
A Certified Data Race Analysis for a
Java-like Language

Frédéric Dabrowski and David Pichardie
INRIA Rennes - Bretagne Altantique

ParSec meeting - 8 January 2009

A Certified Data Race Analysis for a Java-like Language

Data Races

A fundamental issue in multi-threaded programming

Definition: the situation where two processes attempt to access to the same
memory location and at least one access is a write.

Leads to tricky bugs

difficult to reproduce and identify via manual code review or program testing

Memory Model is a complex thing...

Data-race-free programs are sequentially consistent

We need to prove the data-race-freeness of a program before safely reasonning
on its interleaving semantic.

2

A Certified Data Race Analysis for a Java-like Language

Example

3

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

A Certified Data Race Analysis for a Java-like Language

Example

3

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

Interleaving semantics gives only sequentially consistent execution,

A Certified Data Race Analysis for a Java-like Language

Example

3

C.f = C.g = 0; x = C.g; y = C.f;C.f = 1; C.g = 1;

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

Interleaving semantics gives only sequentially consistent execution,

A Certified Data Race Analysis for a Java-like Language

Example

3

C.f = C.g = 0; x = C.g; y = C.f; C.f = 1; C.g = 1;

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

C.f = C.g = 0; x = C.g; y = C.f;C.f = 1; C.g = 1;

Interleaving semantics gives only sequentially consistent execution,

A Certified Data Race Analysis for a Java-like Language

Example

3

C.f = C.g = 0; x = C.g;y = C.f; C.f = 1;C.g = 1;

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

C.f = C.g = 0; x = C.g; y = C.f;C.f = 1; C.g = 1;

Interleaving semantics gives only sequentially consistent execution,

C.f = C.g = 0; x = C.g; y = C.f; C.f = 1; C.g = 1;

A Certified Data Race Analysis for a Java-like Language

Example

but such program may also lead to sequentially inconsistent execution

3

C.f = C.g = 0; x = C.g;y = C.f; C.f = 1;C.g = 1;

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

C.f = C.g = 0; x = C.g; y = C.f;C.f = 1; C.g = 1;

Interleaving semantics gives only sequentially consistent execution,

C.f = C.g = 0; x = C.g; y = C.f; C.f = 1; C.g = 1;

A Certified Data Race Analysis for a Java-like Language

Example

but such program may also lead to sequentially inconsistent execution

3

C.f = C.g = 0; x = C.g; y = C.f;C.f = 1; C.g = 1;

C.f = C.g = 0;

x = C.g; y = C.f;

C.f = 1; C.g = 1;

C.f = C.g = 0; x = C.g; y = C.f;C.f = 1; C.g = 1;

Interleaving semantics gives only sequentially consistent execution,

C.f = C.g = 0; x = C.g;y = C.f; C.f = 1;C.g = 1;

C.f = C.g = 0; x = C.g; y = C.f; C.f = 1; C.g = 1;

x=1 y=1and !

