Automatic Parallelization and Optimization of Programs
by Proof Rewriting

Clément Hurlin

INRIA Sophia Antipolis - Méditerranée, France
Twente Universiteit, The Netherlands

January 8" 2008

Parallelism and Security (ParSec) meeting

Hongseok Yang:

“When you prove a program, you prove much more than you think”

Hongseok Yang:

“When you prove a program, you prove much more than you think”

In separation logic:
m Formulas denote heaps.
m = x 0 denotes the conjunction of two disjoint heaps & and ©.

m Proofs show how subheaps are used (and unused) by commands.

Hongseok Yang:

“When you prove a program, you prove much more than you think”

In separation logic:
m Formulas denote heaps.
m = x 0 denotes the conjunction of two disjoint heaps & and ©.
m Proofs show how subheaps are used (and unused) by commands.

s Unused subheaps are (Frame)d.

(24 CIE)
(EaxE)C(E, 5/}

(Frame &)

L, Command C does not access heap Zr during execution.

In this work:
m We parallelize and optimize proven programs.

m We use the proof as an analysis:

m Useless data discovery (Frame) rule
m Useful data discovery
B Alias analysis * operator

In this work:
m We parallelize and optimize proven programs.

m We use the proof as an analysis:

m Useless data discovery
m Useful data discovery
B Alias analysis

{ JC{Ea}

{Ea *Ef}C{Ear *Ef}

(Frame =)

(Frame) rule

* operator

In this work:
m We parallelize and optimize proven programs.
m We use the proof as an analysis:

m Useless data discovery (Frame) rule
m Useful data discovery
B Alias analysis * operator

{ JC{Ea}

{Ea *Ef}C{Ear *Ef}

(Frame =)

m Optimizations are expressed with a rewrite system between proof trees.

m Proof trees are derivations of Hoare triplets.

Next slide: ‘ an example ‘

m x— [f : n] has a dual meaning:

B x.f contains value n.
B Permission to write and read x.f.

Next slide: ‘ an example ‘

m x— [f : n] has a dual meaning:

B x.f contains value n.
B Permission to write and read x.f.

m The example is ugly.

m But look at the | commands at the root of the trees.

nmk A

Avyz =x=[fin]xy=[fim]xz—[f K]

——— (Mutate) B mmre——— (\ 1 5:1 ()]
Ay —f = m{AL} {AJeof — KAL) .
——————— (Mutate) : 0 FrA) ok (Fr A
{Ax—f = n{A}} (Fr Ase) {2y —f = m{ALy} (A=Y 2o f = K{AL se0)
Ao =nfAgy (Nijhyof = miof = HAGE) !
A= =nmy—>f =miz—f = /\{Aﬁ_;,’_lzk} (5ed)
l
B E———— " (1| £:1 (5} ——— (Mutate)
{A}y—f = m{A]'} {Asye—f = k{AL
————— (Mutate) - —— (Parallel)
{Akx—f = n{A} Ay —f = m || 2f = k{A}}
(Parallel)

{Azzadbiof =n | (—f =m | 2of =)

nmk A

N2 s [f]y [f) w2 [F 2 4]

——— (Mutate) TEEVERTIVE (Mutate)
{Ashy—of = m{A}} A}z of = kA nm
———————— (Mutate) (Fr AL:) n (Fr AT
e T N (e e R G I L N
{A “hx—of = n{A - e {Al o dyof =mizof = k{A”"’k (Seq) a
e
{A """ xof =nmyof =m; 'Hf*A{A’“”k} d
l
———— — (Mutate) TRV (Mutate)
{A5 y—f = m{A}'} {Az}zof = k{AL
———— — (Mutate) (Parallel)
{Ajx—f = n{Al} Ay —f = m || 2f = k{A}}
(Parallel)

{Asgzhi—f =] —f = m 2= = DAL

m Hypothesis: the lhs is a valid proof tree.

m Soundness follows from the inclusion of the rhs’s leafs in the lhs’s leafs.

