concrete examples of semantics
- 6 Conclusions

The differential λ -calculus: Syntax

Differential Lambda Terms:

$$s, t ::= x \mid \lambda x.s \mid st \mid D(s) \cdot t \mid s + t \mid 0$$

Reduction Rules ($\rightarrow_D = \rightarrow_\beta \cup \rightarrow_{\beta_D}$):

$$(\beta) \qquad (\lambda x.s)t \to_{\beta} s\{t/x\} (\beta_D) \qquad D(\lambda x.s) \cdot t \to_{\beta_D} \lambda x. \frac{\partial s}{\partial x} \cdot t$$

Ideas:

- st = usual application of λ -calculus ($\cong s[t]$)
- $D(\cdots(D(s)\cdot t_1)\cdots)\cdot t_k = \text{linear application} (\cong s[t_1,\ldots,t_k])$
- $\frac{\partial s}{\partial x} \cdot t$ = differential substitution ($\cong s(t/x)$)

•
$$\frac{\partial (su)}{\partial x} \cdot t = (\frac{\partial s}{\partial x} \cdot t)u + (D(s) \cdot (\frac{\partial u}{\partial x} \cdot t))u$$

The differential λ -calculus: Syntax

Differential Lambda Terms:

$$s, t ::= x \mid \lambda x.s \mid st \mid D(s) \cdot t \mid s + t \mid 0$$

Reduction Rules ($\rightarrow_D = \rightarrow_\beta \cup \rightarrow_{\beta_D}$):

$$(\beta) \qquad (\lambda x.s)t \to_{\beta} s\{t/x\} (\beta_D) \qquad D(\lambda x.s) \cdot t \to_{\beta_D} \lambda x. \frac{\partial s}{\partial x} \cdot t$$

Ideas:

- st = usual application of λ -calculus ($\cong s[t^!]$)
- $D(\cdots(D(s)\cdot t_1)\cdots)\cdot t_k = \text{linear application} (\cong s[t_1,\ldots,t_k])$
- $\frac{\partial s}{\partial x} \cdot t =$ differential substitution ($\cong s \langle t/x \rangle$)

$$\bullet \frac{\partial(su)}{\partial x} \cdot t = (\frac{\partial s}{\partial x} \cdot t)u + (D(s) \cdot (\frac{\partial u}{\partial x} \cdot t))u
(\cong (s[u^{\dagger}])\langle t/x \rangle = s\langle t/x \rangle [u^{\dagger}] + s[u\langle t/x \rangle, u^{\dagger}])$$

The differential λ -calculus: Syntax

Differential Lambda Terms:

$$s, t ::= x \mid \lambda x.s \mid st \mid D(s) \cdot t \mid s + t \mid 0$$

Reduction Rules ($\rightarrow_D = \rightarrow_\beta \cup \rightarrow_{\beta_D}$):

$$(\beta) \qquad (\lambda x.s)t \to_{\beta} s\{t/x\} (\beta_D) \qquad D(\lambda x.s) \cdot t \to_{\beta_D} \lambda x. \frac{\partial s}{\partial x} \cdot t$$

Ideas:

- st = usual application of λ -calculus ($\cong s[t^!]$)
- $D(\cdots(D(s)\cdot t_1)\cdots)\cdot t_k=$ linear application ($\cong s[t_1,\ldots,t_k]$)
- $\frac{\partial s}{\partial x} \cdot t = \text{differential substitution} \ (\cong s\langle t/x \rangle)$ • $\frac{\partial (su)}{\partial x} \cdot t = (\frac{\partial s}{\partial x} \cdot t)u + (D(s) \cdot (\frac{\partial u}{\partial x} \cdot t))u$ $(\cong (s[u^{\dagger}])\langle t/x \rangle = s\langle t/x \rangle[u^{\dagger}] + s[u\langle t/x \rangle, u^{\dagger}])$

Intro

The differential λ -calculus: Syntax

Differential Lambda Terms:

$$s, t ::= x \mid \lambda x.s \mid st \mid D(s) \cdot t \mid s + t \mid 0$$

Reduction Rules ($\rightarrow_D = \rightarrow_\beta \cup \rightarrow_{\beta_D}$):

$$(\beta) \qquad (\lambda x.s)t \to_{\beta} s\{t/x\} (\beta_D) \qquad D(\lambda x.s) \cdot t \to_{\beta_D} \lambda x. \frac{\partial s}{\partial x} \cdot t$$