A Certified Data Race Analysis for a Java-like Language

Certified program verification

4

Semantics

Hoare
logic

Type
systems

Static
analysis

Defined and proved in Coq

A Certified Data Race Analysis for a Java-like Language

There is a growing interest in machine
checked semantics proofs

Program verification framework can be
certified in a proof assistant

Example : MOBIUS project

All component are proved correct

Certified program verification

4

Semantics

Hoare
logic

Type
systems

Static
analysis

Defined and proved in Coq

A Certified Data Race Analysis for a Java-like Language

There is a growing interest in machine
checked semantics proofs

Program verification framework can be
certified in a proof assistant

Example : MOBIUS project

All component are proved correct

In a multi-threaded context

Using an interleaving semantics is unsound

Certified program verification

4

Semantics

Hoare
logic

Type
systems

Static
analysis

Interleaving semantics

Defined and proved in Coq

A Certified Data Race Analysis for a Java-like Language

There is a growing interest in machine
checked semantics proofs

Program verification framework can be
certified in a proof assistant

Example : MOBIUS project

All component are proved correct

In a multi-threaded context

Using an interleaving semantics is unsound

Reasoning directly on the JMM is very painful

Certified program verification

4

Semantics

Hoare
logic

Type
systems

Static
analysis

Interleaving semantics

Defined and proved in Coq

Memory model semantics

A Certified Data Race Analysis for a Java-like Language

There is a growing interest in machine
checked semantics proofs

Program verification framework can be
certified in a proof assistant

Example : MOBIUS project

All component are proved correct

In a multi-threaded context

Using an interleaving semantics is unsound

Reasoning directly on the JMM is very painful

We need a certified verifier that checks if
program are datarace free

Certified program verification

4

Semantics

Hoare
logic

Type
systems

Static
analysis

Interleaving semantics

Defined and proved in Coq

DataRace
verifier

A Certified Data Race Analysis for a Java-like Language

There is a growing interest in machine
checked semantics proofs

Program verification framework can be
certified in a proof assistant

Example : MOBIUS project

All component are proved correct

In a multi-threaded context

Using an interleaving semantics is unsound

Reasoning directly on the JMM is very painful

We need a certified verifier that checks if
program are datarace free

Certified program verification

4

Semantics

Hoare
logic

Type
systems

Static
analysis

Interleaving semantics

Defined and proved in Coq

DataRace
verifier

A least one good news:

The verifier can be proved correct
wrt. to an interleaving semantics

A Certified Data Race Analysis for a Java-like Language

This work

We specify and proved correct in Coq a state-of-the-art data race analysis for
a representative subset of Java.

 J. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded object-
oriented programs. Tech. report, IBM Research Division, 2001.

M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. PLDI ’06

M. Naik and A. Aiken. Conditional must not aliasing for static race detection. POPL’07

M. Naik. Effective static race detection for java. PhD thesis, Stanford university, 2008.

We propose an extensible framework for certified points-to based data
race analysis

5

A Certified Data Race Analysis for a Java-like Language

Running example

6

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T extends java.lang.Thread {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

A Certified Data Race Analysis for a Java-like Language

Running example

6

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T extends java.lang.Thread {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

1. We create a link list l

Threads: M

...

l
val

next

f

val

next

ftemp

A Certified Data Race Analysis for a Java-like Language

Running example

6

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T extends java.lang.Thread {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

1. We create a link list l

2. We create a bunch of thread that all
share the list l

Threads: M

...

l
val

next

f

val

next

ftemp

T1 T2 ... Tn

t

A Certified Data Race Analysis for a Java-like Language

Running example

6

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T extends java.lang.Thread {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

1. We create a link list l

2. We create a bunch of thread that all
share the list l

3. Each thread chooses a cell, takes a lock
on it and updates it.

Threads: M

...

l
val

next

f

val

next

ftemp

m m m
T1 T2 ... Tn

t

A Certified Data Race Analysis for a Java-like Language

Running example

6

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T extends java.lang.Thread {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

1. We create a link list l

2. We create a bunch of thread that all
share the list l

3. Each thread chooses a cell, takes a lock
on it and updates it.

Threads: M

...

l
val

next

f

val

next

ftemp

m m m
T1 T2 ... Tn

t

A Certified Data Race Analysis for a Java-like Language

Our Java-like language

We consider a bytecode language with

unstructured control flow,

operand stack,

objects,

virtual method calls

lock and unlock operations for thread synchronisation.

7

4 Frédéric Dabrowski and David Pichardie

demonstrated by the fact that no other object of class Main is ever created in the pro-
gram. The next three potential races require a may-happen in parallel analysis [10] to
understand that thats threads of class T are always started strictly after program points
1, 3 and 4 have been reached. Such a proof can be achieved with a reachability analysis
in the call graph and the control flow graph of the program. The last potential race re-
quires the most attention since several thread of class T are updating fields f in parallel.
This writes are safe because they are guarded by a synchronization on an object which
is the only ancestor of the write target in the heap. Such a reasoning relies on the fact,
given two locks guarding two accesses are different then so are the targeted memory lo-
cations. The main difficulty comes when several objects allocated at the same program
point, e.g. within a loop, may point to the same object. The analysis we formalism is
based on this principle. In order to eliminate pairs of potential data races, it relies on
the disjoint reachability property which states that an object is reachable from at most
one object of a given set. The current paper focus on this last property.

