Resource Calculi
Some Syntax, Some Semantics

G. Manzonetto’
(joint work with A. Bucciarelli & T. Ehrhard)

“Université de Paris Nord (Lab. LIPN)

29" January 2010 @ ParSec Meeting

o Introduction

© Resource Calculus

© The differential A-calculus

0 Categorical semantics

e Concrete examples of semantics

e Conclusions

Outline

o Introduction

Why Resource Calculi?

Resource Calculi

Programming languages giving a major control on the
resources needed by a program during his execution.

Why Resource Calculi?

Resource Calculi

Programming languages giving a major control on the
resources needed by a program during his execution.

Resources to be bounded can be of very different kinds:

@ time/space: important for programs running in
environments with bounded resources.

@ non-replicable data: naturally arising in quantum
computing (just an analogy).

Why Resource Calculi?

Resource Calculi

Programming languages giving a major control on the
resources needed by a program during his execution.

Resources to be bounded can be of very different kinds:

@ time/space: important for programs running in
environments with bounded resources.

@ non-replicable data: naturally arising in quantum
computing (just an analogy).

Usual \-calculus is not resource conscious: (Ax.x2)N — 5 N23

Some non-optional ingredients

We introduce in the A-calculus depletable arguments:
@ depletable resources are present in a limited number,
@ depletable resources must be consumed.

Some non-optional ingredients

We introduce in the A-calculus depletable arguments:
@ depletable resources are present in a limited number,
@ depletable resources must be consumed.

Depletable Arguments = Linear Substitution:

M(N/x) = exactly one occurrence of x in M is substituted by N

Some non-optional ingredients

We introduce in the A-calculus depletable arguments:
@ depletable resources are present in a limited number,
@ depletable resources must be consumed.

Depletable Arguments = Linear Substitution:
M(N/x) = exactly one occurrence of x in M is substituted by N
Depletable Arguments = Non-Determinism:

(Ax.xx)N = which occurrence of x will be substituted?

Some non-optional ingredients

Non-Determinism M; + M, — M; =" Linear Head Reduction:

Some non-optional ingredients

Non-Determinism M; + M, — M; =" Linear Head Reduction:

(Ax. (X, x))M <—— (Ax.(x,x))(M + N) —— (Ax.(x, x))N

| : |

(M, M) <" ((M 4+ N), (M + NY) = (NN

M- " e (N, M)

Previously, on Resource calculus - 1993

Lambda calculus with multiplicities

Gérard Boudol. The lambda-calculus with multiplicities. INRIA
Research Report 2025, 1993.

@ Arguments may come in limited availability, and mixed
together. They are grouped in ‘bags’.

@ Lazy operational semantics + Explicit substitution.

@ Main motivation: finer observational equivalence on
classic A-calculus.

@ Boudol left for future work links with Girard’s LL. ..

Previously, on Resource calculus - 2003

The differential \-calculus.

T. Ehrhard and L. Regnier. The differential A-calculus.
Theoretical Computer Science 2003.

@ Calculus with syntactic differential operators (linear
approximations).

@ Non-lazy reduction.

@ Non-determinism as formal sums of terms (X;M; A M,).
@ Issued from semantic investigations (finiteness spaces).
@ Original syntax quite heavy (now a little better. . .).

Previously, on Resource calculus - 2006

Taylor Expansion

T. Ehrhard and L. Regnier. B6hm trees, Krivine’s machine and
the Taylor expansion of A-terms. In CiE, LNCS, 2006.

@ The target of Taylor Expansion of ordinary A-terms.

n=0 "

The Resource Calculus - Today

Full (non-lazy/non-linear) resource calculus.

P. Tranquilli. Intuitionistic differential nets and lambda calculus.
To appear in Theoretical Computer Science.

@ Convincing link with differential linear logic.

Morally mixing ‘differential’ and ‘with multiplicities’ A-calculus .

Differential A-calculus Resource \-calculus
differentiation linear substitution

two kinds of applications | two kinds of resources
heavy syntax better syntax

Until now, no abstract model theory!

