
Compiler Testing via a Theory of Sound Optimisations
in the C11/C++11 model

Robin Morisset
ENS Paris & INRIA

Pankaj Pawan
IIT Kanpur & INRIA

Francesco Zappa Nardelli
INRIA

Contribution 2
Design and implementation of a random-testing tool that checks if a compiler applies only optimisations sound in arbitrary contexts

http://www.di.ens.fr/~zappa/projects/cmmtest/

Do C/C++ compilers correctly compile concurrent programs?

void *th_1(void *p) {
 for (int l = 0; (l != 4); l++) {
 if (g1)
 return NULL;
 for (g2 = 0; (g2 >= 26); ++g2)
 ;
 }
}

void *th_2(void *p) {
 g2 = 42;
 printf(″%d\n″,g2);
}

Shared memory initialisation: int g1 = 1; int g2 = 0;

Thread 2Thread 1

 movl g1(%rip), %edx # load g1 into edx
 movl g2(%rip), %eax # load g2 into eax
 testl %edx, %edx # if g1!=0
 jne .L2 # jump to .L2
 movl $0, g2(%rip)
 ret
.L2:
 movl %eax, g2(%rip) # store eax into g2
 xorl %eax, %eax # store 0 into eax
 ret # return

void *th_2(void *p) {
 g2 = 42;
 printf(″%d\n″,g2);
}

Thread 2Thread 1

The compiler generated
apparently correct sequen-
tial code for Thread 1, but
did not respect the C11
memory model. The com-
piled code thus exhibits
more behaviours than the
source code. This is a
concurrency compiler bug.

Our goal is to design and
implement a technique to
hunt for these compiler
bugs.

Standard fuzzy testing of
compilers cannot detect
these because the generat-
ed code is correct in a se-
quential environment, and
non-determinism makes na-
ive extensions to fall short.

• Thread 1 returns before accessing g2
• The program is data-race free
• The C11 standard states that data-race free programs

must exhibit only sequentially consistent behaviours
• 42 is the only sequentially consistent behaviour

• The assembler for Thread 1 saves and restores g2
• Thread 1 can overwrite the update to g2 of Thread 2
• The compiled code can also print 0
• This is forbidden by the C11 standard

Output: 42

Output: 42 or 0GC
C

4.
7

-O
2

Hunting concurrency compiler bugs
Idea: C / C++ compilers support separate compilation; they can only apply optimisations sound in an arbitrary concurrent context

Several concurrency compiler bugs and unexpected behaviours detected by cmmtest in the latest release of GCC

In general, it is possible to characterise which optimisations are correct in a concurrent
setting by observing how they eliminate, reorder, or introduce, memory accesses in the
traces of the sequential code with respect to a reference trace. As an example, the instance
of loop-invariant code motion on the right eliminates redundant memory accesses and
reorders independent accesses: it is provably correct.

The cmmtest tool that we designed and implemented puts this strategy at work:
- it generates a well-defi ned sequential C program using a modifi ed version of CSmith
- it invokes the optimising compiler under test
- traces the global (potentially shared) memory accesses of the optimised code
- it compares the optimised trace against a reference trace for the source program,
 building on our theory of sound optimisations for the C11/C++11 memory model
- if the traces cannot be matched, it performs test-case reduction

Random sequential C program

Optimised executable

Reference trace Optimised trace
Tracing

Can the optimised trace be obtained from the reference trace
by a sequence of valid eliminations/reorderings/introductions?

Tested compiler

Reference semantics

On the code above, the optimised
trace exhibits two extra accesses,
including one introduced memory
write. Introduction of observable
memory writes is provably unsound
in the C11 memory model: the
optimised trace cannot be justifi ed
from the reference trace by a
sequence of correct transformations.
We detect a concurrency compiler
bug.

Execution traces for the compiler bug above.
Initially g1=1 and g2=0.

RNA g1 1
RNA g1 1

RNA g2 0

WNA g2 0
Unsound

write introduction

Read introduction

reference trace optimised trace

Execution traces for the unoptimised and optimised code, supposing an initial
global state where z=x=0 and y=3 (while t and i are local variables).

for (i=0; i<2; i++) {
 z = z + y + i;
 x = y;
}

t = y;
x = t;
for (i=0; i<2; i++) {
 z = z + t + i;
}

lim

WNA z 3

WNA x 3

RNA y 3 RNA z 3

WNA z 7

RNA z 0 RNA y 3

RNA y 3

RNA y 3

WNA x 3

WNA x 3

WNA z 3

RNA z 3

WNA z 7

RNA y 3

RNA z 0 Reordering
of unrelated

memory accesses

Elimination of a
redundant write

Elimination of a
redundant read

RNA y 3

Contribution 1
Characterisation of optimisations sound in an arbitrary concurrent context