2.2 Program syntax

The previous example can be compiled into a bytecode language whose syntax is given
below. The instruction set allows to manipulate objects, call virtual method, start threads
and lock (or unlock) objects for thread synchronization.

ClassId ! {cid, . . .} Field ! {f, g, h, . . .} MethodId ! {mid, . . .}
V ar ! {x, y, z, . . .} Sig = MethodId× ClassIdn × (ClassId ∪ {void})

C ! {name ∈ ClassId; fields ⊆ Field; methods ⊆ M}
M ! {sig ∈ Sig; body ∈ N ⇀ inst}

inst ::= aconstnull | new cid | aload x | astore x | getfield f | putfield f
| areturn | return | invokevirtual mid : (cidn)rtype (n ≥ 0)
| monitorenter | monitorexit | start | ifnd " | goto "

A program is a set of classes, coming with a lookup function matching signatures and
program points (allocation site denoting class names) to methods.A program is a set of
classes, coming with a lookup function matching signatures and program points (allo-
cation site denoting class names) to methods.

2.3 Structure of the development

We now present the general architecture of our development that is sketched in Fig-
ure 2. We formalism three static analysis : a context-sensitive points-to analysis, a must-
lock analysis and a conditional must-not alias analysis based on disjoint reachability.
Each semantics is mechanically proved correct with respect to an operational seman-
tics. However we consider three variants of semantics. While the first one is a standard
small-step semantics, the second one attaches context information to each reference and
frame. This instrumentation makes the soundness proof of the points-to analysis easier.
The last semantics handle more instrumentation in order to count loop iterations. It will

A Certified Data Race Analysis for a Java-like Language

Semantics

Semantic domains

8

A Certified Data Race Analysis for a Java-like Language 7

O ! ! (memory location)
O⊥ ! v ::= ! | Null (value)

s ::= v :: s | ε (operand stack)
V ar → O⊥ ! ρ (local variables)

O ⇀ F → O⊥ ! σ (heap)
CS ! cs ::= (m, i, s, ρ) :: cs | ! (call stack)

O ⇀ CS ! L (threads)
O → ((O× N∗) ∪ {free}) ! µ (locking state)

st ::= (L, σ, µ) (state)

PPT = M× N ! ppt
e ::= ∗ | (!, ?ppt

f , !′) | (!, !ppt
f , !′)

O⊥ ! v ::= ! | Null (value)
s ::= v :: s | ε (operand stack)

V ar → O⊥ ! ρ (local variables)
O ⇀ F → O⊥ ! σ (heap)

CS ! cs ::= (cp, s, ρ) :: cs | ! (call stack)
O ⇀ CS ! L (threads)

Add → ((O× N∗) ∪ {free}) ! µ (locking state)
st ::= (L, σ, µ, ω) (state)

PPT = M× N× Context ! ppt
e ::= ∗ | (!, ?ppt

f , !′) | (!, !ppt
f , !′)

Fig. 3. States and actions

Actions

A Certified Data Race Analysis for a Java-like Language 7

O ! ! (memory location)
O⊥ ! v ::= ! | Null (value)

s ::= v :: s | ε (operand stack)
V ar → O⊥ ! ρ (local variables)

O ⇀ F → O⊥ ! σ (heap)
CS ! cs ::= (m, i, s, ρ) :: cs | ! (call stack)

O ⇀ CS ! L (threads)
O → ((O× N∗) ∪ {free}) ! µ (locking state)

st ::= (L, σ, µ) (state)

