
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Julia Subtyping: A Rational Reconstruction

FRANCESCO ZAPPA NARDELLI, Inria and Northeastern U.
JULIA BELYAKOVA, Czech Technical U. in Prague
ARTEM PELENITSYN, Czech Technical U. in Prague
BENJAMIN CHUNG, Northeastern U.
JEFF BEZANSON, Julia Computing
JAN VITEK, Northeastern U. and Czech Technical U. in Prague

THE DIAGONAL RULE, AS SUPPORTED BY C#
Although the design of the diagonal rule employed in Julia may look surprising at first, it turns out
that similar rules apply in C# for static method resolution.� �
abstract class B {}
class D1 : B {}
class D2 : B {}

class Program {
static void diag<T>(T x, T y) {}

static void nondiag<T>(T x, T y, T[] zs) {}

static void Main() {
//diag(new D1(), new D2()); // (1) error
diag(new D1(), new D1()); // (2)
nondiag(new D1(), new D2(), new B[5]); // (3)

}
}� �

The method diag takes two arguments of type T: C# static method resolution enforces that the
arguments, when T is to be inferred, must have the same type. So the method invocation in (1)
is incorrect, and raises a type checker error because types D1 and D2 are distinct. The method
invocation in (2) is instead correct because the arguments are instances of the same type D1. As
in Julia, variables with invariant occurrences cannot be diagonal, as the variable T in the method
nondiag: the method invocation in (3) is correct.

We remark that Java Generics instead do not support the diagonal rule because of erasure: generic
methods are compiled down to regular ones and all occurrences of T turn into Object. A call to an
erased version of a method will thus accept any combination of parameters.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.


