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Hongseok Yang:

“When you prove a program, you prove much more than you think”

In separation logic:
Formulas denote heaps.
Ξ�Θ denotes the conjunction of two disjoint heaps Ξ and Θ.
Proofs show how subheaps are used (and unused) by commands.

ë Unused subheaps are (Frame)d.

tΞauCtΞa1u (Frame Ξf )
tΞa �Ξf uCtΞa1 �Ξf u

ë Command C does not access heap Ξf during execution.
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In this work:
We parallelize and optimize proven programs.
We use the proof as an analysis:

� Useless data discovery (Frame) rule
� Useful data discovery antiframes
� Alias analysis � operator

tΞauCtΞa1u (Frame Ξf )
tΞa �Ξf uCtΞa1 �Ξf u

Optimizations are expressed with a rewrite system between proof trees.
Proof trees are derivations of Hoare triplets.
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Next slide: an example

x ÞÑrf : ns has a dual meaning:
� x.f contains value n.
� Permission to write and read x.f .

The example is ugly.

But look at the commands at the root of the trees.
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Λ
n,m,k
x,y,z

∆
� x ÞÑrf : ns � y ÞÑrf : ms � z ÞÑrf : ks

(Mutate)
tΛxuxÑf � ntΛn

xu (Fr Λ ,
y,z)

tΛ , ,
x,y,zuxÑf � ntΛn, ,

x,y,zu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Fr Λn,

x,z)
tΛn, ,

x,y,zuyÑf � mtΛn,m,
x,y,z u

(Mutate)
tΛzuzÑf � ktΛk

zu (Fr Λn,m
x,y )

tΛn,m,
x,y,z uzÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛn, ,
x,y,zuyÑf � m; zÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛ , ,
x,y,zuxÑf � n; yÑf � m; zÑf � ktΛn,m,k

x,y,z u

Ó

(Mutate)
tΛxuxÑf � ntΛn

xu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Mutate)

tΛzuzÑf � ktΛk
zu

(Parallel)
tΛ ,

y,zuyÑf � m } zÑf � ktΛm,k
y,z u

(Parallel)
tΛ , ,

x,y,zuxÑf � n } pyÑf � m } zÑf � kqtΛn,m,k
x,y,z u

Hypothesis: the lhs is a valid proof tree.
Soundness follows from the inclusion of the rhs’s leafs in the lhs’s leafs.
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High-Level
Procedure program

verifier

program C

proof
treegenerator

C correct
C wrong

proof
tree

rewriter

C,P(P is C’s proof)

Copt,Popt

(Copt is C parallelized
and optimized)



The rewrite system modifies programs but preserves specifications:

P
tΞuCtΘu

Ó

Q
tΞuC1tΘu

The program and the the proof are modified: P,C Ñ Q,C1.
But specifications are preserved: Ξ,Θ Ñ Ξ,Θ.



The (Frame) rule is the central ingredient of our procedure.
Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

. . .
x1 fresh
Π $ F � E t. . .^Πrx1{xs ¦ pΣ�F ÞÑrρsqrx1{xsuCtΠ1 ¦ Σ1u

(Lookup)
tΠ ¦ pΣ�F ÞÑrρsqux :� EÑ f ; CtΠ1 ¦ Σ1u

Substitutions x1{x affect the whole state: no explicit frame.
Π is “too big”: there exists a “smaller” antiframe Πs s.t. Πs $ F � E.



The (Frame) rule is the central ingredient of our procedure.
Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

Formulas Ξ,Θ are couples of a pure formula Π and a spatial formula Σ.
� Π is a ^-conjoined list of variable equalities/inequalities.
� Σ is �-conjoined list of ÞÑ predicates (and more complex, irrelevant, formulas).

. . .
x1 fresh
Π $ F � E t. . .^Πrx1{xs ¦ pΣ�F ÞÑrρsqrx1{xsuCtΠ1 ¦ Σ1u

(Lookup)
tΠ ¦ pΣ�F ÞÑrρsqux :� EÑ f ; CtΠ1 ¦ Σ1u

Substitutions x1{x affect the whole state: no explicit frame.
Π is “too big”: there exists a “smaller” antiframe Πs s.t. Πs $ F � E.