Resource Calculus

Outline

© Resource Calculus

Resource Calculus

The Syntax

XM | MP (as in A-calculus)

terms: M:= x |

bags: P:= [M,...,Mn, N1! ,...,N}] (multisets)

sums: Ti= My + - + Mp (0 neutral element)
Idea:

@ [N]is a ‘linear’ argument (available exactly once),
@ [N']is a classic argument (available how many times you

wish).
Ordinary A-calculus: MN = M[N'].

Resource Calculus

Reduction Rules (Informally)

Informal definition of reduction:

(AX-M)[N] — M where N substitutes exactly one occurrence of x

Examples:
@ Nice terms: (Ax.x)[L] — L,
@ Starving terms: (Ax.yx)[] — O,
@ Greedy terms: (Ax.y)[L] — O (we can’t erase linear
resources).

Two kinds of ‘unsolvable’
Q = (Ax.x[X'DI[(Ax.x[x'])'] = non-termination, 0 = clash

@ Non determinism: (Ax.M[N])[L] = two possibilities!

Resource Calculus

Will we have sums everywhere?

Hopefully not! Sums are pushed to surface:

AX.(M+ N) = Mx.M+Xx.N
(M+N)P = MP+ NP (function position is linear)
M(IN+ Llw P) = M([N]w P)+ M([L]w P)
M([(N+L)'JwP) = M(N', L' 1w P)

...and their O-ary versions:

Ax.0 =0 M([0] W P) =0
0P =0 M([0'] & P) = MP

Resource Calculus
Two kinds of substitutions

@ M{N/x} : usual capture free substitution.
@ M(N/Xx) : linear substitution

On terms:
N ifx=y
0 otherwise

yinx) =

(Ay.M)(N/x) = \y.M{(N/x)
(MP){N/x) = M{(N/x)P + M(P{N/x))

On Bags:
[I{N/x) =0
[M|(N/x) = [M(N/x)]
[M'](N/x) = [M{(N/x), M']
(PYR)(N/x)=P(N/x)W R + Py (R(N/x))

Resource Calculus
Two kinds of substitutions

@ M{N/x} : usual capture free substitution.
@ M(N/Xx) : linear substitution (= differential operator)

On terms:
N ifx=y
0 otherwise

yinx) =

(Ay.M)(N/x) = \y.M{(N/x)
(MP){N/x) = M(N/x)P + M(P{N/x))

On Bags:
[I{N/x) =0
[M|(N/x) = [M(N/x)]
[M'](N/x) = [M{(N/x), M']
(PYR)(N/x)=P(N/x)W R + Py (R(N/x))

Resource Calculus

Reduction Rules (formally)

Giant step:

(OAXM)[Ny, ... Ny, My, ..o My] —g M(N3/X) - (Np /X){Z;M;/x}

Theorem [Pagani-Tranquilli APLAS’09]

@ — 4 is confluent.
@ —4 enjoys a standardization property.

Resource Calculus

Simple Type System

® N(x)=o0 - Mx:oFgM:7
(R) FrXx:o RY) Tk M M:o— T
: Mg P:
(RQ) Fr-gM:oc—r R o

Mg MP : 7

FrN-rN:0c TtgpP:o
Fp INOJWP: o

(Rb) (R

rl—H[]ZU

Nl-gpAj:oc foralli
Mg XA o

(R+)

The differential \-calculus

Outline

© The differential A-calculus

The differential \-calculus

The differential \-calculus: Syntax

Differential Lambda Terms:
s,t:=x|Ax.s|st|D(s)-t|s+1t]|0
Reduction Rules (—p = =3 U —3,):
(8) (Ax.8)t =5 s{t/x}
(Bp) D(Ax.S) -t —p, AX.95 - t

Ideas:
@ st = usual application of A-calculus
@ D(---(D(s)-ty)----)- tx = linear application
@ 22 .t = differential substitution
o U t= (5 Hu+(D(s)- (5 O)u