Ideas:

- st = usual application of λ -calculus ($\cong s[t^!]$)
- $D(\cdots(D(s)\cdot t_1)\cdots)\cdot t_k=$ linear application ($\cong s[t_1,\ldots,t_k]$)
- $\frac{\partial s}{\partial x} \cdot t = \text{differential substitution} \ (\cong s \langle t/x \rangle)$

•
$$\frac{\partial (\mathbf{s}u)}{\partial x} \cdot t = (\frac{\partial \mathbf{s}}{\partial x} \cdot t)u + (D(\mathbf{s}) \cdot (\frac{\partial u}{\partial x} \cdot t))u$$

 $(\cong (\mathbf{s}[u^!])\langle t/x \rangle = \mathbf{s}\langle t/x \rangle[u^!] + \mathbf{s}[u\langle t/x \rangle, u^!])$

Translation between the two calculi

We can define a translation map

 $(\cdot)^o$: Resource calculus \to Differential λ -calculus

 \bullet $X^{o}=X$,

Intro

- $(\lambda x.M)^o = \lambda x.M^o,$
- $((\lambda x.M)[\vec{L}, \vec{N}^!])^o = (D^k(\lambda x.M^o) \cdot L_1^o \cdots L_k^o)(\Sigma_i N_i^o),$
- $0^o = 0$,
- $\bullet (\Sigma_i M_i)^o = \Sigma_i M_i^o.$

The translation is 'faithful'

For M, N resource terms: $M \rightarrow_{\alpha} N$ implies $M^{o} \rightarrow_{D}^{\star} N^{o}$

Intro

$$\begin{array}{cccc}
x & \frac{\Gamma(x) = \sigma}{\Gamma \vdash_{D} x : \sigma} & \lambda & \frac{\Gamma; x : \sigma \vdash_{D} s : \tau}{\Gamma \vdash_{D} \lambda x . s : \sigma \to \tau} \\
\underline{\sigma} & \frac{\Gamma \vdash_{D} s : \sigma \to \tau & \Gamma \vdash_{D} t : \sigma}{\Gamma \vdash_{D} s t : \tau} & D & \frac{\Gamma \vdash_{D} s : \sigma \to \tau & \Gamma \vdash_{D} t : \sigma}{\Gamma \vdash_{D} D(s) \cdot t : \sigma \to \tau} \\
\underline{\sigma} & \frac{\Gamma \vdash_{D} s : \sigma}{\Gamma \vdash_{D} t : \sigma} & sum & \frac{\Gamma \vdash_{D} s : \sigma & for all i}{\Gamma \vdash_{D} \Sigma : s : \sigma}
\end{array}$$

Remark: Linear application does not decrease types.

The translation remains 'faithful'

Let *M* be a resource term. If $\Gamma \vdash_B M : \sigma$ then $\Gamma \vdash_D M^o : \sigma$

What about semantics?

Intro

Simple Types in Differential Calculus

$$x \frac{\Gamma(x) = \sigma}{\Gamma \vdash_{D} x : \sigma} \qquad \lambda \frac{\Gamma; x : \sigma \vdash_{D} s : \tau}{\Gamma \vdash_{D} \lambda x . s : \sigma \to \tau}$$

$$e \frac{\Gamma \vdash_{D} s : \sigma \to \tau \quad \Gamma \vdash_{D} t : \sigma}{\Gamma \vdash_{D} s : \tau} \qquad D \frac{\Gamma \vdash_{D} s : \sigma \to \tau \quad \Gamma \vdash_{D} t : \sigma}{\Gamma \vdash_{D} D(s) \cdot t : \sigma \to \tau}$$

$$0 \frac{\Gamma \vdash_{D} s_{i} : \sigma \quad \text{for all } i}{\Gamma \vdash_{D} \Sigma_{i} s_{i} : \sigma}$$

Remark: Linear application does not decrease types.

The translation remains 'faithful'

Let *M* be a resource term. If $\Gamma \vdash_B M : \sigma$ then $\Gamma \vdash_D M^o : \sigma$

What about semantics?