PPT = M× N ! ppt
e ::= ∗ | (!, ?ppt

f , !′) | (!, !ppt
f , !′)

O⊥ ! v ::= ! | Null (value)
s ::= v :: s | ε (operand stack)

V ar → O⊥ ! ρ (local variables)
O ⇀ F → O⊥ ! σ (heap)

CS ! cs ::= (cp, s, ρ) :: cs | ! (call stack)
O ⇀ CS ! L (threads)

Add → ((O× N∗) ∪ {free}) ! µ (locking state)
st ::= (L, σ, µ, ω) (state)

PPT = M× N× Context ! ppt
e ::= ∗ | (!, ?ppt

f , !′) | (!, !ppt
f , !′)

Fig. 3. States and actions

Transition system

8 Frédéric Dabrowski and David Pichardie

functions and ⇀ stands for partial functions. In a state (L,σ, µ,ωg), L maps memory
locations to call stacks, i.e. threads and the function σ denotes the heap. The function
ωg is a global counter which is used to handle method calls occurrences in frames. More
precisely, at run-time and for each method m and context c, ωg(m, c) is the number of
the last call to m in context c performed so far. Finally, µ associates with every memory
location $ a pair ($′, n) if $ is locked n times by $′ and the constant free if $ is not held
by any thread. An event ($, ?ppt

f , $′′) (resp. ($, !ppt
f , $′′)) denotes a dereferencing (resp.

an updating) of a field f , performed by the thread $ over the memory location $′, at a
program point ppt. An event ∗ denotes a silent action.

3.2 Transition system

Labelled transitions have the shape st
e→ st′ (when e is ∗ we simply omit it). They rely

on the usual interleaving semantics, as expressed in the rule below.

L $ = cs L, $ # (cs,σ, µ) e→ (L′,σ′, µ′)

(L,σ, µ) e→ (L′,σ′, µ′)

L $ = cs L, $ # (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

(L,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

Reductions of the shape L, $ # (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g) are defined in figure
4. Intuitively, such a reduction express that in state (L,σ, µ,ωg), reducing the thread
defined by the memory location $ and the call stack cs, by a non deterministic choice,
produces the new state (L′,σ′, µ′,ω′

g). For the sake of readability, we rely on an auxil-
iary relation of the shape instr; $; ppt # (i, s, ρ, σ) e→1 (i′, s′, ρ′,σ) for the reduction
of aconstnull, aload, astore, ifnd, goto, putfield and getfield. In figure 4,
we consider only putfield and getfield, the reductions of other instructions are
standard and produce a ∗ event. This auxiliary relation is embedded into the semantics
by rule (1). In every case, if the reduction moves from program point i to program
point i′ (i′ may not be i + 1 because of ifnd and goto instructions) then we increase
the corresponding component of π by one to reflect this move. Events generated by
getfield and putfield match the intuitive meaning we gave before. The function
σ[$.f ← v], where $ ∈ dom(σ), is defined in figure 4(b). The reduction of a new
instruction is similar except that we record the current code pointer of the frame as
part of the fresh address. The function σ[$ ←], where ¬($ ∈ dom(σ)), is defined
by σ[$ ←]($) = λf.Null and σ[($) ←]($′) = σ($′) if $′ &= $. Method invo-
cation generates a new frame, and thus a new code pointer. The global counter ωg is
increased by one with respect to the method and context of the new frame. As sketched
before the new frame keep tracks of the information provided by the calling frame, ex-
cept for the component related to the method and to the context of the new frame. For
this component, the value of the global counter is taken. Thread spawning is similar
to method invocation. However, the new frame is put on top of an empty call stack.
Thus, the new code pointer is obtained by recording the value of the global counter
ωg in functions mapping every method, context and flow edge to 0 (remember that we

A Certified Data Race Analysis for a Java-like Language

Semantics

Transition rules (excerpt)