High-Level lpmgram ¢
Procedure —

verifier

C wrong
C correct

proof
tree
generator

(P is C’s proof)

proof
tree

rewriter

(C°P is C parallelized

and optimized)
Copt’ popt

The rewrite system modifies programs but preserves specifications:

a

{Ejc{e;

l

Q
{Ejc{e;

m The program and the the proof are modified: #,C — 2. C".
m But specifications are preserved: £,0 — =, 0.

m The (Frame) rule is the central ingredient of our procedure.

m Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

m The (Frame) rule is the central ingredient of our procedure.

m Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

m Formulas E, ® are couples of a pure formula IT and a spatial formula X.

m Ilis a A-conjoined list of variable equalities/inequalities.
m Y is x-conjoined list of +— predicates (and more complex, irrelevant, formulas).

m The (Frame) rule is the central ingredient of our procedure.

m Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

;c."fresh
[-F=E {...ANOX/x]i(ExF—[p])[x/x]}C{IT" 1L}

(L (Z«F>[p])lx = E—f; C{IT 1 ¥/}

(Lookup)

m Substitutions x’/x affect the whole state: no explicit frame.

m I1is “too big”: there exists a “smaller” antiframe I s.t. [I; - F = E.

‘ Recall the big picture ?

lprogram C

program

verifier In the proof tree generator:

C wrong m Proof rules with explicit frames.

C' correct
m But still usage of the program’s

pLool verifier normal rules for verification.
generator

(P is C’s proof) Next slide:

proof

Proof rules with explicit {anti-,} frames ‘
tree

rewriter

(CoPt is C parallelized
and optimized)

Copt 'Popt

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

x’ fresh

M-F=E {...A0Y/x]{(ExF—[p])[x'/x]}C{TT i L'}
(Lookup)
{II1Z*xF>[p]}x:=E—f; C{IT' i X'}
‘ With explicit frames and antiframes ‘
x' fresh
I, -F=E
E=T,[/x| A ...t (Egx F>[p]) [+ /x] Look
(M, Zax Fs o]l = E—F (2] vgE, ookp)
. — — (Frame Z7) o —
(Tl 1 Zqx Fo [p]) # 2/ Jx im E—f{Ex 5} BECE)
{ (T, 1 S Frs[p]) * 5 bvi= E—f; C(2}
—_ ——

antiframe needed to prove E+— [p] and affected by [x’/x] frame unaffected by [x'/x]

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

X fresh {x=E[/x] ATI[x/ /x| VE[/ /x| }C{IT" { &'}

Assi
{ITiZ}x:=E; C{IT" 1 2} (Assign)
m Same problem: substitutions [x’/x] affect the whole state.
‘ With explicit frames and antiframes ‘
— % freih 7 (Assign) .
{Ea}x = E{E4[x /x]} x¢ By _
— p— — (Frame =¢) o _ i
{EaxEp}x = E{E,[x/x] x Ef} {Eax'/x] xEr}C{E"} (Seq)
{ o * g tx:=E; C{Z'}
S~ S~——

antiframe affected by [x'/x] frame unaffected by [x'/x]

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

M- 1

m (Inconsistent)

‘ With explicit frames and antiframes ‘

M- L
{I1, i emp}C{O®}
{ I, | emp * I 1 Zp }C{O}

(Inconsistent)
(Frame IT¢ i Ef)

sufficient antiframe to prove L frame

E emp 2 the heap is empty.

m The proof tree generator implements rules with explicit frames and antiframes.

m Written as an extension of the program verifier (= smallfoot).

Problem: proof trees generated with these rules have a special shape

For successive atomic commands A, trees have the following shape:

————— (Frame) [
———————— (Frame) LodAat) oo
——————— (Frame) Lot L JAof o} (Seq)
- JAol.} CoAml]
eq)

{-JA0 A A}

m A (Frame) at each atomic command.

L, Problem: Frames are redundant

(Empty)
(Seq)

For successive atomic commands A, trees have the following shape:

————— (Frame) — (Empt
, Ao} L ey
———_ (Frame) (Seq)
) (AL A
———— (Frame) (Seq)
(Ao} EoAALT (o
{- oA Axf.. .}
m A (Frame) at each atomic command.
L, Problem: Frames are redundant
————— — (Mutate) ————— (Mutate)
{A;y—f = m{A]'} o {Aye—f = k{Af} o
o o (Mutate) - (Fr Az nm,- 1,m.k (Fr /\“}.)
{A}x—f =n{Al} (Fr Ase) {ALzhy—f = m{AL)! {AL e —f = ALY (Seq)
Aebiof —n(Agzy Nire)y of — e of — KA ¢
- (Seq)

{A ‘}x—>f_ny—>f m; 7—>f_k{A"’”"

m We rewrite proof trees to frame multiple commands (= frame factorization).

m We rewrite proof trees to frame multiple commands (= frame factorization).

m Below, =. is the factorized frame.