The (Frame) rule is the central ingredient of our procedure.
Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

. . .
x1 fresh
Π $ F � E t. . .^Πrx1{xs ¦ pΣ�F ÞÑrρsqrx1{xsuCtΠ1 ¦ Σ1u

(Lookup)
tΠ ¦ pΣ�F ÞÑrρsqux :� EÑ f ; CtΠ1 ¦ Σ1u

Substitutions x1{x affect the whole state: no explicit frame.
Π is “too big”: there exists a “smaller” antiframe Πs s.t. Πs $ F � E.



Recall the big picture ?

program
verifier

program C

proof
treegenerator

C correct
C wrong

proof
tree

rewriter

C,P(P is C’s proof)

Copt,Popt

(Copt is C parallelized
and optimized)

In the proof tree generator:
Proof rules with explicit frames.
But still usage of the program’s
verifier normal rules for verification.

Next slide:

Proof rules with explicit {anti-,} frames



Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

. . .
x1 fresh
Π $ F � E t. . .^Πrx1{xs ¦ pΣ�F ÞÑrρsqrx1{xsuCtΠ1 ¦ Σ1u

(Lookup)
tΠ ¦ Σ�F ÞÑrρsux :� EÑ f ; CtΠ1 ¦ Σ1u

With explicit frames and antiframes

x1 fresh . . .
Πa $ F � E
Ξ � Πarx1{xs^ . . . ¦ pΣa �F ÞÑrρsqrx1{xs

(Lookup)
tΠa ¦ Σa �F ÞÑrρsux :� EÑ f tΞu x R Ξf (Frame Ξf )

tpΠa ¦ Σa �F ÞÑrρsq �Ξf ux :� EÑ f tΞ�Ξf u tΞ�Ξf uCtΞ1u
(Seq)

t pΠa ¦ Σa �F ÞÑrρsq
looooooooomooooooooon

antiframe needed to prove E ÞÑrρs and affected by [x’/x]

� Ξfloomoon

frame unaffected by rx1{xs

ux :� EÑ f ; CtΞ1u



Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

x1 fresh tx � Erx1{xs^Πrx1{xs ¦ Σrx1{xsuCtΠ1 ¦ Σ1u
(Assign)

tΠ ¦ Σux :� E; CtΠ1 ¦ Σ1u

Same problem: substitutions rx1{xs affect the whole state.

With explicit frames and antiframes

x1 fresh (Assign)
tΞaux :� EtΞarx1{xsu x R Ξf (Frame Ξf )

tΞa �Ξf ux :� EtΞarx1{xs �Ξf u tΞarx1{xs �Ξf uCtΞ1u
(Seq)

t Ξaloomoon

antiframe affected by [x’/x]

� Ξfloomoon

frame unaffected by [x’/x]

ux :� E; CtΞ1u



Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

Π $K (Inconsistent)
tΠ ¦ ΣuCtΘu

With explicit frames and antiframes

Πa $K
(Inconsistent)

tΠa ¦ empuCtΘu
(Frame Πf ¦ Σf )

t Πa ¦ emp
loomoon

sufficient antiframe to prove K

� Πf ¦ Σfloomoon

frame

uCtΘu

emp
∆
� the heap is empty.



The proof tree generator implements rules with explicit frames and antiframes.
Written as an extension of the program verifier (= smallfoot).

Problem: proof trees generated with these rules have a special shape



For successive atomic commands A, trees have the following shape:

. . . (Frame)
t. . .uA0t. . .u

. . . (Frame)
t. . .uA1t. . .u

. . . (Frame)
t. . .uA2t. . .u

(Empty)
. . .$ . . .

(Seq)
t. . .uA2t. . .u (Seq)

t. . .uA1; A2t. . .u (Seq)
t. . .uA0; A1; A2t. . .u

A (Frame) at each atomic command.
ë Problem: Frames are redundant

(Mutate)
tΛxuxÑf � ntΛn

xu (Fr Λ ,
y,z)

tΛ , ,
x,y,zuxÑf � ntΛn, ,

x,y,zu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Fr Λn,

x,z)
tΛn, ,

x,y,zuyÑf � mtΛn,m,
x,y,z u

(Mutate)
tΛzuzÑf � ktΛk

zu (Fr Λn,m
x,y )

tΛn,m,
x,y,z uzÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛn, ,
x,y,zuyÑf � m; zÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛ , ,
x,y,zuxÑf � n; yÑf � m; zÑf � ktΛn,m,k

x,y,z u
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We rewrite proof trees to frame multiple commands (= frame factorization).