9

8 Frédéric Dabrowski and David Pichardie

functions and ⇀ stands for partial functions. In a state (L,σ, µ,ωg), L maps memory
locations to call stacks, i.e. threads and the function σ denotes the heap. The function
ωg is a global counter which is used to handle method calls occurrences in frames. More
precisely, at run-time and for each method m and context c, ωg(m, c) is the number of
the last call to m in context c performed so far. Finally, µ associates with every memory
location $ a pair ($′, n) if $ is locked n times by $′ and the constant free if $ is not held
by any thread. An event ($, ?ppt

f , $′′) (resp. ($, !ppt
f , $′′)) denotes a dereferencing (resp.

an updating) of a field f , performed by the thread $ over the memory location $′, at a
program point ppt. An event ∗ denotes a silent action.

(m.body) i = new cid ¬(l′ ∈ dom(σ))
L′ = L[$ #→ (m, i + 1, $′ :: s, ρ) :: cs]

L; $ % ((m, i, s, ρ) :: cs,σ, µ) → (L′,σ[$′ ←], µ)

(m.body) i = start s = $′ :: s′ ¬($′ ∈ dom(L))
Lookup (run : ()void) class(σ, l′) = m1 ρ1 = [0 #→ $′]
L′ = L[$ #→ (m, i + 1, s′, ρ) :: cs, $′ #→ (m1, 0, ε, ρ1) :: !]

L, $ % ((m, i, s, ρ) :: cs,σ, µ) → (L′,σ, µ)

(m.body) i = monitorenter µ($′) ∈ {free, ($, n)} µ′ = lock($, $′, µ)
L′ = L[$ #→ (m, i + 1, s, ρ) :: cs]

L, l % ((m, i, $′ :: s, ρ) :: cs,σ, µ) → (L′,σ, µ′)

3.2 Transition system

Labelled transitions have the shape st
e→ st′ (when e is ∗ we simply omit it). They rely

on the usual interleaving semantics, as expressed in the rule below.

L $ = cs L, $ % (cs,σ, µ) e→ (L′,σ′, µ′)

(L,σ, µ) e→ (L′,σ′, µ′)

L $ = cs L, $ % (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

(L,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

Reductions of the shape L, $ % (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g) are defined in figure
4. Intuitively, such a reduction express that in state (L,σ, µ,ωg), reducing the thread
defined by the memory location $ and the call stack cs, by a non deterministic choice,
produces the new state (L′,σ′, µ′,ω′

g). For the sake of readability, we rely on an auxil-
iary relation of the shape instr; $; ppt % (i, s, ρ, σ) e→1 (i′, s′, ρ′,σ) for the reduction
of aconstnull, aload, astore, ifnd, goto, putfield and getfield. In figure 4,
we consider only putfield and getfield, the reductions of other instructions are
standard and produce a ∗ event. This auxiliary relation is embedded into the semantics
by rule (1). In every case, if the reduction moves from program point i to program
point i′ (i′ may not be i + 1 because of ifnd and goto instructions) then we increase

Races

8 Frédéric Dabrowski and David Pichardie

(m.body) i = new cid ¬(l′ ∈ dom(σ))
L′ = L[" "→ (m, i + 1, "′ :: s, ρ) :: cs]

L; " $ ((m, i, s, ρ) :: cs,σ, µ) → (L′,σ["′ ←], µ)

(m.body) i = start s = "′ :: s′ ¬("′ ∈ dom(L))
Lookup (run : ()void) class(σ, l′) = m1 ρ1 = [0 "→ "′]
L′ = L[" "→ (m, i + 1, s′, ρ) :: cs, "′ "→ (m1, 0, ε, ρ1) :: !]

L, " $ ((m, i, s, ρ) :: cs,σ, µ) → (L′,σ, µ)

(m.body) i = monitorenter µ("′) ∈ {free, (", n)} µ′ = lock(", "′, µ)
L′ = L[" "→ (m, i + 1, s, ρ) :: cs]

L, l $ ((m, i, "′ :: s, ρ) :: cs,σ, µ) → (L′,σ, µ′)

3.2 Transition system

Labelled transitions have the shape st
e→ st′ (when e is ∗ we simply omit it). They rely

on the usual interleaving semantics, as expressed in the rule below.