Outline

- 1 Introduction
- **2** Resource Calculus
- **3** The differential λ -calculus
- Categorical semantics
- **5** Concrete examples of semantics
- 6 Conclusions

(Canadian) Differential Categories

The differential λ -calculus inspired researchers working on category theory.

• Aim: Axiomatize a differential operator D(-) categorically.

Differential categories

Intro

Blute, Cockett and Seely proposed:

- BCS'06: (monoidal) differential categories
 (= point of view too fine)
- BCS'09: Cartesian differential categories
 (= lack of higher order functions)

Not enough for modeling the differential λ -calculus!!!

(Canadian) Differential Categories

The differential λ -calculus inspired researchers working on category theory.

• Aim: Axiomatize a differential operator D(-) categorically.

Differential categories

Intro

Blute, Cockett and Seely proposed:

- BCS'06: (monoidal) differential categories
 (= point of view too fine)
- BCS'09: Cartesian differential categories
 (= lack of higher order functions)

Not enough for modeling the differential λ -calculus!!!

Left Additive Categories

Intro

We need sums on morphisms.

A category **C** is *left-additive* if:

- each homset has a structure of commutative monoid $(\mathbf{C}(A, B), +_{AB}, 0_{AB}),$
- $(g + h) \circ f = (g \circ f) + (h \circ f)$ and $0 \circ f = 0$.

When f satisfies also $f \circ (g + h) = (f \circ g) + (f \circ h)$ and $f \circ 0 = 0$ it is called *additive*. (weak form of linearity)

Left Additive Categories

Intro

We need sums on morphisms.

A category **C** is *left-additive* if:

- each homset has a structure of commutative monoid $(\mathbf{C}(A, B), +_{AB}, 0_{AB}),$
- $(g + h) \circ f = (g \circ f) + (h \circ f)$ and $0 \circ f = 0$.

When f satisfies also $f \circ (g + h) = (f \circ g) + (f \circ h)$ and $f \circ 0 = 0$ it is called *additive*. (weak form of linearity)

Cartesian (Closed) Left-additive Categories

A category **C** is *Cartesian left-additive* if:

• **C** is a left-additive category,

Intro

- it is Cartesian (=it has products),
- all projections and pairings of additive maps are additive.

A category **C** is *Cartesian closed left-additive* if:

- C is Cartesian left-additive,
- it is a ccc $(\Lambda(-) = \text{curry}, ev = \text{eval}),$
- it satisfies $\Lambda(f+g) = \Lambda(f) + \Lambda(g)$ and $\Lambda(0) = 0$. (implies $ev \circ \langle f + g, h \rangle = ev \circ \langle f, h \rangle + ev \circ \langle g, h \rangle$)

Intro

Cartesian Differential Categories

$$D = \frac{f : A \to B}{D(f) : \underline{A} \times A \to B}$$

Satisfying:

D1.
$$D(f+g) = D(f) + D(g)$$
 and $D(0) = 0$

D2.
$$D(f) \circ \langle h + k, v \rangle = D(f) \circ \langle h, v \rangle + D(f) \circ \langle k, v \rangle$$
 and $D(f) \circ \langle 0, v \rangle = 0$

D3.
$$D(Id) = \pi_1$$
, $D(\pi_1) = \pi_1 \circ \pi_1$ and $D(\pi_2) = \pi_2 \circ \pi_1$

D4.
$$D(\langle f, g \rangle) = \langle D(f), D(g) \rangle$$

D5.
$$D(f \circ g) = D(f) \circ \langle D(g), g \circ \pi_2 \rangle$$

D6.
$$D(D(f)) \circ \langle \langle g, 0 \rangle, \langle h, k \rangle \rangle = D(f) \circ \langle g, k \rangle$$

D7.
$$D(D(f)) \circ \langle \langle 0, h \rangle, \langle g, k \rangle \rangle = D(D(f)) \circ \langle \langle 0, g \rangle, \langle h, k \rangle \rangle$$

Differential λ -Categories (ccc's)

[BEM'10] **C** is a *Differential* λ -category if:

- C is a Cartesian differential category,
- it is Cartesian closed left-additive,
- it satisfies the following rules:

For all $f: C \times A \rightarrow B$:

Intro

$$D(\Lambda(f)) = \Lambda(D(f) \circ \langle \pi_1 \times 0_A, \pi_2 \times Id_A \rangle)$$

For all $h: C \rightarrow [A \Rightarrow B]$ and $g: C \rightarrow A$:

$$D(\textit{ev} \circ \langle \textit{h}, \textit{g} \rangle) = \textit{ev} \circ \langle \textit{D}(\textit{h}), \textit{g} \circ \pi_2 \rangle + D(\Lambda^-(\textit{h})) \circ \langle \langle \textit{0}_\textit{C}, \textit{D}(\textit{g}) \rangle, \langle \pi_2, \textit{g} \circ \pi_2 \rangle \rangle$$

Intro

Categorical Interpretation

Define $f \star g = D(f) \circ \langle \langle 0, g \circ \pi_1 \rangle, Id \rangle$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $[\![\Gamma \vdash_{\mathcal{D}} s : \sigma]\!] = [\![s^{\sigma}]\!]_{\Gamma} : [\![\Gamma]\!] \to [\![\sigma]\!]$ by:

- $\bullet \ \llbracket y^{\tau} \rrbracket_{\Gamma; X: \sigma} = \llbracket y^{\tau} \rrbracket_{\Gamma} \circ \pi_1,$
- $\bullet \ \llbracket (\lambda x.s)^{\sigma \to \tau} \rrbracket_{\mathsf{\Gamma}} = \mathsf{\Lambda}(\llbracket s^\tau \rrbracket_{\mathsf{\Gamma}; x:\sigma})$
- $\bullet \ [\![(D(s) \cdot t)^{\sigma \to \tau}]\!]_{\Gamma} = \wedge (\wedge^{-} ([\![s^{\sigma \to \tau}]\!]_{\Gamma}) \times [\![t^{\sigma}]\!]_{\Gamma}),$

Categorical Interpretation

Intro

Define $f \star g = D(f) \circ \langle \langle 0, g \circ \pi_1 \rangle, Id \rangle$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $\llbracket \Gamma \vdash_{\mathcal{D}} s : \sigma \rrbracket = \llbracket s^{\sigma} \rrbracket_{\Gamma} : \llbracket \Gamma \rrbracket \to \llbracket \sigma \rrbracket$ by:

- $\bullet \ \llbracket \mathbf{x}^{\sigma} \rrbracket_{\Gamma;\mathbf{x}:\sigma} = \pi_{2},$
- $\bullet \ \llbracket (st)^{\tau} \rrbracket_{\Gamma} = ev \circ \langle \llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}, \llbracket t^{\sigma} \rrbracket_{\Gamma} \rangle,$
- $\bullet \ \llbracket (\lambda \mathsf{X}.\mathsf{S})^{\sigma \to \tau} \rrbracket_{\mathsf{\Gamma}} = \mathsf{\Lambda}(\llbracket \mathsf{S}^{\tau} \rrbracket_{\mathsf{\Gamma};\mathsf{X}:\sigma}),$
- $\bullet \ \ \llbracket (D(s) \cdot t)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\Lambda^{-}(\llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}) \star \llbracket t^{\sigma} \rrbracket_{\Gamma}),$
- $[0^{\sigma}]_{\Gamma} = 0$

Categorical Interpretation

Intro

Define $f \star g = D(f) \circ \langle \langle 0, g \circ \pi_1 \rangle, Id \rangle$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $\llbracket \Gamma \vdash_{\mathcal{D}} s : \sigma \rrbracket = \llbracket s^{\sigma} \rrbracket_{\Gamma} : \llbracket \Gamma \rrbracket \to \llbracket \sigma \rrbracket$ by:

- $\bullet \ \llbracket \mathbf{x}^{\sigma} \rrbracket_{\Gamma;\mathbf{x}:\sigma} = \pi_{2},$
- $\bullet \ \llbracket (st)^{\tau} \rrbracket_{\Gamma} = ev \circ \langle \llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}, \llbracket t^{\sigma} \rrbracket_{\Gamma} \rangle,$
- $\bullet \ \llbracket (\lambda \mathsf{X}.\mathsf{S})^{\sigma \to \tau} \rrbracket_{\mathsf{\Gamma}} = \mathsf{\Lambda}(\llbracket \mathsf{S}^{\tau} \rrbracket_{\mathsf{\Gamma};\mathsf{X}:\sigma}),$
- $\bullet \ \llbracket (D(s) \cdot t)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\Lambda^{-}(\llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}) \star \llbracket t^{\sigma} \rrbracket_{\Gamma}),$
- $[0^{\sigma}]_{\Gamma} = 0$
- $\bullet \ \llbracket (s+S)^\sigma \rrbracket_\Gamma = \llbracket s^\sigma \rrbracket_\Gamma + \llbracket S^\sigma \rrbracket_\Gamma$

Intro

Categorical Interpretation

Define $f \star g = D(f) \circ \langle \langle 0, g \circ \pi_1 \rangle, Id \rangle$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $\llbracket \Gamma \vdash_{\mathcal{D}} s : \sigma \rrbracket = \llbracket s^{\sigma} \rrbracket_{\Gamma} : \llbracket \Gamma \rrbracket \to \llbracket \sigma \rrbracket$ by:

- $\bullet \ \llbracket \mathbf{x}^{\sigma} \rrbracket_{\Gamma;\mathbf{x}:\sigma} = \pi_{2},$
- $\bullet \ \llbracket (st)^{\tau} \rrbracket_{\Gamma} = ev \circ \langle \llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}, \llbracket t^{\sigma} \rrbracket_{\Gamma} \rangle,$
- $\bullet \ \llbracket (\lambda \mathsf{X}.\mathsf{S})^{\sigma \to \tau} \rrbracket_{\mathsf{\Gamma}} = \mathsf{\Lambda}(\llbracket \mathsf{S}^{\tau} \rrbracket_{\mathsf{\Gamma};\mathsf{X}:\sigma}),$
- $\bullet \ \ \llbracket (D(s) \cdot t)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\Lambda^{-}(\llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}) \star \llbracket t^{\sigma} \rrbracket_{\Gamma}),$
- $[0^{\sigma}]_{\Gamma} = 0$,
- $\bullet \ \llbracket (s+S)^\sigma \rrbracket_\Gamma = \llbracket s^\sigma \rrbracket_\Gamma + \llbracket S^\sigma \rrbracket_\Gamma.$

Soundness

Intro

If **C** is a differential λ -category, then

$$Th_{D}(\mathbf{C}) = \{ s = t \mid \Gamma \vdash_{D} s : \sigma \quad \Gamma \vdash_{D} t : \sigma \quad [\![s^{\sigma}]\!]_{\Gamma} = [\![t^{\sigma}]\!]_{\Gamma} \}$$

is a differential λ -theory (i.e., it contains $=_D$ and it is contextual).

We can interpret the Resource Calculus by translation:

$$\llbracket \Gamma \vdash_{R} M : \sigma \rrbracket = \llbracket (M^{o})^{\sigma} \rrbracket_{\Gamma}$$

we get that $Th_R(\mathbf{C})$ is a resource λ -theory.

Theorem [BEM'10]

Differential λ -categories are sound models for:

- Simply Typed Differential λ -calculus
- Simply Typed Resource Calculus (by translation $(-)^o$)

Outline

Intro

- 1 Introduction
- **2** Resource Calculus
- 3 The differential λ -calculus
- Categorical semantics
- **5** Concrete examples of semantics
- 6 Conclusions

Relational semantics - Example 1

MRel

Intro

- Objects: sets,
- Morphisms: **MRel** $(A, B) = \mathcal{P}(\mathcal{M}_f(A) \times B)$ (relations between $\mathcal{M}_f(A)$ and B).

Given $f: A \rightarrow B$ we can define:

$$D(f) = \{(([a], m), b) \mid (m \uplus [a], b) \in f\} : A \times A \to B.$$

Theorem [BEM'10]

The category **MRel** is a differential λ -category.

Relational semantics - Example 1

MRel

Intro

- Objects: sets,
- Morphisms: **MRel** $(A, B) = \mathcal{P}(\mathcal{M}_f(A) \times B)$ (relations between $\mathcal{M}_f(A)$ and B).