Below, Ξc is the factorized frame.

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

tΞauCtΞpu
(Fr Ξf )

tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu
(Fr Θf )

tΘa �Θf uC1tΘp �Θf u tΘp �Θf uC2tΞ1u
(Seq)

tΘa �Θf uC1; C2tΞ1u
(Seq)

tΞa �Ξf uC; C1; C2tΞ1u

Ó FactorizeFrames

tΞauCtΞpu (Fr Ξf0 )
tΞa �Ξf0uCtΞp �Ξf0u

tΘauC1tΘpu
(Empty)

Θp $ Θp
(Seq)

tΘauC1tΘpu (Fr Θf0 )
tΘa �Θf0uC1tΘp �Θf0u (Seq)

tΞa �Ξf0uC; C1tΘp �Θf0u (Fr Ξc)
tΞa �Ξf uC; C1tΘp �Θf u tΘp �Θf uC2tΞ1u

(Seq)
tΞa �Ξf uC; C1; C2tΞ1u
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(Empty)

Θp $ Θp
(Seq)
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Example of frame factorization:

(Mutate)
tΛxuxÑf � ntΛn

xu (Fr Λ ,
y,z)

tΛ , ,
x,y,zuxÑf � ntΛn, ,

x,y,zu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Fr Λn,

x,z)
tΛn, ,

x,y,zuyÑf � mtΛn,m,
x,y,z u

(Mutate)
tΛzuzÑf � ktΛk

zu (Fr Λn,m
x,y )

tΛn,m,
x,y,z uzÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛn, ,
x,y,zuyÑf � m; zÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛ , ,
x,y,zuxÑf � n; yÑf � m; zÑf � ktΛn,m,k

x,y,z u

Ó

(Mutate)
tΛxuxÑf � ntΛn

xu (Fr Λ ,
y,z)

tΛ , ,
x,y,zuxÑf � ntΛn, ,

x,y,zu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Fr Λz)

tΛ ,
y,zuyÑf � mtΛm,

y,z u

(Mutate)
tΛzuzÑf � ktΛk

zu (Fr Λm
y )

tΛm,
y,z uzÑf � ktΛm,k

y,z u
(Seq)

tΛ ,
y,zuyÑf � m; zÑf � ktΛn,m

y,z u
(Fr Λn

x )
tΛn, ,

x,y,zuyÑf � m; zÑf � ktΛn,m,k
x,y,z u

(Seq)
tΛ , ,

x,y,zuxÑf � n; yÑf � m; zÑf � ktΛn,m,k
x,y,z u



With factorized frames: optimizations are (quite) simple to express

tΞuCtΘu
(Frame Ξ1)

tΞ�Ξ1uCtΘ�Ξ1u

tΞ1uC1tΘ1u
(Frame Θ)

tΘ�Ξ1uC1tΘ�Θ1u tΘ�Θ1uC2tΞ2u
(Seq)

tΘ�Ξ1uC1; C2tΞ2u
(Seq)

tΞ�Ξ1uC; C1; C2tΞ2u

ÓParallelize

tΞuCtΘu tΞ1uC1tΘ1u
(Parallel)

tΞ�Ξ1uC } C1tΘ�Θ1u tΘ�Θ1uC2tΞ2u
(Seq)

tΞ�Ξ1uC } C1; C2tΞ2u

tΘ�Θ1uC2tΞ2u can be “dummy” i.e., a single application of (Empty).
ë Or C2 can be a “normal” continuation.

This rule matches the two cases.
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Optimizations include:
parallelization (previous slide)
early disposal and late allocation (omitted in this talk)
early lock releasing and late lock acquirement (next 2 slides)
improvement of temporal locality (3th slide)



Locks in Separation Logic

Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

� When a lock is acquired, it lends its resource invariant to the acquiring thread.
� When a lock is released, it claims back its resource invariant from the releasing

thread.