L " = cs L, " $ (cs,σ, µ) e→ (L′,σ′, µ′)

(L,σ, µ) e→ (L′,σ′, µ′)

L " = cs L, " $ (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

(L,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g)

Reductions of the shape L, " $ (cs,σ, µ,ωg)
e→ (L′,σ′, µ′,ω′

g) are defined in figure
??.

st ∈ ReachableStates(P) st
!1!

ppt1
f !0
→ st1 st

!2R!0→ st2 R ∈ {?ppt2
f , !ppt2

f } "1 '= "2

Race(P, ppt1, f, ppt2)

Intuitively, such a reduction express that in state (L,σ, µ,ωg), reducing the thread de-
fined by the memory location " and the call stack cs, by a non deterministic choice,
produces the new state (L′,σ′, µ′,ω′

g). For the sake of readability, we rely on an auxil-
iary relation of the shape instr; "; ppt $ (i, s, ρ, σ) e→1 (i′, s′, ρ′,σ) for the reduction
of aconstnull, aload, astore, ifnd, goto, putfield and getfield. In figure ??,
we consider only putfield and getfield, the reductions of other instructions are
standard and produce a ∗ event. This auxiliary relation is embedded into the semantics
by rule (1). In every case, if the reduction moves from program point i to program point
i′ (i′ may not be i+1 because of ifnd and goto instructions) then we increase the cor-
responding component of π by one to reflect this move. Events generated by getfield
and putfield match the intuitive meaning we gave before. The function σ[".f ← v],
where " ∈ dom(σ), is defined in figure ??. The reduction of a new instruction is similar
except that we record the current code pointer of the frame as part of the fresh address.

A Certified Data Race Analysis for a Java-like Language

Data Race Analysis

We start from a large set of
potential race pairs.

We successively remove pairs
that are proved to be false races.

10

A Certified Data Race Analysis for a Java-like Language

Data Race Analysis

We start from a large set of
potential race pairs.

We successively remove pairs
that are proved to be false races.

10

Original pairs

Aliasing pairs

points-to
analysis

Escaping pairs

thread-escape
analysis

Unlocked pairs

conditional must not
alias analysis

A Certified Data Race Analysis for a Java-like Language

Original pairs

11

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

Java’s strong typing dictates that a pair of
accesses may be involved in a race only if both
access the same field.

Here :

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis

12

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

Points-to analysis computes a finite
abstraction of the memory where locations
are abstracted by their allocation site

Threads: M T1 T2 ... Tn

...

val

next

f

val

next

f

t

l
temp

m m m

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis

12

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

Points-to analysis computes a finite
abstraction of the memory where locations
are abstracted by their allocation site

Threads: M T1 T2 ... Tn

...

val

next

f

val

next

f

h3

h1

h2

h4

t

l
temp

m m m

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis

12

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 List temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

Points-to analysis computes a finite
abstraction of the memory where locations
are abstracted by their allocation site

Threads: M T1 T2 ... Tn

...

val

next

f

val

next

f

h3

h1

h2

h4

t

l
temp

m m m

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis

13

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

Points-to analysis computes a finite
abstraction of the memory where locations
are abstracted by their allocation site

h3

h1

h2

Threads:

h4

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis

14

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

For all these potential races, all accesses
correspond to a same thread.

•h is a single-instance allocation site

h3

h1

h2

Threads:

h4

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis

15

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

For all these potential races, all accesses
correspond to a same thread.

•h is a single-instance allocation site

h3

h1

h2

Threads:

h4

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis

16

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

For all these potential races, accesses
correspond to different locations.