Given $f: A \rightarrow B$ we can define:

$$D(f) = \{(([a], m), b) \mid (m \uplus [a], b) \in f\} : A \times A \to B.$$

Theorem [BEM'10]

The category **MRel** is a differential λ -category.

Finiteness Spaces - Example 2

The category **MFin** of finiteness spaces and finitary morphisms.

Objects: finiteness spaces.

- $a, b \subset X$ are orthogonal $(a \perp b)$ if $a \cap b$ is finite.
- If $\mathcal{F} \subset \mathcal{P}(X)$ then $\mathcal{F}^{\perp} = \{b \in \mathcal{P}(X) \mid \forall a \in \mathcal{F} \ a \perp b\}$

Finiteness space

Intro

A finiteness space is a pair $\mathcal{X} = (X, F(\mathcal{X}))$, where

- X is a countable set,
- $F(\mathcal{X}) \subset \mathcal{P}(X)$ s.t. $F(\mathcal{X}) = F(\mathcal{X})^{\perp \perp}$.

Finiteness Spaces - Example 2

Morphisms: $f: \mathcal{X} \to \mathcal{Y}$ is a *finitary relation* from $!\mathcal{X} = (\mathcal{M}_f(X), F(!\mathcal{X}))$ to \mathcal{Y} , i.e., a relation $R \subseteq \mathcal{M}_f(X) \times Y$ s.t.:

- for all $a \in F(!\mathcal{X})$, $R(a) = \{\beta \in Y \mid \exists \alpha \in a \ (\alpha, \beta) \in R\} \in F(\mathcal{Y})$, and
- for all $\beta \in Y$, $R^{\perp}(\beta) = \{\alpha \in X \mid (\alpha, \beta) \in R\} \in F(!\mathcal{X})^{\perp}$.

Theorem [BEM'10]

Intro

The category **MFin** of finiteness spaces is a differential λ -category.

Finiteness Spaces - Example 2

Morphisms: $f: \mathcal{X} \to \mathcal{Y}$ is a *finitary relation* from $!\mathcal{X} = (\mathcal{M}_f(X), F(!\mathcal{X}))$ to \mathcal{Y} , i.e., a relation $R \subseteq \mathcal{M}_f(X) \times Y$ s.t.:

- for all $a \in F(!\mathcal{X})$, $R(a) = \{\beta \in Y \mid \exists \alpha \in a \ (\alpha, \beta) \in R\} \in F(\mathcal{Y})$, and
- for all $\beta \in Y$, $R^{\perp}(\beta) = \{\alpha \in X \mid (\alpha, \beta) \in R\} \in F(!\mathcal{X})^{\perp}$.

Theorem [BEM'10]

Intro

The category **MFin** of finiteness spaces is a differential λ -category.

Finiteness Spaces - Actually Example $1\frac{1}{2}$

Morphisms: $f: \mathcal{X} \to \mathcal{Y}$ is a *finitary relation* from $!\mathcal{X} = (\mathcal{M}_f(X), F(!\mathcal{X}))$ to \mathcal{Y} , i.e., a relation $R \subseteq \mathcal{M}_f(X) \times Y$ s.t.:

- for all $a \in F(!\mathcal{X})$, $R(a) = \{\beta \in Y \mid \exists \alpha \in a \ (\alpha, \beta) \in R\} \in F(\mathcal{Y})$, and
- for all $\beta \in Y$, $R^{\perp}(\beta) = \{\alpha \in X \mid (\alpha, \beta) \in R\} \in F(!\mathcal{X})^{\perp}$.

Theorem [BEM'10]

Intro

The category **MFin** of finiteness spaces is a differential λ -category.

All categorical constructions are the same as in **MReI**, we just have to check that they are finitary/preserve finitary morphisms.

Outline

Intro

- 1 Introduction
- **2** Resource Calculus
- 3 The differential λ -calculus
- Categorical semantics
- **5** Concrete examples of semantics
- 6 Conclusions

Conclusions

Intro

We have:

- Recalled the Resource Calculus + Type System R
- Recalled the Differential λ-Calculus + Type System D
- Shown Resource Calculus \hookrightarrow Differential λ -Calculus
- Introduced the differential λ -categories,
 - Shown that they model both calculi (abstract definition),
 - MRel and MFin are instances.

Thank you for your attention!

Intro

Questions?