The differential \-calculus

The differential \-calculus: Syntax

Differential Lambda Terms:
s,t:=x|Ax.s|st|D(s)-t|s+1t]|0
Reduction Rules (—p = =3 U —3,):
(8) (Ax.8)t =5 s{t/x}
(Bp) D(Ax.S) -t —p, AX.95 - t

Ideas:
@ st = usual application of A-calculus (= s[t'])
@ D(---(D(s)-t1)----)- tx = linear application
@ 22 .t = differential substitution
o U t= (% tu+(D(s)- (3 O)u

The differential \-calculus

The differential \-calculus: Syntax

Differential Lambda Terms:
s,t:=x|Ax.s|st|D(s)-t|s+1t]|0

Reduction Rules (—p = =3 U —3,):

) (Ax.8)t =5 s{t/x}
(Bp) D(Ax.s) -t —p, AX.25 -t

Ideas:
@ st = usual application of A-calculus (= s[t'])

@ D(---(D(s)-ty)----)- tx = linear application (= s[t, ..., t])

° % . t = differential substitution

e t= (5 hu+(D(s)- (5 -)u

The differential \-calculus

The differential \-calculus: Syntax

Differential Lambda Terms:
s,t:=x|Ax.s|st|D(s)-t|s+1t]|0

Reduction Rules (—p = =3 U —3,):

(8) (Ax.8)t =5 s{t/x}
(Bp) D(Ax.S) -t —p, AX.95 - t

Ideas:
@ st = usual application of A-calculus (= s[t'])

@ D(---(D(s)-t)----)- tx = linear application (= s[ti, ..., f])

@ 22 .t = differential substitution (= s(t/x))

AU = (85 - tyu+(D(s)- (X - 1)u

(= (s[u'){t/x) = s{t/x)[u'] + s[u(t/x), u'])

The differential \-calculus

Translation between the two calculi

We can define a translation map

(1)° : Resource calculus — Differential A-calculus

o x°=x,

@ (AX.M)° = Ax.M°,

o ((AXM)IL,N)° = (DK(AX.MO) - L9 LO)(E;NP),
@ 0°=0,

@ (L;M)° =x;M?.

The translation is ‘faithful’

For M, N resource terms: M —4 N implies M° —5 N°

The differential \-calculus

Simple Types in Differential Calculus

r(x)=o x:obps:t
lFpx:o FpAX.S:o—T
lFpS:o—71 Thkpt:o ltFps:o—71 TTkpt:o
MEpst:T MepD(s)-t:o—T
0 um N-psj:o foralli
_ u
lFpO:o lFpXjsi:o

Remark: Linear application does not decrease types.

The translation remains ‘faithful’

Let M be aresource term. If T =g M:othenT p M° : &

The differential \-calculus

Simple Types in Differential Calculus

r(x)=o x:obps:t
lFpx:o FpAX.S:o—T
lFpS:o—71 Thkpt:o ltFps:o—71 TTkpt:o
MEpst:T MepD(s)-t:o—T
0 um N-psj:o foralli
_ u
lFpO:o lFpXjsi:o

Remark: Linear application does not decrease types.

The translation remains ‘faithful’

Let M be aresource term. If T =g M:othenT p M° : &

What about semantics?

Categorical semantics

Outline

0 Categorical semantics

Categorical semantics

(Canadian) Differential Categories

The differential A-calculus inspired researchers working on
category theory.

@ Aim: Axiomatize a differential operator D(—) categorically.

Differential categories
Blute, Cockett and Seely proposed:
@ BCS’06: (monoidal) differential categories

@ BCS’09: Cartesian differential categories

Categorical semantics

(Canadian) Differential Categories

The differential A-calculus inspired researchers working on
category theory.

@ Aim: Axiomatize a differential operator D(—) categorically.

Differential categories
Blute, Cockett and Seely proposed:

@ BCS’06: (monoidal) differential categories
(= point of view too fine)

@ BCS’09: Cartesian differential categories
(= lack of higher order functions)

Not enough for modeling the differential A-calculus!!!