Guard: & & Ep = and Of & Op x =,

{©.3C'{0,}

(Fr &) -
(B} C1Ep) (FrZ)) {0 * O/} C'{©), » Oy} {0, * O/} C"{E"})
ErECE x5 ! (0, %0,1C"; C"{Z'} d
E.x51C O C{E} (Se
| FactorizeFrames
{©.4C'0,} ©,-06, ES:;’;W)
{E.}C{E,} FrE.) {0.}C'{6,} FrO,)
Ea* B JC{E, By } " {@, * 05, }C'{©, x Oy, } (SCQ)fO
Ea* By }C: C'{0) + Oy } (Fr=.)
B+ E)C {0, +0;) {©,* &} C"{F'}

E,+E1C: O C(E} (e

m Example of frame factorization:

—————— (Mutate) ———— — (Mutate)
A3y —f =m{Ar} {As}z—f = k{A}} o
————— (Mutate) (Fr Al) P’ (Fr AT
Wihof =midd goaes A5y —f = m{Agys} (ALY of = A (Seq)
T AT
{Aggzhaof = n{Ayz) i {(Nigzhy—=f = mizof = KA (Seq)
- e
{Agnixof =y of = miz—of = k{Ammk d
i
A—{A} (Mutate) m (Mutate)
= m Sz of = k
{ ,\}) f=m 'y (FrA;) = - 4 (FrA;f’)
{Azhy—f =m{Alr} {ATr e —f = K{AT} Seq)
Aot —piamy Mutate) Ay —f = miz—f = kAL
{A;}x—f = n{A"} (Fr A {Asz}y—f =mizof =k i (Fr AY)
{Agsztxof = n{Al5:} {2y —f = mz—f = KAL)
(Seq)

{Aza iy —=f =ny—f = mz—f = K{AE

‘ With factorized frames: optimizations are (quite) simple to express ‘

) {Ej}c:{(a/} _ (Frame ©) N
{E}c{e} L, {@+E}1C'{®+0'} {®@xO'}C"{E"}
(Frame Z')

:‘* "I}C{G H/} {G)* /}Cl Cll{'“/l}

:*"I}C C' C//{'—//} Seq)

|Parallelize

{E}cto) {=}CHOY o e
{ExE}C C{e+06'} {@x0}C"{Z"}
o "/}C H C': C//{’-//}

(Seq)

‘ With factorized frames: optimizations are (quite) simple to express ‘

{:‘ }C {® } (Frame ©)

EIC(O) e (0+F]C(6:0] (@@} C"{E"}
{ExE'}C{O+E} B {@xE}C"; C"{E"}

S
{:*NI}C C': C//{H//} (Seq)

|Parallelize

{E}ct0) {=}CHOY o e
{ExE}C| C{e+06'} {©x0}C"{Z"}
o "/}C ” c’; C//{’-//}

(Seq)

m {@x0O'}C"{E"} can be “dummy” i.e., a single application of (Empty).
L, Or C” can be a “normal” continuation.

m This rule matches the two cases.

Optimizations include:

m parallelization (previous slide)
m early disposal and late allocation (omitted in this talk)
m carly lock releasing and late lock acquirement (next 2 slides)

m improvement of temporal locality (3" slide)

Locks in Separation Logic

m Each lock guards a part of the heap called the lock’s resource invariant.
m Resource invariants are exchanged between locks and threads:

B When a lock is acquired, it lends its resource invariant to the acquiring thread.
® When a lock is released, it claims back its resource invariant from the releasing
thread.

Locks in Separation Logic

m Each lock guards a part of the heap called the lock’s resource invariant.
m Resource invariants are exchanged between locks and threads:

B When a lock is acquired, it lends its resource invariant to the acquiring thread.
® When a lock is released, it claims back its resource invariant from the releasing
thread.