•t points-to h4
•temp.val and m.val points-to h2

h3

h1

h2

Threads:

h4

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Points-to analysis in Coq

The analysis is parameterized by an abstract notion of context which captures a
large variety of points-to context.

17

Module Type CONTEXT.

 Parameter pcontext : Set. (* pointer context *)
 Parameter mcontext : Set. (* method context *)

 Parameter make_new_context : method -> line -> classId -> mcontext -> pcontext.
 Parameter make_call_context : method -> line -> mcontext -> pcontext -> mcontext.
 Parameter get_class : program -> pcontext -> option classId.

 Parameter class_make_new_context : forall p m i cid c,
 body m i = Some (New cid) ->
 get_class p (make_new_context m i cid c) = Some cid.

 Parameter init_mcontext : mcontext.
 Parameter init_pcontext : pcontext.

 Parameter eq_pcontext : forall c1 c2:pcontext, {c1=c2}+{c1<>c2}.
 Parameter eq_mcontext : forall c1 c2:mcontext, {c1=c2}+{c1<>c2}.

End CONTEXT.

A Certified Data Race Analysis for a Java-like Language

Points-to analysis in Coq

We prove the soundness of the analysis with respect to an instrumented points-to
semantics.

18

Points-to semanticsPoints-to analysis

Standard semantics
: sound w.r.t.

: safe instrumed w.r.t.
: use the result of

A Certified Data Race Analysis for a Java-like Language

Thread-escape analysis

19

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

For all these potential races, the main thread
access location that are not (yet) shared

•Naik uses a flow sensitive thread-escape
analysis

•We are currently working on its
formalisationh3

h1

h2

Threads:

h4

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

Thread-escape analysis

20

class List{ T val; List next; }

class Main() {
 void main(){
 List l = null;
 while (*) {
 temp = new List();
1: temp.val = new T();
2: temp.val.f = new A();
3: temp.next = l;
 l = temp }
 while (*) {
 t = new T();
4: t.f = ...;
5: t.data = l;
 t.start() }
 return;
 }
}

class T {
 A f;
 List data;
 void start(){
 while(*){
6: List m = this.data;
7: while (*) { m = m.next; }
8: synchronize(m){ m.val.f = ...;}}
 return;}}

For all these potential races, the main thread
access location that are not (yet) shared

•Naik uses a flow sensitive thread-escape
analysis

•We are currently working on its
formalisationh3

h1

h2

Threads:

h4

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

(1,val,1),(1,val,2),(2, f, 2), (3, next, 3),
(5,data,5),(4,f,4),

(2,f,4),(4,f,8),

(5,data,6),(3,next,7),(1,val,8),(2,f,8),

(8,f,8)

A Certified Data Race Analysis for a Java-like Language

The last one...

21

synchronize(m){ m.val.f = ...;}

Threads:

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

synchronize(m){ m.val.f = ...;}

l

Threads: M T1 T2 ... Tn

...

val

next

f

val

next

ftemp

t

m m m

If the two threads lock the same location OK

If the two threads lock different locations, we must prove that they access
different location with m.val

Disjoint Reachability: for a set of allocation sites, if and only if
whenever an object allocated at site may be reachable by one or more field
dereferences from each of objects and allocated at any sites in , then and
rrr are one and the same object.

h ∈ DR(H) H

ho

o1

o2

H o1o2

A Certified Data Race Analysis for a Java-like Language

Disjoint Reachability

22

We extend the formalisation made by Naik and Aiken for a While language to
our bytecode language.

Main steps:

1. Define an instrumented semantic with loop counters: at each allocation
site, the new location is tagged with the current loop counter

2. Formally prove that instrumentation completely identify locations: two
location tagged with the same loop counter must be equals

3. Define and prove correct a type and effect system that computes couples
(h1,h2) such that h1 points to h2 but the two corresponding objects were
allocated in the same loop iteration

4. Define and prove correct a sound under-approximation of the disjoint
reachability notion, using the previous type system.