Categorical semantics

Left Additive Categories

We need sums on morphisms.]

A category C is left-additive if:

@ each homset has a structure of commutative monoid
(C(A7 B): +AB; OAB)s
@ (g+h)of=(gof)+(hof)and0of=0.

When f satisfies also fo(g+ h) = (fog)+ (foh)and fo0 =0
it is called additive.

Categorical semantics

Left Additive Categories

We need sums on morphisms.]

A category C is left-additive if:

@ each homset has a structure of commutative monoid
(C(A7 B): +AB; OAB)s
@ (g+h)of=(gof)+(hof)and0of=0.

When f satisfies also fo(g+ h) = (fog)+ (foh)and fo0 =0
it is called additive. (weak form of linearity)

Categorical semantics

Cartesian (Closed) Left-additive Categories

A category C is Cartesian left-additive if:
@ Cis a left-additive category,
@ itis Cartesian (=it has products),
@ all projections and pairings of additive maps are additive.

A category C is Cartesian closed left-additive if:
@ Cis Cartesian left-additive,
@ itis a ccc (A(—) = curry, ev =eval),
@ it satisfies A(f + g) = A(f) + A(g) and A(0) = 0.
(implies evo (f+g,hy = evo (f,h) +evo(g,h))

Categorical semantics

Cartesian Differential Categories

f:A—>B

D
D(f):AxA— B

Satisfying:
D1. D(f+ g) = D(f) + D(g) and D(0) =0

D2. D(f)o (h+ k,v) = D(f) o (h,v) + D(f) o {(k, v) and
D(f)o(0,v) =0

D3. D(Id) = w1, D(m1) = w1 o my and D(mp) = 72 o

D4. D({f,g)) = (D(f), D(9))

D5. D(fo g) = D(f) o (D(g),g o m2)

D6. D(D(f)) o ((g,0), (h,k)) = D(f) o (g, k)

D7. D(D(f)) o {0, h), (g, k)) = D(D(f)) = ({0, g), (h, k))

Categorical semantics

Differential \-Categories (ccc’s)

[BEM’10] C is a Differential A-category if:
@ C is a Cartesian differential category,
@ it is Cartesian closed left-additive,

@ it satisfies the following rules:

Forallf:Cx A— B:
D(A(f)) = N(D(f) o (w1 x 04,72 X Ida))
Forallh:C—[A= Blandg: C — A:

D(evo(h, g)) = eve(D(h), goma)+D(A (h))o((Oc, D(9)), (2, gomz))

Categorical semantics

Categorical Interpretation

Define fx g = D(f) o ({0, g o), Id):

f:CxA—B g:C—A
fxg:CxA—B

Define [Fp s: o] [— o]

Categorical semantics

Categorical Interpretation

Define fx g = D(f) o ({0, g o), Id):

f:CxA—B g:C—A
fxg:CxA—B

Define [[Fp s: 0] = [s°]r : [[] — [o] by:
@ [X7]r.x.c = T2,
® [V rxo =[ylrom,
e [(st)]r = evo ([s”Ir, [t°]r),
@ [(Ax.5)77"]r = A([S"]rx:0)s

Categorical semantics
Categorical Interpretation

Define fx g = D(f) o ({0, g o), Id):

f:CxA—B g:C—A
fxg:CxA—B

Define [I Fp s: o] =[s7]r : [T] — [o] by:
@ [X]rx.0c = T2,
® [V lrxo = [y Irom,
° [(st)"]r =evo ([s”"Ir, [t°]r),
[(Ax-8)77"]r = M[S7]r:x:0);

(*]
© [(D(s)-) Ir = AA~(Is” ") = [t7Tr),

Categorical semantics
Categorical Interpretation

Define fx g = D(f) o ({0, g o), Id):

f:CxA—B g:C—A
fxg:CxA—B

Define [[Fp s: 0] = [s°]r : [[] — [o] by:
@ [X7]r.x.c = T2,
® [V rxo =[ylrom,
® [(st)]r =evo([s” "]r, [t°]r),
@ [(Ax.5)77"]r = A([S"]rx:0)s
@ [(D(s) -)7~]r = ANA~([s°"]r) = [t7]r),
@ [07]r =0,
o [(s+S)Ir = [s7]r + [S°]r-

Categorical semantics

Soundness

If C is a differential A-category, then
Thp(C)={s=t|Ttps:o Tkpt:o [s7]r=[t]r}

is a differential A-theory (i.e., it contains =p and it is contextual).