Formally (where rg means @ is r’s resource invariant):

{ExO}C{E' + 0O}
{E}with rg do C endwith{E’}

(Region)

m Intuition: execute as much code as possible outside critical regions,

L ‘ by releasing locks as soon as possible ‘

=y
{Ex0}C{Z' « B} {E/*0}C'{Z" « 0} (Seq)
€
Ex0}C; C'{E" x O} . d
= : el s =" (Reglon) = UE el
{E}with rg do C; €' endwith{E"} {E"}C"{="}
{E}with rg do C; C’ endwith; C"{Z"}

(Frame ©)

(Seq)

| EarlyLockReleasing

Ex@}C{E' 0O} (Region)

{E}with rg do C endwith{ZE'} {211 C'{E"} (Seq)
e
{E}with rg do C endwith; C'{&"} q (=" {E")
{E}with rg do C endwith; C'; C"{E"}

(Seq)

m Intuition: execute as much code as possible outside critical regions,

L ‘ by acquiring locks as late as possible ‘

{EC{E}

Ev0lC(E 0} MO o e1oE o)

S
{ExO}C; C'{Z" 0} Reai)(eq)
egion
{E}with rg do C; C' endwith{E"} g {7} Cr{E"}

{E}with rg do C; C' endwith; C"{E"} (Sea)
| LateLockAcquirement
=+ 0}C{="+ 0} (Region)
{E}c{="} {E}with rg do C’ endwith{Z"}
1. s 7 - = =Y N (I
{E}C; with rg do C’ endwith{Z"} {EMC{E"} (Seq)

{E}C; with rg do C’ endwith; C"{E"}

m temporal locality £ time between two accesses to the same heap cell

L, the smaller the better (no need to free/load processors’s caches)

m Intuition below: C and C” access the same part of the heap

L, Execute them successively

- {E}C{ﬁl} (Fr©) =/ {G)}C/{(:)/} / (Fr E‘/) AV A1
Ex0O}C{E' « 0} {E/x0}C’{=' 0"} (Se {=}C"{="} ,
- = q) - — (Fr @)
L*@}C;Cl{\:/*@l} {:‘I*®/}C/I{:‘/I*®I}
[} ! HESwlas ! (Seq)
{ExO}C; C"; C"{E"x 0"}
| TemporalLocality
{=}yc{='} {E1C"{E"}
- I § =] (Seq) {0
BCCEY o {e3c'(e'} »
— — — — (Fr Z7)
{L*@}C;C”{L”*@} {::”*@}CI{C‘”*(DI}
(Seq)

ExO}C;, ", C'{Z" %O}

Implementation:

m The rewrite rules have been implemented in J ava+\ tom \

m tom extends Java to pattern match against tom/user-defined Java objects.
m The implementation is approximately 2775 lines long.

m Each rewrite rule is less than 58 lines of code (i.e. manageable).

=

Use of tom’s strategies to fine tune optimizations.

Demo

requires tree(?); ensures emp; requires tree(?); ensures emp;
disp_tree(r) { disp_tree(r) {
local i,j; local i,j;
if (r=nil){} else { if (r=nil){} else {
ir=t—>lj=t->r; d ii=t->lj:=t->r;
disp_tree(i); disp_tree()); dispose(r) ||
dispose(r); (disp-tree(i) | disp-tree()));

} }
} }

I’'m looking for a post doc starting approx. September 2009

Conclusion

A entirely new technique for parallelizing and optimizing programs
No ad-hoc analyses: separation logic proofs are taken as analyses.
Can parallelize any code (i.e. not restricted to loops)

Soundness is still doable (# classical parallelizers)

Prototype implementation

Future Work

M Formalize the shape of proof trees (is there a normal form ?)

B Release the implementation (cleanup + missing optimizations)
Bl Extension to fractional permissions (more parallelization possible)
B Extension to Parkinson’s per-field x splitting (more parallelization possible)
B Extension to object orientation (subsumes (4))(to deal with abstraction)

B More optimizations

But:

m Points (3), (4), and (5) require an (open-source) program verifier with these
features.