Formally (where rΘ means Θ is r’s resource invariant):

tΞ�ΘuCtΞ1 �Θu
(Region)

tΞuwith rΘ do C endwithtΞ1u
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Intuition: execute as much code as possible outside critical regions,

ë by releasing locks as soon as possible

tΞ�ΘuCtΞ1 �Θu

tΞ1uC1tΞ2u
(Frame Θ)

tΞ1 �ΘuC1tΞ2 �Θu
(Seq)

tΞ�ΘuC; C1tΞ2 �Θu
(Region)

tΞuwith rΘ do C; C1 endwithtΞ2u tΞ2uC2tΞ3u
(Seq)

tΞuwith rΘ do C; C1 endwith; C2tΞ3u

Ó EarlyLockReleasing

tΞ�ΘuCtΞ1 �Θu
(Region)

tΞuwith rΘ do C endwithtΞ1u tΞ1uC1tΞ2u
(Seq)

tΞuwith rΘ do C endwith; C1tΞ2u tΞ2uC2tΞ3u
(Seq)

tΞuwith rΘ do C endwith; C1; C2tΞ3u



Intuition: execute as much code as possible outside critical regions,

ë by acquiring locks as late as possible

tΞuCtΞ1u
(Frame Θ)

tΞ�ΘuCtΞ1 �Θu tΞ1 �ΘuC1tΞ2 �Θu
(Seq)

tΞ�ΘuC; C1tΞ2 �Θu
(Region)

tΞuwith rΘ do C; C1 endwithtΞ2u tΞ2uC2tΞ3u
(Seq)

tΞuwith rΘ do C; C1 endwith; C2tΞ3u

Ó LateLockAcquirement

tΞuCtΞ1u

tΞ1 �ΘuC1tΞ2 �Θu
(Region)

tΞ1uwith rΘ do C1 endwithtΞ2u

tΞuC; with rΘ do C1 endwithtΞ2u tΞ2uC2tΞ3u
(Seq)

tΞuC; with rΘ do C1 endwith; C2tΞ3u



temporal locality ∆
� time between two accesses to the same heap cell

ë the smaller the better (no need to free/load processors’s caches)



Intuition below: C and C2 access the same part of the heap
ë Execute them successively

tΞuCtΞ1u
(Fr Θ)

tΞ�ΘuCtΞ1 �Θu

tΘuC1tΘ1u
(Fr Ξ1)

tΞ1 �ΘuC1tΞ1 �Θ1u
(Seq)

tΞ�ΘuC; C1tΞ1 �Θ1u

tΞ1uC2tΞ2u
(Fr Θ1)

tΞ1 �Θ1uC2tΞ2 �Θ1u
(Seq)

tΞ�ΘuC; C1; C2tΞ11 �Θ1u

Ó TemporalLocality

tΞuCtΞ1u tΞ1uC2tΞ2u
(Seq)

tΞuC; C2tΞ2u
(Fr Θ)

tΞ�ΘuC; C2tΞ11 �Θu

tΘuC1tΘ1u
(Fr Ξ2)

tΞ2 �ΘuC1tΞ2 �Θ1u
(Seq)

tΞ�ΘuC; C2; C1tΞ2 �Θ1u



Implementation:
The rewrite rules have been implemented in Java+ tom .
tom extends Java to pattern match against tom/user-defined Java objects.
The implementation is approximately 2775 lines long.
Each rewrite rule is less than 58 lines of code (i.e. manageable).
Use of tom’s strategies to fine tune optimizations.



Demo

requires tree(t); ensures emp;

disp tree(t) {
local i, j;
if(t � nil)tu else t

i :� tÑ l; j :� tÑr;
disp tree(i); disp tree(j);
disposeptq;
}
}

Ñ

requires tree(t); ensures emp;

disp tree(t) {
local i, j;
if(t � nil)tu else t

i :� tÑ l; j :� tÑr;
disposeptq }
(disp tree(i) } disp tree(j));
}
}



I’m looking for a post doc starting approx. September 2009



Conclusion

A entirely new technique for parallelizing and optimizing programs
No ad-hoc analyses: separation logic proofs are taken as analyses.
Can parallelize any code (i.e. not restricted to loops)
Soundness is still doable (� classical parallelizers)
Prototype implementation



Future Work

1 Formalize the shape of proof trees (is there a normal form ?)
2 Release the implementation (cleanup + missing optimizations)
3 Extension to fractional permissions (more parallelization possible)
4 Extension to Parkinson’s per-field � splitting (more parallelization possible)
5 Extension to object orientation (subsumes (4))(to deal with abstraction)
6 More optimizations

But:
Points (3), (4), and (5) require an (open-source) program verifier with these
features.