We can interpret the Resource Calculus by translation:

[Fr M: o] = [(M°)]r

we get that Thg(C) is a resource \-theory.

Theorem [BEM’10]

Differential \-categories are sound models for:
@ Simply Typed Differential A-calculus
@ Simply Typed Resource Calculus (by translation (—)°)

Examples

Outline

e Concrete examples of semantics

Examples

Relational semantics - Example 1

@ Objects: sets,
@ Morphisms: MRel(A, B) = P(M¢(A) x B) (relations
between M;(A) and B).

Given f : A — B we can define:

D(f) = {(([a], m),b) | (mw[a],b) € f} : Ax A— B.

Examples

Relational semantics - Example 1

@ Objects: sets,
@ Morphisms: MRel(A, B) = P(M¢(A) x B) (relations
between M;(A) and B).

Given f : A — B we can define:

D(f) = {(([a], m),b) | (mw[a],b) € f} : Ax A— B.

Theorem [BEM’10]
The category MRel is a differential A-category.

Examples

Finiteness Spaces - Example 2

The category MFin of finiteness spaces and finitary morphisms.

Objects: finiteness spaces.

@ a,b C X are orthogonal (al b) if an b is finite.
@ If F c P(X)then F+ = {bec P(X) | Vac€ F alb}

Finiteness space

A finiteness space is a pair X = (X, F(X)), where
@ X is a countable set,
@ F(X)CP(X)st F(X)=F(x)*.

Examples

Finiteness Spaces - Example 2

Morphisms: f : X — Y is a finitary relation from
IX = (My(X), F(!1X)) to), i.e,, arelation R C M¢(X) x Y s.t.
e forall a e F(1X),
R(a)={feY|3daca (ap) € R}ecF(),and
e forall 3e Y, R-(B)={ac X|(a,B) € R} € F(1X)*.

Examples

Finiteness Spaces - Example 2

Morphisms: f : X — Y is a finitary relation from
IX = (My(X), F(!1X)) to), i.e,, arelation R C M¢(X) x Y s.t.
e forall a e F(1X),
R(a)={feY|3daca (ap) € R}ecF(),and
e forall 3e Y, R-(B)={ac X|(a,B) € R} € F(1X)*.

Theorem [BEM*10]

The category MFin of finiteness spaces is a differential
A-category.

Examples

Finiteness Spaces - Actually Example 1%

Morphisms: 7 : X —) is a finitary relation from
X = (M#(X),F(1X)) to), i.e., arelation R C M¢(X) x Y s.t..
e forallae F(1X),
R(a)={feY|Jaca (a,p)e R}eF(Y),and
e forall e Y,R(B)={acX|(x,p3) € R}c F(IX)*.

Theorem [BEM’10]

The category MFin of finiteness spaces is a differential
A-category.

All categorical constructions are the same as in MRel, we just
have to check that they are finitary/preserve finitary morphisms.

Conclusions

Outline

e Conclusions

Conclusions

Conclusions

We have:
@ Recalled the Resource Calculus + Type System R
@ Recalled the Differential A-Calculus + Type System D

@ Shown Resource Calculus — Differential A\-Calculus
@ Introduced the differential A-categories,

@ Shown that they model both calculi (abstract definition),
o MRel and MFin are instances.

Conclusions

Thank you for your attention!

Questions?

	Main Part
	Introduction
	Resource Calculus
	The differential -calculus
	Categorical semantics
	Concrete examples of semantics
	Conclusions