A Certified Data Race Analysis for a Java-like Language

Using Disjoint Reachability

23

Disjoint reachability is mixed with two other analyses

A must-lock analysis computes a must information: for all location targeted by a
read or a write, which locks must be held by the current thread and from
which the location is accessible wrt to the history of heaps ?

Points-to analysis gives a standard may information: the set of locations that
may be targeted by a read or a write

We mix all these analysis to remove races

16 Frédéric Dabrowski and David Pichardie

4.4 Application to data races

The conditional must-not-alias analysis takes as input the result of a must-lock anal-
ysis MustLock : PPT × Field → P(PPT)2 such that if MustLock(ppt, f) =
(May ,Must) then for all partial execution

(L0,σ0, µ0,ω0)
e0→ . . .

en−1→ (Ln,σn, µn,ωn) !R!′→ (Ln+1,σn+1, µn+1,ωn+1)

with R ∈ {!ppt
f , ?ppt

f }:

– #′.cp ∈ May (may alias information)
– ∀pptlock ∈ Must ,∃#lock ,∃k, µn(#lock) = (#, k) and #lock .cp = pptlock and ∃j ∈
{0, . . . , n}, Reachσj (#lock , #′) (must alias information)

Definition 1.

FΣ(R) = {(ppt1, f, ppt2) ∈ R | ¬
(

Must1 &= ∅ ∧Must2 &= ∅
∧May1 ∩May2 ⊆ DRΣ(Must1 ∪Must2)

)
}

where P(ppt1, f) = (May1,Must1) P(ppt2, f) = (May2,Must2)

Theorem 1. If R is a safe approximation of data races and if S,Γ , Σ is a typing of the
program then FΣ(R) is a safe approximation of data races.

5 Conclusions and future work

In this paper, we have presented a formalisation a of Java bytecode data race analysis
based on a context-sensitive points-to analysis and the conditional must-not-alias of
Naik and Aiken. The corresponding Coq development has required a little more than
10.000 lines of code. It is available on-line at

http://www.irisa.fr/lande/datarace

In our future work we plan to investigate an executable implementation of this cer-
tified analysis. This will allow to extract a certified implantation of our analyser, fol-
lowing the methodology proposed in our previous work [?].

Acknowledgment This work was partly funded by the IST-FET programme of the Eu-
ropean Commission, under the IST-2005-015905 MOBIUS project and by the ANR-
SETI-06-010 grant.

References

1. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: preventing
data races and deadlocks. In ACM Press, editor, OOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applica-
tions, pages 211–230, New York, NY, USA, 2002.

A Certified Data Race Analysis for a Java-like Language

Running example

24

synchronize(m){ m.val.f = ...;}

Threads:

h1
h2 h3

h4h

next

val f

data

l
temp

m

t

synchronize(m){ m.val.f = ...;}

l

Threads: M T1 T2 ... Tn

...

val

next

f

val

next

ftemp

t

m m m

May
1
=May

2
= {h2}

Must1 =Must2 = {h1}

DRΣ({h1}) = {h2}

Must1 ! ∅ ∧Must2 ! ∅∧

May1 ∩May2 ⊆ DRΣMust1 ∩Must2)⇒

A Certified Data Race Analysis for a Java-like Language

The big picture

25

Points-to semantics

Points-to analysis

Conditional must-not-alias analysis

Standard semantics

Instrumented counting
semantics

Thread escape
analysis

Must-lock
analysis

: sound w.r.t.

: safe instrumed w.r.t.
: use the result of

A Certified Data Race Analysis for a Java-like Language

Conclusions

26

Points-to static analyses give powerful tools to prove data-race-freeness

We need to assemble several complex blocks of this kind to obtain a good
tool

Our current formalisation (15.000 line of Coq) should be sufficiently modular to
handle new blocks without major reconstruction

Our ultimate goal is to build a powerful certified datarace verifier for bytecode Java

But the current formalisation is not executable

Building an efficient certified analyser/checker is a big challenge

We could refine the current formalisation to something executable

